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Interval Type-2 Fuzzy Logic Systems:
Theory and Design

Qilian Liang and Jerry M. Mendel, Fellow, IEEE

Abstract—In this paper, we present the theory and design of
interval type-2 fuzzy logic systems (FLSs). We propose an efficient
and simplified method to compute the input and antecedent
operations for interval type-2 FLSs; one that is based on a general
inference formula for them. We introduce the concept of upper
and lower membership functions (MFs) and illustrate our efficient
inference method for the case of Gaussian primary MFs. We also
propose a method for designing an interval type-2 FLS in which
we tune its parameters. Finally, we design type-2 FLSs to perform
time-series forecasting when a nonstationary time-series is cor-
rupted by additive noise where SNR is uncertain and demonstrate
improved performance over type-1 FLSs.

Index Terms—Interval type-2 fuzzy sets, nonsingleton fuzzy logic
systems, time-series forecasting, tuning of parameters, type-2 fuzzy
logic systems, upper and lower membership functions.

I. INTRODUCTION

A FUZZY logic system (FLS) (also known as a fuzzy
system, fuzzy logic controller, etc) includes fuzzifier,

rules, inference engine, and defuzzifier [22]. Quite often,
the knowledge that is used to construct the rules in a FLS is
uncertain. Three ways in which such rule uncertainty can occur
are: 1) the words that are used in antecedents and consequents
of rules can mean different things to different people [23];
2) consequents obtained by polling a group of experts will
often be different for the same rule because the experts will
not necessarily be in agreement; and 3) noisy training data.
Antecedent or consequent uncertainties translate into uncertain
antecedent or consequent membership functions. Type-1 FLSs,
whose membership functions are type-1 fuzzy sets, are unable
to directly handle rule uncertainties. Type-2 FLSs, the subject
of this paper, in which antecedent or consequent membership
functions are type-2 fuzzy sets, can handle rule uncertainties.

The concept of type-2 fuzzy sets was introduced by Zadeh
[41] as an extension of the concept of an ordinary fuzzy set,
i.e., a type-1 fuzzy set. Type-2 fuzzy sets have grades of mem-
bership that are themselves fuzzy [4]. A type-2 membership
grade can be any subset in —the primary membership;
and, corresponding to each primary membership, there is asec-
ondary membership(which can also be in ) that defines
the possibilities for the primary membership. A type-1 fuzzy
set is a special case of a type-2 fuzzy set; its secondary member-
ship function is a subset with only one element—unity. Type-2
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fuzzy sets allow us to handle linguistic uncertainties, as typi-
fied by the adage “words can mean different things to different
people.” A fuzzy relation of higher type (e.g., type-2) has been
regarded as one way to increase the fuzziness of a relation and,
according to Hisdal, “increased fuzziness in a description means
increased ability to handle inexact information in a logically
correct manner [6].”

Mizumoto and Tanaka [25] studied the set theoretic opera-
tions of type-2 sets, properties of membership grades of such
sets, and examined the operations of algebraic product and al-
gebraic sum for them [26]. More details about algebraic struc-
ture of type-2 sets are given in [28]. Dubois and Prade [2]–[4]
discussed fuzzy valued logic and give a formula for the compo-
sition of type-2 relations as an extension of the type-1 sup-star
composition, but this formula is only for minimum-norm. A
general formula for the extended sup-star composition of type-2
relations is given by Karnik and Mendel [11], [12], [17]. Based
on this formula, Karnik and Mendel [10]–[12], [17] established
a complete type-2 FLS theory to handle uncertainties in FLS pa-
rameters.

Similar to a type-1 FLS, a type-2 FLS includes fuzzifier, rule
base, fuzzy inference engine, and output processor. The output
processor includes type-reducer and defuzzifier; it generates a
type-1 fuzzy set output (from the type-reducer) or a crisp number
(from the defuzzifier). A type-2 FLS is again characterized by
IF–THEN rules, but its antecedent or consequent sets are now
type-2. Type-2 FLSs can be used when the circumstances are too
uncertain to determine exact membership grades such as when
training data is corrupted by noise—a case studied later in this
paper.

