IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000 535

Interval Type-2 Fuzzy Logic Systems:
Theory and Design

Qilian Liang and Jerry M. MendgFellow, IEEE

~ Abstract—in this paper, we present the theory and design of fuzzy sets allow us to handle linguistic uncertainties, as typi-
interval type-2 fuzzy logic systems (FLSs). We propose an efficient fied by the adage “words can mean different things to different
and 5|_mpI|f|ed_ method to compute the input and antecedent people.” A fuzzy relation of higher type (e.g., type-2) has been
operations for interval type-2 FLSs; one that is based on a general ded 0] the fuzzi f lati d
inference formula for them. We introduce the concept of upper regar (_9 as or.1e Wa}"_ O Increase ? uzz.|ness N qrg ation and,
and lower membership functions (MFs) and illustrate our efficient ~according to Hisdal, “increased fuzziness in a description means
inference method for the case of Gaussian primary MFs. We also increased ability to handle inexact information in a logically
propose a method for designing an interval type-2 FLS in which ¢orrect manner [6].”
we tune its parameters. Finally, we design type-2 FLSs to perform  nizymoto and Tanaka [25] studied the set theoretic opera-
time-series forecasting when a nonstationary time-series is cor- _. : .

tions of type-2 sets, properties of membership grades of such

rupted by additive noise where SNR is uncertain and demonstrate - g f
improved performance over type-1 FLSs. sets, and examined the operations of algebraic product and al-

Index Terms—interval type-2 fuzzy sets, nonsingleton fuzzy logic gebraic sum for them [26]. More details about algebraic struc-

systems, time-series forecasting, tuning of parameters, type-2 fuzzytljIre of type-2 sets are given in [28_]' Dubois and Prade [2]-{4]
logic systems, upper and lower membership functions. discussed fuzzy valued logic and give a formula for the compo-
sition of type-2 relations as an extension of the type-1 sup-star
composition, but this formula is only for minimugmnorm. A
general formula for the extended sup-star composition of type-2
FUZZY logic system (FLS) (also known as a fuzzyelations is given by Karnik and Mendel [11], [12], [17]. Based
system, fuzzy logic controller, etc) includes fuzzifieron this formula, Karnik and Mendel [10]-[12], [17] established
rules, inference engine, and defuzzifier [22]. Quite ofte® complete type-2 FLS theory to handle uncertainties in FLS pa-
the knowledge that is used to construct the rules in a FLSr@meters.
uncertain. Three ways in which such rule uncertainty can occurSimilar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule
are: 1) the words that are used in antecedents and consequeage, fuzzy inference engine, and output processor. The output
of rules can mean different things to different people [23processor includes type-reducer and defuzzifier; it generates a
2) consequents obtained by polling a group of experts wifpe-1fuzzy set output (from the type-reducer) or a crisp number
often be different for the same rule because the experts wilom the defuzzifier). A type-2 FLS is again characterized by
not necessarily be in agreement; and 3) noisy training datB—THEN rules, but its antecedent or consequent sets are now
Antecedent or consequent uncertainties translate into uncertipe-2. Type-2 FLSs can be used when the circumstances are too
antecedent or consequent membership functions. Type-1 FL@3gertain to determine exact membership grades such as when
whose membership functions are type-1 fuzzy sets, are unalféning data is corrupted by noise—a case studied later in this
to directly handle rule uncertainties. Type-2 FLSs, the subjgaaper.
of this paper, in which antecedent or consequent membershigseneral type-2 FLSs are computationally intensive because
functions are type-2 fuzzy sets, can handle rule uncertaintieype-reduction is very intensive. Things simplify a lot when sec-
The concept of type-2 fuzzy sets was introduced by Zadehdary membership functions (MFs) are interval sets (in this
[41] as an extension of the concept of an ordinary fuzzy segse, the secondary memberships are either zero or one and we
i.e., atype-1 fuzzy set. Type-2 fuzzy sets have grades of megall them interval type-2 sets) and this is the case studied in
bership that are themselves fuzzy [4]. A type-2 membersHipis paper. When the secondary MFs are interval sets, we call
grade can be any subset [ 1]—the primary membership the type-2 FLSs “interval type-2 FLSs.” For some other discus-
and, corresponding to each primary membership, thergéga sions on the use of interval sets in fuzzy logic (see Hisdal [6],
ondary membershigwhich can also be M0, 1]) that defines Schwartz [32], and Turksen [34]).
the possibilities for the primary membership. A type-1 fuzzy The most commonly used fuzzifier is a singleton; but, such
set is a special case of a type-2 fuzzy set; its secondary memlsetuzzifier is not adequate when data is corrupted by measure-
ship function is a subset with only one element—unity. Type{2ent noise. In this case, a nonsingleton fuzzifier that treats each
measurement as a fuzzy number should be used. The theory and
applications of a type-1 FLS with nonsingleton fuzzifier are pre-
Manuscript received August 20, 1999; revised May 30, 2000. sented in [27], where the input is fuzzified into a type-1 fuzzy
The authors are with the Signal and Image Processing Institute, Departmgga (e.g., Gaussian) whose parameters are based on the measured
of Electrical Engineering Systems, University of Southern California, Los An- . . .
geles, CA 90089-2564 USA (e-mail: mendel@sipi.usc.edu). Input and the mean and variance of the measurement noise. This
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the noise is given or can be estimated; but, in many cases, themsmbership functiop z;, () of a fired rule can be expressed by

values are not known ahead of time and can not be estimatkd following extended sup-star composition [12], [17]:

from the data. Instead, we only have some linguistic knowledge

about the noise, such asry noisymoderately noisyor approx- pi(y) = Uxex [“AI (%) M e e (%, y)] Q)

imately no noiseln this case, we cannot fuzzify the crisp input

as a type-1 fuzzy set, because type-1 MFs cannot fully repmehereX is ap-dimensional Cartesian product spa&e= X x

sent the uncertainty associated with this linguistic knowledge.- x X,, X is the measurement domain of inpty, (¢ =

We believe that in this important caske input should be fuzzi- 1, ..., p); and A, is given by

fied into a type-2 fuzzy shir use in a nonsingleton type-2 FLS.