General type-2 FLSs are computationally intensive because
type-reduction is very intensive. Things simplify a lot when sec-
ondary membership functions (MFs) are interval sets (in this
case, the secondary memberships are either zero or one and we
call them interval type-2 sets) and this is the case studied in
this paper. When the secondary MFs are interval sets, we call
the type-2 FLSs “interval type-2 FLSs.” For some other discus-
sions on the use of interval sets in fuzzy logic (see Hisdal [6],
Schwartz [32], and Turksen [34]).

The most commonly used fuzzifier is a singleton; but, such
a fuzzifier is not adequate when data is corrupted by measure-
ment noise. In this case, a nonsingleton fuzzifier that treats each
measurement as a fuzzy number should be used. The theory and
applications of a type-1 FLS with nonsingleton fuzzifier are pre-
sented in [27], where the input is fuzzified into a type-1 fuzzy
set (e.g., Gaussian) whose parameters are based on the measured
input and the mean and variance of the measurement noise. This
assumes that the statistical knowledge (mean and variance) of
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the noise is given or can be estimated; but, in many cases, these
values are not known ahead of time and can not be estimated
from the data. Instead, we only have some linguistic knowledge
about the noise, such asvery noisy, moderately noisy, orapprox-
imately no noise. In this case, we cannot fuzzify the crisp input
as a type-1 fuzzy set, because type-1 MFs cannot fully repre-
sent the uncertainty associated with this linguistic knowledge.
We believe that in this important case,the input should be fuzzi-
fied into a type-2 fuzzy setfor use in a nonsingleton type-2 FLS.
This case is also studied in this paper.

In this paper, we also provide a design method for an interval
type-2FLS,where IF–THENfuzzy rulesareobtained fromgiven
input–output (I/O) data. Two primary design tasks arestructure
identificationandparameter adjustment[7]. The former deter-
mines input/output (I/O) space partition, antecedent and conse-
quent variables, the number of IF–THEN rules (which are deter-
minedby the I/Ospacepartition), and thenumberand initial loca-
tions of membership functions. The latter identifies a feasible set
of parameters under the given structure. In this paper, we focus
onparameter adjustmentsin an interval type-2 FLS.

Tuning the parameters of a type-1 FLS is possible because
its output can be expressed as a closed-form mathematical
formula. Optimization methods for doing this have been exten-
sively studied (for example, [7], [19], [22], [24], and [36]). Un-
fortunately, the output of a type-2 FLS cannot be represented
by a closed-form mathematical formula; hence, there is an addi-
tional level of complexity associated with tuning its parameters.

To date, type-2 sets and FLSs have been used in decision
making [1], [40], solving fuzzy relation equations [35], survey
processing, [12], [13], time-series forecasting [12], [14], func-
tion approximation [12], time-varying channel equalization
[17], control of mobile robots [39], and preprocessing of data [9].

In the sequel, results for a general type-2 nonsingleton fuzzy
logic system (NSFLS) are given in Section II;meetandjoin op-
erations for interval sets are given in Section III; upper and lower
membership functions that characterize a type-2 MF are intro-
duced in Section IV; an efficient and simplified method to com-
pute the input and antecedent operations for interval type-2 FLSs
is given in Section V; type-reduction and defuzzification for an
interval type-2 FLS are reviewed in Section VI; a method for de-
signingan interval type-2FLS is given inSectionVII; anapplica-
tion of our design method is given in Section VIII for time-series
forecasting of a nonstationary time-series that is corrupted by ad-
ditive noise whoseSNR is uncertain; and, finally, the conclusions
and topics for future research are given in Section IX.

In this paper, denotes a type-1 fuzzy set; denotes
the membership grade of in the type-1 fuzzy set ; de-
notes a type-2 fuzzy set; denotes the membership grade
of in the type-2 fuzzy set , i.e., ,

; denotesmeetoperation; and, denotesjoin
operation. Meet and join are defined and explained in great de-
tail in [10]–[12], [15].

II. TYPE-2 FLSS: GENERAL RESULTS

In a type-2 FLS with a rule base of rules in which each
rule has antecedents, let theth rule be denoted by , where

: IF is , is , , and is , THEN is . The

membership function of a fired rule can be expressed by
the following extended sup-star composition [12], [17]:

(1)

where is a -dimensional Cartesian product space,
, is the measurement domain of input, (

); and is given by

(2)

Additionally

(3)

Substituting (3) and (2) into (1), the latter becomes

(4)

Let

(5)

then

(6)
Suppose that any of the rules in the FLS fire, where

; then, the output fuzzy set, for a type-2 FLS is

(7)

For later use, we define

(8)

and

(9)

so that (6) can be re-expressed as

(10)

General type-2 FLSs are computationally intensive. Things
simplify a lot when secondary MFs are interval sets, in which
case secondary memberships are either zero or one and, as we
demonstrate below, such simplifications make the use of type-2
FLSs practical.

III. M EET AND JOIN FOR INTERVAL SETS

Themeetandjoin operations, which are needed in (5)–(10),
can be greatly simplified for interval type-1 sets.

Theorem 1 (Meet of Interval Sets Under Minimum or Product
-Norms):

a) Let and be two interval
type-1 sets (often called interval sets) with domains
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( ), and (
), respectively. Themeetbetween and ,

( ), under minimum or product
-norms (i.e., ) is given by

(11)

where .
b) The meetunder minimum or product-norms of in-

terval type-1 sets , , having domains
, , , respectively, where

is an interval set with domain
, .

The proof of Theorem 1a), based on minimum or product op-
erations between two interval sets, is given in [18] and [32]. The
extension to part b) (via mathematical induction) is so straight-
forward, we leave it to the reader.

Theorem 2 (Join of Interval Sets):

a) Let and be as defined in part (a) of Theorem 1. Thejoin
between and , ( ), is given by

(12)

where .
b) Let ( ) be as defined in Theorem 1(b).

Then thejoin of these interval type-1 sets is an interval
set with domain , .
The proof of Theorem 2(a), based on maximum operation
between two interval sets, is given in [18], [12], and [32].
The extension to part (b) (via mathematical induction) is
also so straightforward we leave it to the reader.

In this paper, we always assume that theoperation is the
maximum operation.

Observe from Theorems 1 and 2, that meet and join opera-
tions of interval sets are determined just by the two end-points
of each interval set. In a type-2 FLS, the two end-points are asso-
ciated with two type-1 MFs that we refer to asupperandlower
MFs.

IV. UPPER ANDLOWER MFS FORTYPE-2 FLSS

For convenience in defining the upper and lower MFs of a
type-2 MF, we first give the definition offootprint of uncertainty
of a type-2 MF.

Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of a
type-2 MF consists of a bounded region that we call the
footprint of uncertaintyof a type-2 MF (e.g., see Fig. 1). It is
the union of all primary membership grades.

Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs that are bounds for the footprint of
uncertainty of an interval type-2 MF. The upper MF is a subset
that has the maximum membership grade of the footprint of un-
certainty; and the lower MF is a subset that has the minimum
membership grade of the footprint of uncertainty.

Fig. 1. The type-2 MFs for (a) Example 1 and (b) Example 2. The thick solid
lines denote upper MFs and the thick dashed lines denote lower MFs. The shaded
regions are the footprints of uncertainty for interval secondaries. In (a), the
centers of Gaussian MFs vary from 4.5–5.5; in (b), the center of the Gaussian
MFs is 5 and the variance varies from 1.0–2.0.