This case is also studied in this paper. e, (%) = b i, (®) = pg, (@) 0. Mpg (2p). (2)
In this paper, we also provide a design method for an interval

type-2 FLS, where IF-THEN fuzzy rules are obtained from givedditionally

input—output (1/0) data. Two primary design tasks strecture

identificationandparameter adjustmerf]. The former deter- 1 (X, ¥)=pp (@) gy (w201 - Tpagoe (@p g (). (3)

mines input/output (1/0) space partition, antecedent and conse-

quent variables, the number of IF-THEN rules (which are detépubstituting (3) and (2) into (1), the latter becomes

mined by the I/0O space partition), and the number and initial loca-

tions of membership functions. The latter identifies a feasible setz: (v) = pg () N {I_Ixex { |:LL5(1 (x1) M H (xl)} r

of parameters under the given structure. In this paper, we focus

onparameter adjustmenis an interval type-2 FLS. -1 [N)”(p (@p) M gy (%)} }} , yeY. (4
Tuning the parameters of a type-1 FLS is possible because

its outputf(x) can be expressed as a closed-form mathematié&t

formula. Optimization methods for doing this have been exten- A

sively studied (for example, [7], [19], [22], [24], and [36]). Un- po(@n) = b, (1) M e (@) ®)

fortunately, the output of a type-2 FLS cannot be represented

by a closed-form mathematical formula; hence, there is an ad en

tional level of complexity associated with tuning its parameters. o 4L o i v
To date, type-2 sets and FLSs have been used in decisidh?" (W) = pe (W) { xeX [ k=11Q; (xk)} }’ vel
making [1], [40], solving fuzzy relation equations [35], survey (6)

processing, [12], [13], time-series forecasting [12], [14], funcUPPOSe that any of the M rules in the FLS fire, wherey <
tion approximation [12], time-varying channel equalizatiod: then, the output fuzzy sefi,;(y) for a type-2 FLS is
[17], control of mobile robots [39], and preprocessing of data [9]. N

In the sequel, results for a general type-2 nonsingleton fuzzy ri(y) = Uizang(9), yey. ()
logic system (NSFLS) are given in Sectionipetandjoin op-
erations for interval sets are given in Section Ill; upper and lower
membership functions that characterize a type-2 MF are intro-

For later use, we define

- . - o ~(X)é|_|p 5 (Th) (8)
duced in Section IV, an efficient and simplified method to com- Ko k=1 MGt \ Tk
pute the input and antecedent operations for interval type-2 FL8¥I
is given in Section V; type-reduction and defuzzification for an Fla Llxex [ﬂizluéi (-Tk):| = Uxexpio(x)  (9)

interval type-2 FLS are reviewed in Section VI; a method for de-

signing aninterval type-2 FLS is givenin Section VII; anapplicasg that (6) can be re-expressed as
tion of our design method is given in Section VIII for time-series

forecasting of a nonstationary time-series that is corrupted by ad- 1 (y) = pea(y) M F! y €Y. (10)
ditive noise whose SNR is uncertain; and, finally, the conclusions
and topics for future research are given in Section IX. General type-2 FLSs are computationally intensive. Things

In this paper,A denotes a type-1 fuzzy set;s () denotes simpjify a lot when secondary MFs are interval sets, in which
the membership grade af in the type-1 fuzzy sefi; A de- case secondary memberships are either zero or one and, as we

notes a type-2 fuzzy sefi; () denotes the membership grad@jemonstrate below, such simplifications make the use of type-2
of z in the type-2 fuzzy set, ie., u;(z) = [, fa(w)/u, FLss practical.
w € J C [0, 1]; N denotesneetoperation; and,| denotegoin
operation. Meet and join are defined and explained in great de- lIl. M EET AND JOIN FOR INTERVAL SETS
tail in [10]-[12], [15].
The meetandjoin operations, which are needed in (5)—(10),
can be greatly simplified for interval type-1 sets.

Theorem 1 (Meet of Interval Sets Under Minimum or Product
In a type-2 FLS with a rule base df rules in which each t-Norms):

rule hasp antecedents, let thgh rule be denoted bﬁlehere a) Lett = fveF 1/v andG = fweG 1/w be two interval

RUF ayis FL, o is FY, ..., andzy, is F), THENy is G'. The type-1 sets (often called interval sets) with domains

Il. TYPE-2 FLSs: GENERAL RESULTS
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[lf7 Tf] ([lfv Tf] g [07 1])! andg S [lgv Tg] ([lgv 7’9] g 1
[0, 1]), respectively. Theneetbetweens" and G, @@ = 09
FNG(@Q = fuCQ 1/¢), under minimum or product

t-norms (i.e.x) is given by 0.8
0.7

Q=FnNG= 1/q (11)
Q€[ rlg, T rr7g] 0.6

whereq = v * w. 0.5

b) The meetunder minimum or product-norms ofn in- ;41

terval type-1 setd?, ..., F,, N, F;, having domains
(1, 1], .. o [ln, 7a], respectively, wherd;, 7] C [0, 1] 93]
i=1,2,...,nisaninterval set with domaiffl; « I » |

ceeklp), (ke K k)]
The proof of Theorem 1a), based on minimum or product o 0.1
erations between two interval sets, is given in [18] and [32]. Tt o
extension to part b) (via mathematical induction) is so straigt
forward, we leave it to the reader.
Theorem 2 (Join of Interval Sets): 1

a) Letf”and( be as defined in part (a) of Theorem 1. Toim 4
betweenf” andG,Q = FUG (Q = fUEQ 1/q), is given by

0.8¢ 1
Q:Fl_lG:/ 1/q (12) o7
q€[lrVig, mrVrg] 0.6F

whereq = v V w. 0.5 1

b) LetF; (i = 1,2, ..., n) be as defined in Theorem 1(b).
Then thejoin of thesen interval type-1 sets is an interval %4
setwith domairf(i; VIa V--- Vi), (ri Vra V- V). gal
The proof of Theorem 2(a), based on maximum operatic
between two interval sets, is given in [18], [12], and [32] 2]
The extension to part (b) (via mathematical induction) i,
also so straightforward we leave it to the reader. : 7 o

In this paper, we always assume that theperation is the g 2 4 6 8 10

maximum operation. (b)

Observe from Theorems 1 and 2, that meet and join ope. ..

tions of _mterval sets are determined just by the tW_O end-pmq_lla 1. The type-2 MFs for (a) Example 1 and (b) Example 2. The thick solid

of eachinterval set. In atype-2 FLS, the two end-points are assfes denote upper MFs and the thick dashed lines denote lower MFs. The shaded

ciated with two type-1 MFs that we refer to agperandlower regions are the footprints of uncertainty for interval secondaries. In (a), the
MFs centers of Gaussian MFs vary from 4.5-5.5; in (b), the center of the Gaussian

MFs is 5 and the variance varies from 1.0-2.0.

IV. UPPER ANDLOWER MFS FORTYPE-2 FLSs
We use an overbar (underbar) to denote the upper (lower) MF.

For convenience in defining the upper and lower MFs of gor example, the upper and lower MF&sz (1) arefiyy, (zx)
type-2 MF, we first give the definition dotprint of uncertainty and, ., (x,,), respectively, so that " "

of a type-2 ME
Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of a ty (k) :/ - 1/4". (13)
type-2 MF consists of a bounded region that we call the 7' Cligy () Bt (#1)]
footprint of uncertaintyof a type-2 MF (e.g., see Fig. 1). It is
the union of all primary membership grades. Similarly, we will represenfu s, (x) andpz. () as
Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs that are bounds for the footprint of . !
. ; . b, (Tr) —/ 1/v (14)
uncertainty of an interval type-2 MF. The upper MF is a subset k Vel (), Tix, (o))
that has the maximum membership grade of the footprint of un- o
certainty; and the lower MF is a subset that has the minimum M (zx) = /
membership grade of the footprint of uncertainty. ' Wl i)y Bt (#10)]