We use an overbar (underbar) to denote the upper (lower) MF.
For example, the upper and lower MFs of are
and , respectively, so that

(13)

Similarly, we will represent and as

(14)

(15)



538 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Example 1: Gaussian Primary MF with Uncertain
Mean: Consider the case of a Gaussian primary MF having a
fixed standard deviation and an uncertain mean that takes
on values in , i.e.,

(16)
where

;
number of antecedents;

; and,
number of rules.

The upper MF is [see Fig. 1(a)]

(17)

where, for example

The lower MF is [see Fig. 1(a)]

(18)

From this example, we see that sometimes an upper (or a
lower) MF cannot be represented by one mathematical function
over its entire domain. It may consist of several branches each
defined over a different segment of the entire domain. When
the input is located in one domain-segment, we call its cor-
responding MF branch anactive branch, e.g., in Example 1,
when , the active branch for
is .

When an upper (or lower) MF is represented in different seg-
ments, its left-hand and right-hand derivatives at the segment
end point [e.g., for ] may not
be equal, so the upper (or lower) MF may not be differentiable
over the entire domain; however, it is piecewise differentiable,
i.e., each branch is differentiable over its segment domain. This
fact will be used by us when we tune the parameters of a type-2
FLS.

Some upper and lower MFs can be represented by one func-
tion and are differentiable over their entire domain as we demon-
strate in the following example.

Example 2: Gaussian Primary MF with Uncertain Standard
Deviation: Consider the case of a Gaussian primary MF having
a fixed mean and an uncertain standard deviation that takes
on values in , i.e.,

(19)
where

;
number of antecedents;

;
number of rules.

The upper MF is [see Fig. 1(b)]

(20)

and the lower MF is [see Fig. 1(b)]

(21)

Note that the upper and lower membership functions are sim-
pler for Example 2 than for Example 1.

These examples illustrate how to defineand so it is clear
how to define these membership functions for other situations
(e.g., triangular, trapezoidal, bell MFs).

V. INTERVAL TYPE-2 FLSS

Our major result for interval type-2 FLSs is given in:
Theorem 3: In an interval type-2 nonsingleton FLS with

type-2 fuzzification and meet under minimum or product
-norm: 1) the result of the input and antecedent operations,

in (9), is an interval type-1 set, i.e., , where

(22)

and

(23)

the supremum is attained when each term in brackets attains its
supremum; 2) the rule fired output consequent set in
(10) is

(24)

where and are the lower and upper membership
grades of ; and 3) the output fuzzy set in (7) is
(25), as shown at the bottom of the page.

(25)
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A. Proof of Theorem 3

1) Applying Theorem 1(a) to (5) for an interval type-2 FLS
with type-2 fuzzifier and using (14) and (15), we find

(26)

where . So, the meet between an input type-2
set and an antecedent type-2 set just involves the-norm
operation between the points in two upper or lower MFs.
The upper and lower MFs of are

(27)

(28)

The meet operations in (8) are in a-dimensional
Cartesian product space so the meet operation is over all
points , . Based on Theorem 1(b),
we know that the upper membership grades of ,

(a type-1 MF) are obtained from the-norm of
membership grades in ; hence, from (27), we find

(29)

The lower membership grades (a type-1 MF), are

the -norm of the membership grades in ; hence,

from (28) we find

(30)

Thejoin operation in (9) is over all pointsin . Based
on Theorem 2, we know that the right-most point of the
join of ( ) interval sets is the maximum value
of all the right-most points in the interval sets; so, the
right-most point of comes from the maximum value
(supremum) of (the right-most point of interval set

for each value of ); hence, from (29) we find

(31)

Similarly, the left-most point of comes from the
maximum value (supremum) of ; hence, from (30)
we find

(32)

The suprema in (31) and (32) are, overall,in . By
the monotonicity property of a-norm [42], [27], the
supremum is attained when each term in brackets attains
its supremum.