Eo

1/w! (15)
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Example 1: Gaussian Primary MF with Uncertain Example 2: Gaussian Primary MF with Uncertain Standard
Mean: Consider the case of a Gaussian primary MF havingeviation: Consider the case of a Gaussian primary MF having
fixed standard deviation!, and an uncertain mean that takes fixed meann!, and an uncertain standard deviation that takes

on values inm};, mi,], i.e., on values inol,, ot,], i.e.,
2
1 —mt 2 1 [z, —mi
Ni(%) = €xp [—5 <$k0_—lmk> ] > mi S [migl, mia] Ni(xk) = €xp [—5 <Tk ) O'fe € [0217 0122]
¢ 4
(16) (19)
where where
k 1,...,p; k 1, ..., p
P number of antecedents; p number of antecedents;
l 1,..., M;and, l 1,..., M;
M number of rules. M number of rules.
The upper MF () is [see Fig. 1(a)] The upper MFz, (zy) is [see Fig. 1(b)]
Ny, ot zn), o <mb (o) = N(mi,, ofa; 1) (20)
L (zr) = < 1, mby <z <ml, (17) and the lower MR (zy) is [see Fig. 1(b)]
. !
N(my, ot zx), o > ml, ph(ar) = N(ml, okys zn). 1)

where, for example Note that the upper and lower membership functions are sim-

I\ 2 pler for Example 2 than for Example 1. O
l l A 1 fop —my, : L o
N{(myy, o35 1) = exp S\ These examples illustrate how to defi@@nd. so it is clear
how to define these membership functions for other situations
(e.g., triangular, trapezoidal, bell MFs).

7
Ok

The lower MF 4t (z.) is [see Fig. 1(a)]

N(mby, ok w0, a5 < M | V. INT'ERVAL TYPE-2 FLSs o |

pik () = 2 . (18) Our major result fo_r interval type-2 FLSs_ is given in: _

- P mb, +mb, Theorem 3:In an interval type-2 nonsingleton FLS with
Nmiy, o35 21, @ > 2 type-2 fuzzification and meet under minimum or product

t-norm: 1) the result of the input and antecedent operatibhs,

. . . _ . I _ [
From this example, we see that sometimes an upper (o'rna(g)’ is an interval type-1 set, .k = [f, f], where

lower) MF cannot be represented by one mathematical function e [ (1) % )}
over its entire domain. It may consist of several branches each = ig)( < Jx, P, (L) > By (1
defined over a different segment of the entire domain. When 99
the input is located in one domain-segment, we call its cor- roE [HXP (zp) *H”;(xp)}/x (22)
responding MF branch aactive branch e.g., in Example 1, and
i i H l —

yvhena:;; > l((mkl + mj,)/2), the active branch for! (xx) 7= sup / / [ﬁj(l(xl)*ﬁpz (-Tl):|
is N'(mjy, o%; k). xeX Jx, X, !

When_ an upper (or Iowe_r) MF is repre_sen_ted in different seg- B [ﬁ)”( (2p) * i (xp)}/x (23)
ments, its left-hand and right-hand derivatives at the segment » »

end point [e.g.x, = ((mi; + ml,)/2) for Hﬁc(”‘)] may not the supremum is attained when each term in brackets attains its
be equal, so the upper (or lower) MF may not be differentiabipremum; 2) the rul&’ fired output consequent sgt;. () in
over the entire domain; however, it is piecewise differentiablél0) is
i.e., each branch is differentiable over its segment domain. This
fact will be used by us when we tune the parameters of a type-2 piy) = / . 1/0f (24)
FLS. VI kgt (U), F i (U)]

Some upper and lower MFs can be represented by one fuwhereﬁél (v) andfiz. (y) are the lower and upper membership
tion and are differentiable over their entire domain as we demagrades ofu:. (); and 3) the output fuzzy set(y) in (7) is
strate in the following example. (25), as shown at the bottom of the page.

5z DIV VN 5 i DL T 5 B DIV -V [T *Hign ()]

i) = /b { 1 (25)
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A. Proof of Theorem 3 The suprema in (31) and (32) are, overalljin X. By
1) Applying Theorem 1(a) to (5) for an interval type-2 FLS ~ the monotonicity property of @-norm [42], [27], the
with type-2 fuzzifier and using (14) and (15), we find supremum is attained when each term in brackets attains
’ its supremum.
K (wx) = pg, (Tr) M ff (zk) 2) Based on (9), (31), (32), and Theorem 2(a), we evaluate
(10) as
= / 1/¢'
qle[ﬁxk (Wk)*ﬁﬁi (“/’k)zﬁj(k (Wk)*ﬁj:i (zr)] i (y) = [Léu (y) M Fl
26 '
(26) = pige(v) l"/ YS!
il £l

whereg! = v' xw'. So, the meet between an input type-2

set and an antecedent type-2 set just involves-herm - / /0. (33)
operation between the points in two upper or lower MFs. e[l sy (), Fioig (w)]
The upper and lower MFs gf, (z) are _ .
k 3) Becausqupi(y) (I = 1, ..., N) are interval sets, it is
— I — straightforward to obtain: z(y) in (7) using Theorem
Aoy (en) = /Xk [“Xk(“)*“Fi(“)V o (@) 2(b). The result is (25).

O
B (wr) = /Xk [ﬁ)}k (%) * B (“7’“)} /“’k (28) | evaluating (22) and (23), the supremum is attained when

) ) ) ) _ each term in brackets attains its supremum; so, in the inference
The meet operations in (8) are inadimensional of a type-2 FLS, we will examine

Cartesian product space so the meet operation is over all

pointszy € Xy, k = 1, ..., p. Based on Theorem 1(b), = A - _
we know that the upper membership grades:gf(x), fr= R . |:NXA' (1) * Figy (x’“)}/x’“ (34)
Tigi(x) (a type-1 MF) are obtained from thtenorm of A
membership grades i, («1); hence, from (27), we find [ = S /Xk |:ﬁj(k (zx) * g (-Tk)}/xk (35)
Py (x) = / / [ﬁj{l(xl)*ﬁirll (371)} wherek = 1, ..., p, andx is at-norm; then f' and f' can be
X Xp re-expressed as
Kook |Tgp(Xp) * T (2p)] [ X (29) _ _
rxoton) + Ty o)/ 7 =TT (36)
The lower membership gradgal (x) (a_type—l MF), are f _ 71f=1ﬁc 37)
thet-norm of the membership gradesugl (xL); hence,
from (28) we find Sk where7 denoteg-norm. We illustrate (36) and (37) below in
Section V-C.
e (X) = P (T1) * przy (T .
ey () /xl /xp [—X (o) > o 1)} B. Corollaries to Theorem 3

Foovk [Hj(p (Tp) * Pz (a:p)}/x. (30) When the input is fuzzified to a type-1 fuzzy set so that
? px, — bx, (k= 1,...,p), the upper and lower MFs of
Thejoin operationin (9) is over all pointsin X . Based /1%, Merge into one MR, (x3) in which case Theorem 3
on Theorem 2, we know that the right-most point of theimplifies to the following.
join of n (n > 2) interval sets is the maximum value Corollary 1: In an interval type-2 FLS witmonsingleton
of all the right-most points in the interval sets; so, the type-1 fuzzificationand meet under minimum or product
right-most pointf’ of F* comes from the maximum value¢-norm, f* and ! in (22) and (23) simplify to
(supremum) ofi,, (x) (the right-most point of interval set N

- / Ay .

g (x') foreachvalue ok’); hence, from (29) we find f: Sup/ / [qu (xl)*ﬁ”z(l'l)}
xcX JX; X, 1
7l _ T~ 7=
= Slelg)( /X1 /Xp [NXl(xl)*NF{(xl)} ook [NXp(xp)*HF]g(xp)}/X (38)
woeen [T () * gy ()] / x (31) and

- o Fl= Sup/ / [qu(xl)*ﬁpz(xl)}
Similarly, the left-most pointf" of F' comes from the xeX J Xy Xp !
maximum value (supremum) pf-, (x); hence, from (30) T [NX () % T (2 )}/x (39)
we find rer ot

. whereux, (K =1, ..., p)is the type-1 fuzzified input.
I'= iy 4 /X1 - /X [H)"(l (1) *Hp (371)} When a singleton fuzzifier is used, the upper and lower MFs
! of px, (wx) merge into one crisp value, namely one, in which
Kow [H)”(p () * B (xp)} /X~ (32) ' case Theorem 3 simplifies further to the following.
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Fig. 2. Type-2 FLS: input and antecedent operations. (a) Singleton fuzzification with minirmanm; (b) singleton fuzzification with produ¢tnorm; (c) NS
type-1 fuzzification with minimung-norm; (d) NS type-1 fuzzification with produ¢inorm; (e) NS type-2 fuzzification with minimumnorm; and (f) NS type-2
fuzzification with product-norm. The dark shaded regions depict the meet between input and antecedent [computed using Theorem 1(a)].

Corollary 2: In an interval type-2 FLS witlsingleton fuzzi- C. lllustrative Examples
fication and meet under minimum or produﬁenormf andf*

in (22) and (23) simplify to Example 3—Pictorial Representation of Input and An-

tecedent Operationsin Fig. 2, we plot the results of input and

= 7y (1) %ok Hoi (zp) (40) antecedent operations with singleton, type-1 nonsingleton, and
q - T type-2 nonsingleton fuzzifications. The number of antecedents
an - isp = 2. In all cases, the firing stength is an interval type-1
J=np @)« x g () (41) set,[f*, 7Y, where f' = fi x fhand ! = Fi x fh. For

- . g - - _l
wherez; (¢ = 1, ..., p) denotes the location of the singleton. smgleton fuzzification [Fig. 2(a) and (b)l/; denotes the

The proofs of these corollaries are so simple, we leave thdlin9 lstrength betwe_e_n input; and Fip na.melyﬁﬁlk (@);
for the reader. and f;, denotes the firing strength between mputandﬁplk,
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TABLE |
=l
T}, max FOREXAMPLE 4
Cases mg, locations product t-norm minimum t-norm
B me; +cr%1 m - . . -
1 (Fig. 5a) me <m z = _rxkz Fo ' By R 7! _%."E Fopimy,
g- X; = F‘Ll k,max — o2 a2, k.max — o% +a .
Xpg  Fy k2 By
: N =l . =l o
2 (Figs. 5b,c,d) | mg, € [mﬂl’mﬁ ] Th max = MR, Thmax = MK,
ol m_; +o<; my - _ . -
3 (Fi 5 ) me >m 7 _ X ey By Xi - B 7% +UF‘ %
g ve Xk = "R, k,max = 0% Fo2 kmax — oy +0-s
Xe2 Fj k2 Fy
TABLE I
2}, max FOREXAMPLE 4 BASED ON PRODUCT ¢-NORM
Cases mg, locations product t-norm
Mai Mo 02 (mei ~me, ) 0% M +0’2.‘m)'(
1 - Fyp Fro Xy Fy Fyp i = &_;‘ﬂ__gk__“
1 (Figs. 5a,b) mg, < ) - 202 Lhmax — % +0%
B Xer  Fi
mei meg of (mei —mei ) mei Mmoo
H . Fa  Fip Xpy o Fup  Fiy® l Fiy Fiz
2 (Fig. 5¢) | mg, € [ 7 - ] ) Zk,max = 2
2 FL
m +m 0% Moy Mooy
Py 0 + Xep Fy Fr
2 20%;
Fy
Mg M a2 (m.i —-m.; ) 0% M +"2-;m)'(
. F 3 X B I3 ! Xer Fr By Ak
- =
3 (Figs. 5dye) | myg, > —Hp—k 4+ Sh g Tk gy =
2 T ¥
By k1 Fg

namely yi;., (zx), (k = 1,2), as established by Corollaryby o, , andot, by o, ,- Thekth antecedent MF has the fol-
2. For nonsingleton type-1 fuzzification [Fig. 2(c) and (d)jlowing form:

fL denotes the supremum of the firing strength between the 5
t-norm of membership functionsy, andziz«; andf{ denotes _ 1%k = Mg
the supremum of the firing strength between theorm of Hig(we) = exp | =5 < )
membership functionsx, andu;,, (k =1, 2), as established

by Corollary 1. For nonsingletorf type-2 fuzzification [Fig. 2(e)

and (f)], f}. denotes the supremum of the firing strength, jts upper and lower MF8;.: (23,) andy -, (1) are obtained
between the-norm of upper membership functiops;, and k —F

. k .
Jipy; and, fi denotes the supremum of the firing strengtH?m (17) and (18)’1 respectively, by replacing; by MR
between the-norm of lower membership functions, and "2 by mp; andoy by o, Observe that there are six pa-
fipe (k =1, 2), as established by Theorem 3. The main thin@meters that determine these two type-2 Gaussian MEs:,

to observe from these figures is that regardless of singleton’8#;.’ 7’ mﬁ?k' 9%, andog, . In this example, as in [27),
nonsingleton fuzzification and minimum or prodiatorm, the W€ assume that

T
B

mp; € [mﬁil’ mFiz] (43)

result of input and antecedent operations is an interval type-1 oS e (44)
set that is determined by its left-most poifftand right-most Fp = "Xk
point f*. and our objective is to evaluate (34) and (35). Equation (44)

Example 4—Input is a Gaussian Primary MF with Uncermeans that uncertainty in each input set is always no more than
tain Standard Deviation and Antecedents are Gaussian Primape uncertainty in the antecedent.
MFs \;Vith Uncertain Means:In this example, we computf,, e denote the value af;, at which the supremum of (34)
and f; when a Gaussian primary MF with an uncertain stagycurs agl ___and the value of; at which the supremum of
dard deviation (as in Example 2) is used as input fuzzy sets )occursja% . The results for, andz!, of this
Gaussian primary MFs with uncertain means (as in Examplgample are carried out in Appendix A, and are summarized in
1) are used as antecedent MFs. This case is important to @4pjes |—|II. From these results, it is straightforward to compute
time-series forecasting application in Section VIII. In this €as§! and f! using (34) and (35), i.e.,

2 —
s (@) = exp [_% <w i ) T4 =T, (Th ) * Tt (T ) (45)
X ii :Hj('(ggc,max) *H”l (ggc,max)' (46)
7x, € [UXklv anz] (42) * b
When the input is fuzzified to a type-1 Gaussian MF, then
and its upper and lower M5, (z.) a”dﬁi(k (x) are obtained 0%, = 0%, and we can easily Obtamlk7n1ax and&i,mx

from (20) and (21), respectively, by replacingd, by Mz, ol based on Tables I-Ill. When a singleton fuzzifier is used, the
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TABLE Il
Z% | max FOREXAMPLE 4 BASED ONMINIMUM ¢-NORM
Cases mg, locations minimum ¢-norm
Mg +Me.; 0y (Mei —m_; ) 05 M-; +0.;mg
1(Figs. 5a,b) m).(k< Fk12 Fio _ Xu zi,; Fyy gcvmax: Xkla;kz+a;g Xx
k k1 .
me; tmei oy (meq —m.; ) Mey +Meag
9 (Flg 5C) my, c [ Fkl,z Fio Xy QFJI; Fey , ﬁi,max - _F&L?_F_k_z.
k
mF;l+mFL . g)-(lcl(mF;C —mE;L)
2 ZJF;c
Mai +Mai oy (m-i —m.; ) Oy Me; +0.i My
3 (Figs. 5d,e) mg, > Fk!2 Fro + Xkt 21‘;;; ey Qiymax Xkla;k +U;“' X
k k
results in Tables I-Ill simplify even further singék max = y' €Y' =[yi, 4] centroid of the type-2 interval conse-
fﬁwm = Tp. andY™ quent set.GZ (the pentr_md of a type-2
fuzzy set is described in [11], [16], and
VI. TYPE REDUCTION AND DEFUZZIFICATION [12]);
1 1,..., M.
- i indi- RP 1 ificati ’ o ; i
f Aty_p? 2FLS '? a mapdpm%. R —>d7§ %Aftf_’ff fu:zmcatmnk,)t Observe, that each set on the right-hand side (RHS) of (47) is an
uzzy inference, type-reduction, and defuzzification, we obtajpq a1 type-1 set, henca, (Y2, ..., YM, FY, ..., FM)

a crisp output. For an interval type-2 FLS, this crisp outputis trfg also an interval type-1 set. So, to finke, (Y, ...
center of the type-reduced set. Based on Theorem 3 and Cotoks 1 FM), we just need ,to comp(l)JSte t’he éwo
laries 1 and 2, we know that for an interval type-2 FLS, regargir:d:poir’lts (;f this, interval. Unfortunately, no closed-form
less of singleton or nonsingleton fuzzification and minimum Ybrmula is available fol ... ’

product¢-norm, the result of input and antecedent operations For any valugy € Y., y can be represented as

(firing strength) is an interval type-1 set, which is determined by

its left-most and right-most point§’ and f* (e.g., see Fig. 2). M
The fired output consequent se, () of rule R' can be ob- Z iyt
tained from the fired interval strength using (24) or Corollaries _ =l (48)
1 or 2 and (24). Then the fired combined output consequent set M
115(y) can be computed using (25). dof
Type-reduction was proposed by Karnik and Mendel [11], i=1

[12], [17]. Itis an “extended version” [using the extension prin-

ciple [41] of type-1 defuzzification methods and is called typéhe maxm;rlgm value O%hls Yr and thi minimum vgluef o Its'
reduction because this operation takes us from the type-2 out Fl]:rom (48), vive see atis a monotonic !ncireasmg unction
ifh respecttq/’; soy; is associated only with. and, similarly,

sets of the FLS to a type-1 set that is called the “type-reduc . "y
yp ! b . is associated only witl;. In the center of sets (COS)-type-

set.” This set may then be defuzzified to obtain a single cr|§ guction method, Karnik and Mendel [12], [17] have shown

number; however, in many applications, the type reduced )
may be more important than a single crisp number since it cotn-f’ﬂ the two end points ofcos, v, andy; depend only on a

veys a measure of uncertainties that have flown through tixture of /= or J* values, sincef® € I = [/", f']. In this

type-2 FLS. casey; andy, can each be represented as a fuzzy basis function
There exist many kinds of type-reduction, such as centro;BF) expansion, i.e.,

center-of-sets, height, and modified height, the details of which

are given in [11], [12], and [17]. In this paper, for illustrative i]”?/
purposes, we focus on center-of-sets type-reduction, which can —~ b Mo
be expressed as w=""—=> un (49)
i =1
Yoos (YL, ..., YM o FM) ;f’
M
Zfiyi where f{ denotes the firing strength membership grade

= [, vl z/ / / / 1 /=t (a7) leither £ or f%] contributing to the left-most poiny; and
i vy g EM:fi pi = fi/ ML, fiis the FBF. Similarly
=1

= M
where Zf}y} Mo
Yieos interval set determined by two end Y = % = Z YDy (50)

fler T

pointsy; andy,; Z fi i=1
=1
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wherefj, denotes the firing strength membership grade (eitheYll. D ESIGNING INTERVAL TYPE-2 FLSS BASED ON TUNING
i‘ or }C) cqr_ltnbutmg to the right-most poirg, and p, = Given an input—output training paix, d), x € RP andd €
fr/ 2oi=1 [ is another FBF. R, we wish to design an interval type-2 FLS with output (53) so
Note that whereas a type-1 FLS is characterized by a singhat the error function
FBF expansion [22], [37], an interval type-2 FLS is character-
ized by two FBF expansions. A general type-2 FLS is charac- e=
terized by a huge number of FBF expansions [12], [17]; hence,
we have demonstrated that by choosing secondary membershipinimized. Based on the analysis in Section VI, we know that
functions to be interval sets, the complexity of a general typeeRly the upper and lower MFs and the two endpointy6{the
FLS is vastly reduced. center of the consequent set) determji{e). So we want to
In order to computey andy,, we need to Computgf;, i = tune the upper gnd Iowgr MFs and the consequent parameters
1,2, ..., MYand{fi,s = 1,2, ..., M}. This can be done _W = [y}, yr]. Since an |_nterval type-2 FLS can b_e character-
using the exact computational procedure given in [12], [16], algfd by two FBF expansions that generate the paingndys,

[17]. Here, we briefly provide the computation procedure leespectively, we can focus on tuning the parameters of just these

. Without loss of generality, assume this are arranged in Mg_type-ljlfLS_s. toutout  traini | ¢t
ascending order, i.eg! < 12 < ... < yM. iven input—outpu raining samples (x*, d*),

[f(x) - d? (54)

[

‘ (t = 1,...,T), we wish to update the design parameters
1) Computey, in (50) by initially settingf? = ((f*+f*)/2) so that (54) is minimized foE training epochs (updating the
fori =1, ..., M, wheref? andf‘ have been prEviously parameters using all thE training samples one time is called
computed using (22) and (23) and iﬁté n. “one epoch”). A general method for doing this is as follows.
2) FindR (1 < R < M — 1) such thay® < ¢/ < yR+1, 1) Initialize all the parameters including the parameters in
3) Computey, in (50) with fi = f fori < Randfi = fi antecedent and consequent MFs and input sets.

fori > R and lety” A " 2) Set the counter of training epoehﬁ 0.
4) If y/ # 4/., then gé to S’Eep 5). If = ., then stop and 3) Set the counter of training data samp[% 1.
! ! ! ! 4) Applyp x 1 inputx’ to the type-2 FLS, and compute the

A
sety, = y”. £ . g !
L am " total firing degree for each rule, i.e., compyteand f*
5) Sety,. equal toy!! and return to Step 2). (i=1.2 .. p)using Theorem 3.

This four-step computation procedure [Step 1) is an initial- 5) Computey; andy,, as described in Section VI (which
ization step] has been proven to converge to the exact solution  |eads to a reordering of the/ rules; but, they are then
in no more than/ iterations [12]. Observe that in this proce- renumbered 1, 2,.., M). This will establishZ and R,
dure, the numbe_R is very important. Fot S R, f; = iz, and (e} thatyl andyT can be expressed as
fori > R, fI = f'; soy, can be represented as

—1 —L
y=u (f a""f aiL+1a"'?iJw?ylla ayljw)

—R+1 —M
g=ue (S ST T ) B LM
DT DY
=1 j=L+1
The procedure for computing is very similar. Just replace - M (55)
y by yi and, in Step 2), find (1 < L < M — 1) such that Z?i + Z 1
yb <y, < y/Ttand, instep 3, lefj = fifori < L, and =1 J=L+1
i — ffors . —R+1 —M
J{ = [ fori > L. Theny, can be represented as U =Un (f’ L iR7 T 7J7M)
) . R M )
_ _r i o
yl:yl(fv"'vf7iL+17"'7iJw?y}7~-.7yljw)' (52) Ziy1+ Z fy{
i=1 j=R+1
~ T R M (56)
Becausé’,, is an interval set, we defuzzify it using the av- Z it Z 7
erage ofy; andy,.; hence, the defuzzified output of an interval i=l  j=R41
type-2 FLS is

6) Computef(x*) = (v + v-)/2, which is the defuzzified
output of the type-2 FLS.

fx)= szrTy, (53) 7) Determine the explicit dependence gf and ¥, on
membership functions (becaugeand R obtained in
A perfect FLS should havg(x) = d, whered is the de- Step 5) may have changed from one iteration to the

sired output but, generally, there exist errors between the desired ~ Next, the dependence gfandy,. on MFs may also have
output and actual output. We, therefore, need a design procedure ~ changed). To do this, first determine the dependence of
for tuning the parameters of the FLS in order to minimize such f* and f* on membership functions, using (34)-(37),
errors. i.e., f*is determined byf’ (p+,(%1), B 1))y«
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i;(ﬁj(? (zp), pzi(zp)), and, f% is determined by VIIl. FORECASTING OFCHAOTIC TIME SERIES
ﬁ(ﬁXI(xl), Tpi(x))s - ?;(ﬁj(? (@p), Hpi(xp)). Type-1 FLSs have been extensively used in time-series fore-
Consequently ' 7 casting (e.qg., [7], [8], [22], [24]). Here, we evaluate the perfor-

mance of our design method by applying it to the forecasting

_ (_~ (21), T (1) T (), Tips () of a Mackey—Glass chaotic time-series. We compare the perfor-
TIPS BppEL)s e Mo \Bp )5 L D) mance of interval type-2 designs with that of type-1 designs.
R ﬁj{l (‘Tl)v ﬁﬁ‘lL (‘Tl)v AAE) ﬁj{? (‘Tp)v E~PL (‘Tp)v
[ (1), EFILH(JUI)7 ooy b, (), P (), A. Mackey-Glass Chaotic Time Series
. Ekl(ah% B (z1), ..., . (), [z&he Mackey—Glass chaotic time series can be represented as
1 M
HF];‘\/I(‘/ET‘)? yl7 ct yl ) ds(t) 023(t—7')
praia G —7) 0.1s(¢). (59)
= (ﬁj{l(xl)v i ﬁf(?(xp)v ﬁj{l(xl)v ;
s (zp), Topa (1), ooy B (@p)s ooy Bpr (71), When7+ > 17, (59) exhibits chaotic behavior. In simulating
I (= 3 (1) 7 (= | (59), we converted it to a discrete-time equation by using Euler’s
s BEEER) Bppa{EL) s Bppil®e)s -0 method [30]. Denoting
Eﬁfw(xl)v ---7&[:};\4(37]))7 y117 -..7yljw)' (57) f( )_ 0.28(71—7’) 0.1 ( ) (60)
S’H_l—i—slo(n—T) ds(n
Similarly
then
Yr = Yr (ﬁf(l(xl)v ) ﬁf(?(xp)v H)”(l(xl)v ) S(TL + 1) — S(TL) + hf(S, 7‘L) (61)
Hj(p(xp)v le(xl)v BREE) E”l(xp)v LR HFR(xl)v
(z 3 T (1) N (z 1) whereh is a small number and the initial valuessi) n < 7
o BpplEp)y BEFIL) - BRSSP -5 gre set randomly. We choge= 1 andr = 30.

T (21)s oo Tipar () s 7J7M) . (58) Inour _S|mulat|ons, we a§sumed t_hat_ the samp_le_zd time-se-
! ’ ries s(k) is corrupted by uniformly distributed additive noise

. . k) and only noisy measured valuesgf) are available, i.e.,

8) Test each component of to determine the active ngg _ s(k)}ii— n(% b= 19 ;mim) actual time-series
branches " SONEACONDACD and_ufﬁ» (@), such as the price curve for the U.S. dollar versus the German
k ? 1,2, ...,fp,ha_nd fepf?ser(‘jt the active brancheg,, . 'market volatility can change noticeably over the course
_?_Sblunﬁt'?lrl]sf Otht er assom?ef pa;ametgrs, ?bg.;j Y5ftime, so that the variance of the noise component, which is
Ea es|—4 _?rr] etmezjn ersd|p unt(r:1|olns tgscn; "Pelated to volatility, need not be constant [21]. In our simula-

xample =. This step depends on the focations tion, we therefore assumed the noise is zero mean but has a

relation to the MFs. ) . . . )
. signal-to-noise ratio (SNR) ranging from 0 dB [with standard
9) Tune the parameters of the active branches and the %/riation (std)on, )] to 10 dB (with stde,,, ..); it is uni-

rameters in the consequent using a steepest-descen (f o ‘
any other optimization) method. The error function it.l, fmly distributed into 100 levels from,,, ; t0 o, and

(54). N A Onigup T Tnoas 62
10) Sett =t + 1. If t =T, go to Step 11); otherwise go to In = 2 ) (62)
Step 4).

11) Sete 2 ¢+ 1. If ¢ = E, stop; otherwise, go to Step 3). Our simulations were based dvi = 1000 points,z(1001),

When the inputis fuzzified to a type-1 fuzzy set, (57) and (5§)(1002)’r' - 2(2000). Th'e.flrst S00 datar:(lOOll)', z(1002),
are simplified sincgix. (xx) = p1= (e1), k = 1, 2 por, x(1500) are for training and the remaining 500 data
k X ! Pt ! |4 = i H
if a singleton fuzzifier is used, (575 and (58) are simplified eve%(looll)’ xﬁloola’ k’ a:é2|000) arr]e fqr tgstmg. In_ Fig. 31’(a),
further since allig (z) andji_ (xx) disappear in (57) and we plot the Mackey-Glass chaotic time serle$109 ),.
(58), becausfx (1) andy. _(xli) are two singletons 5(1002), . .., s(2000) and, in Fig. 3(b), we plot one realization
! & 22X !

What makes the tuning of the parameters of this type-2 FIPéthe noise corrupted datg(1001), z(1002), ..., (2000).

challenging and different from the tuning of the parameters inBa Simulations

type-1 FLS is having to first determine which parameigrsnd

v, depend on. This requires comparing(k =1, 2, ..., p)to We used four antecedents for forecasting, &:€k—3), x(k—
some points associated with parameters of the upper and lo®kre(k — 1), andz (k) were used to predici(k +1). As in [7],
antecedent membership functions (e.g., as in Example 4). We used only two fuzzy sets for each antecedent, so the number
these parameters change due to their tuning, it is highly likedj rulesis2* = 16. The initial locations of antecedent MFs were
that the dependency @f andy, on parameters also changesbased on the mean, and stds; of the first 500 points:(1001),

This behavior does not occur in a type-1 FLS. 2(1002), ..., (1500).
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Fig. 3. The Mackey—Glass chaotic time series shows (a) the noise-freg(@@td ), s(1002), . . ., s(2000) and (b) the noise corrupted data (in one realization),
x(1001), 2(1002), . .., (2000).

We compared the performance of the following fiveameters and number of parameters in these five FLSs are
forecasting FLSs: type-1 singleton FLS (SFLS); type-1 nosummarized in Table IV [e.g., for the type-2 SFLS, total # of
singleton FLS (NSFLS),; type-2 SFLS; type-2 NSFLS witliP= (3 x 4 4+ 2)16 = 224]. The initial values of all the design
type-1 fuzzifier (type-2 NSFLS-1); and type-2 NSFLS wittparameters are summarized in Table V.
type-2 fuzzifier (type-2 NSFLS-2). Gaussian MFs were chosenAfter training, the rules were fixed and we tested the fuzzy
for the antecedents of the type-1 FLSs; the Gaussian Miegic (FL) forecaster based on the remaining 500 noisy points,
of Example 1 were chosen for tlentecedent®f the type-2 z(1501), z(1502), ..., 2(2000).

FLSs; type-1 Gaussian MFs were chosen for the inputs ofFor each of the five designs, we ran 50 Monte-Carlo real-

the type-1 NSFLS and type-2 NSFLS with type-1 fuzzifieizations and, for each realization, each FLS was tuned using
and the Gaussian MFs of Example 2 were chosen for thesimple steepest-descent algorithm for six epochs. After each
inputs of the type-2 NSFLS with type-2 fuzzifier. The pa-epoch, we used the testing data to see how each FLS performed
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TABLE IV
THE PARAMETERS AND NUMBER OF PARAMETERS IN FIVE DIFFERENT FLSS (WITH 16 RULES AND FOUR ANTECEDENTS INEACH RULE,
lE,i=1,...,16,AND k = 1, ..., 4). PIS SHORT FORPARAMETERS
FLS P in one input set | P in one antecedent | P in one consequent | Total # of P
Type-1 SFLS N/A ME; Op; 7 144
Type-1 NSFLS TX, Mpi s Tp: 7 148
Type-2 SFLS N/A M o Mt 5 Ogi yl", yﬁ. 224
Type-2 NSFLS-1 X, Mg s Mps  Tgi vt U 228
Type-2 NSFLS-2 0%t % Mg o Mpi ) Tgi Yy Yr 232

TABLE V
INITIAL VALUES OF THEPARAMETERS INFIVE FLSS. mx, = m g, = 2, FORALL NSFLS DESIGNS EACH ANTECEDENT ISDESCRIBED BY TWO FUZZY SETS

FLS input for each antecedent consequent
Type-1 SFLS N/A mean: m; — 20; ot My + 204, gy = 20% 7 €[0,1]
Type-1 NSFLS ox, = Op mean: my — 20 ot my + 20y, o = 20, 7 el0,1}
Type-2 SFLS N/A mean: [m¢ — 20, — 0.250,, m; — 204 + 0.250,,) y =7 — o,
or [my + 20y — 0.250,, m;s + 20: + 0.250,], Ogi = 20 | V=T 4 0n
Type-2 X, = On mean: [m; — 20; — 0.250,, m: — 20; + 0.250,] Yy =7 —on,
NSFLS-1 or [my + 204 ~ 0.250,, my + 204 + 0.250,], Tg =20y V=7 +o0,
Type-2 0%, = nioass mean: [m; — 20, — 0.250,, m: — 20¢ + 0.250,) Yy =7 - On,
NSFLS-2 0%y = Onoan | OF [ms + 204 — 0.250,, my + 204 + 0.250,], Ipi = 20 | Yo=Y +0on

by evaluating the rmse between the defuzzified output of each in adaptive filters such as channel equalizers (e.g., [29],

FLS and the noise-free data, i.e., [31], [38]) because such equalizers must be robust to ad-
ditive noise.
1999
mse=,| 25 > [s(k+1) — f(xF) (63)
— A| 496 o IX. CONCLUSIONS AND FUTURE WORK
k=1504

We have presented the theory and design of interval type-2
wherex* = [z(k — 3), a(k — 2), z(k — 1), z(k)]¥, andT’ FLSs, including an efficient and simplified method to compute
denotes transpose. their input and antecedent operations. We have also provided

Since there ar60 x 6 = 300 rmse values for each design2 met_hod fqr tuning the parameters of an interval type-2 FLS.
we summarize the mean and std of the rmses for each epoch Q4§ Simulation results show that an interval type-2 FLS outper-

for each design in Fig. 4(a) and (b). Observe the following frof?™Ms @ type-1 FLS in forecasting a chaotic time-series whose
the figures. measurements were corruptedrmnstationarynoise.

Interval type-2 FLSs provide a way to handle knowledge
1) Type-2 FLSs outperform type-1 FLSs. The type'ancertainty. Data mining and knowledge discovery are impor-
NSFLS'Z performs the best and the type-2 NSFLS’t}mt research topics that are being studied by researchers of
_also gives very good results. The reason for the lattgp ) networks, fuzzy logic systems, evolutionary computing,
is because the type-2 NSFLS-1 usesin (62) as the g4t computing, artificial intelligence, etc. We believe that
initial std of the input sets and this value fof, gives @ jneryal type-2 FLSs have the potential to solve data mining and
good approximation to the average value of the std of th& oy ledge discovery problems in the presence of uncertainty.
uniform noise. _ ~ Aswe discussed, the large number of parameters and associ-
2) The type-2 FLSs (especially type-2 NSFLS-2) achievge training complexity are the main disadvantages of interval
close to their optimal performance almost at the firg{pe-2 FLSs. The challenge is to develop ways to reduce the
epoch of tuning. This property shows that type-2 FLSsumber of parameters and training complexity. Some ways for
(as compared to type-1 FLSs) are very promising feeducing the number of design parameters that remain to be ex-
real-time signal processing where more than one epogfdred are: 1) assume the subsets in each antecedent are the same
of tuning is not possible. for all rules and 2) fix some parameters such as those in the
3) Fromthe std of the rmses, we see that the type-2 FLSs (@&mbership functions of measured inputs.
pecially the type-2 NSFLS-2) have a considerably smaller We believe that promising areas in which type-2 FLSs may
std than do type-1 FLSs, which demonstrates that typeb2 advantageous over type-1 FLSs include mobile communi-
FLSs are much more robust to the noise than are typesations, communication networks, pattern recognition, and ro-
FLSs. Hence, type-2 FLSs appear to be promising for ubast control because lots of uncertain information needs to be
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0.14 ' - - e Mouzouris and Mendel in [27] for the type-1 nonsingleton
e ©— . .
o Tybe-1NSFLS case; they derive the value af; at which sup,, ., ka
Type-2 SFLS ; ; :
o135k T mpecansiis-t || b (zr) * pep:(zx)]/zx is achieved, whergux, (a:k) and
—Te 2RSSR i () are Gaussians. Denoting this valuegf ASTY, o
they have shown that for produchorm
0.13 b
w 2 2
@ Ox, Mpt +0pmx,
= l _ k k k
E:O'CI 125 xk, max 0_2 + 0_2 (64)
c X F}
3
E . .
.12k and for minimum¢-norm
ox,Mpt +0pmx,
l _ & k
Ll max = - (65)
’ ox, + OF!
2 3 «It 5 ] 7
Epach A. Determination ofzj, ...
(a) To determinezj, ..., we need to consider three cases of dif-
102207 ferentm g, locations:
= %gg-} fl';',-:?_s 1) mg, < M : This case is depicted in Fig. 5(a) (the solid
95 - Iype-g ﬁgﬁs ' lines). As we see from (17), the active branch in the upper
-- - -1
. Type-2 NSFLS.2 MF of the antecedent comes from

2
1 L — Mg
[ 3(5m5)

so it is very straightforward to obtamk ey DBSEd 0N
(64) or (65). The result is given in Case 1in Table . Itis
easy to verify that! < M for both product and
minimum ¢-norm.

2) mg, € [mpi, mg: | This case is depicted in
Fig. 5(b)—(d) (these three possible cases are needed to

) determmexk maxs S we explain below, but the same

1 2 3 4 5 6 result is obtained forz! in all three cases). As

std of RMSE

k, max

L2

k max
Epoch .
poc we see from Example 1, in all three cases, the active
(b) branch in the upper MF of the antecedent comes from the
constant MRuz: (zx) = 1 and, sincgug, (my,) = 1,
Fig. 4. The mean and std of the rmses (for the test data) for the five FLS — _* . ; L=l
designs averaged over 50 Monte-Carlo realizations. Tuning was performed in S0 Thomax = X _WhICh Ie.ads_ tOI/L.F‘Ii (x’“7 ma") .
each realization for six epochs. (a) Mean values. (b) STD values. ﬁj{k (Ei max) = 1. This result is given in Case 2 in
Table I.

3 mg, = M : This case is depicted in Fig. 5(e). The
analysis for this case is very similar to that in Part | and
the result is given in Case 3 in Table I.

handled in these areas. For example, in mobile communica-
tions, the fading channel coefficients are uncertain during ad-
jacent training periods. Existing algorithms treat them as cer-
tain. In communication networks, Tanaka and Hosaka [5], [3
observed the difficulties of obtaining appropriate MFs for effis
cient network control, which suggests that type-2 MFs will be a 1) Product -Norm: To determinez;, ... under product
better way to represent the uncertainty in such a network.  ¢-norm, we again need to consider three cases of locations.
Finally, whether or not design procedures can be developedas we see from (18), the lower MF of the antecedent comes
for noninterval type-2 FLSs remains to be explored. from the intersection of two Gaussian MFs and that intersection
point IS(sz +mp )/2. Whenzy, < (mplil +mf,~]i2)/2, the
APPENDIX A active branch |s/\/(mF7 gt xy) and, whenz;, > (mpli1
DETAILS OF EXAMPLE 4 +mp. )/2, the active branch W (mp o055 or).

1) For the cases depicted in Fig. 5(a) and @), ,,,, in
volves the lower MF[J~A and NV (sz VO Tr), i.e.,

2l
Determination oft!

Zk, max

In determiningffmnax andgi‘y maxs W€ Need the calculation
of the supremum of a product or minimum of two type-1 4 3
Gaussian MFs. Such a calculation has been carried out by ~Z% max = (7 X“mp,zz +o} ika)/(o—X“ +0'~]3) For
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Fig. 5. In Example 4, possible locations of input type-2 MF and antecedent type-2 MF. The MF with the large footprint and variance is the antecadent MF, a
the other is the input MF. (a)—(e) Cases 1-5, respectively.

this point to be located to the left anFz +mp )/2, This result is given in Case 1 in Table II.
we require 2) For the cases depicted in Fig. 5(d) and @),max
o2 men 402 me B N volves the lower MF. . and NV (mF7  Of ). The
K Foe  TFXE M, T, (66) analysis for this part is very similar to that for item 1 and
o% + U%;i - 2 we give the result in Table Il, Case 3.

3) For the case depicted in Fig. 5(c) based on our re-

so that sults in Table I, Cases 1 and 8mp + mz, )/2

2 . . 2
Mpi + Mi oS (m7 —m;) —02
F Fro _ Xe1 Fie Fia (67) UXkl(

e Mg, — My )/20~- < mg, 5 (mF,jl +
X = 2 202, M )/2 —|—0§~(“(mFi sz )/20~. In this case, the
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2)

supremum point of the product between the lower MF[18]
P, and NV (mFiz’ T x3) is located to the right of
or at (sz + M )/2 (recall Case 1), butV'(mj. ,
O k) is only active whenz;, < (szl g )75. (20]
As we know, the product of two Gaussian MFs is convex,
and, to the left of the supremum point, it is monotonically
increasing. Hence, the supremum point of the produc
between the lower MR ;. %, and A/ (sz s O k)
[zr < (sz +mF72)/2] 1S at(szl +mF7 )/2

Add|t|onally, the supremum point of the product be-
tween the lower MR, - and A (sz ,an,a:k) is lo-
cated to the left of or a(tm Fi TmE y/2 (recall Case 2). [24]
Hence, similar to the above anaIyS|s the supremum poings;
of the product between the IowerMF andN (sz ,

[19]

E22]
(23]

opirk) [z = (sz +mp /2] Isat(sz s ) 5. 1261

ence, [27]
M +mﬁw

£gc,max = % (68) [28]

[29]

This result is given in Table Il, Case 2.
Minimum¢-Norm: The results to obtamrk ey UNAder

minimum¢-norm are given in Table I1l. The steps to obtain thesel30]
results are exactly the same as those used to obtain the res%lﬁ
in Table 1l and are left to the reader.

(32]
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