2) Based on (9), (31), (32), and Theorem 2(a), we evaluate
(10) as

(33)

3) Because ( ) are interval sets, it is
straightforward to obtain in (7) using Theorem
2(b). The result is (25).

In evaluating (22) and (23), the supremum is attained when
each term in brackets attains its supremum; so, in the inference
of a type-2 FLS, we will examine

(34)

(35)

where , and is a -norm; then, and can be
re-expressed as

(36)

(37)

where denotes -norm. We illustrate (36) and (37) below in
Section V-C.

B. Corollaries to Theorem 3

When the input is fuzzified to a type-1 fuzzy set so that
( ), the upper and lower MFs of

merge into one MF in which case Theorem 3
simplifies to the following.

Corollary 1: In an interval type-2 FLS withnonsingleton
type-1 fuzzificationand meet under minimum or product
-norm, and in (22) and (23) simplify to

(38)

and

(39)

where ( ) is the type-1 fuzzified input.
When a singleton fuzzifier is used, the upper and lower MFs

of merge into one crisp value, namely one, in which
case Theorem 3 simplifies further to the following.
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Fig. 2. Type-2 FLS: input and antecedent operations. (a) Singleton fuzzification with minimumt-norm; (b) singleton fuzzification with productt-norm; (c) NS
type-1 fuzzification with minimumt-norm; (d) NS type-1 fuzzification with productt-norm; (e) NS type-2 fuzzification with minimumt-norm; and (f) NS type-2
fuzzification with productt-norm. The dark shaded regions depict the meet between input and antecedent [computed using Theorem 1(a)].

Corollary 2: In an interval type-2 FLS withsingleton fuzzi-
fication and meet under minimum or product-norm and
in (22) and (23) simplify to

(40)

and

(41)

where ( ) denotes the location of the singleton.
The proofs of these corollaries are so simple, we leave them

for the reader.

C. Illustrative Examples

Example 3—Pictorial Representation of Input and An-
tecedent Operations:In Fig. 2, we plot the results of input and
antecedent operations with singleton, type-1 nonsingleton, and
type-2 nonsingleton fuzzifications. The number of antecedents
is . In all cases, the firing stength is an interval type-1
set, , where and . For
singleton fuzzification [Fig. 2(a) and (b)], denotes the
firing strength between input and , namely ;

and denotes the firing strength between inputand ,
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TABLE I
x FOR EXAMPLE 4

TABLE II
x FOR EXAMPLE 4 BASED ON PRODUCT t-NORM

namely , , as established by Corollary

2. For nonsingleton type-1 fuzzification [Fig. 2(c) and (d)],
denotes the supremum of the firing strength between the

-norm of membership functions and ; and denotes
the supremum of the firing strength between the-norm of
membership functions and , , as established

by Corollary 1. For nonsingleton type-2 fuzzification [Fig. 2(e)
and (f)], denotes the supremum of the firing strength
between the-norm of upper membership functions and

; and, denotes the supremum of the firing strength
between the-norm of lower membership functions and

, , as established by Theorem 3. The main thing

to observe from these figures is that regardless of singleton or
nonsingleton fuzzification and minimum or product-norm, the
result of input and antecedent operations is an interval type-1
set that is determined by its left-most pointand right-most
point .

Example 4—Input is a Gaussian Primary MF with Uncer-
tain Standard Deviation and Antecedents are Gaussian Primary
MFs with Uncertain Means:In this example, we compute
and when a Gaussian primary MF with an uncertain stan-
dard deviation (as in Example 2) is used as input fuzzy sets and
Gaussian primary MFs with uncertain means (as in Example
1) are used as antecedent MFs. This case is important to our
time-series forecasting application in Section VIII. In this case

(42)

and its upper and lower MFs and are obtained

from (20) and (21), respectively, by replacing by ,

by , and by . The th antecedent MF has the fol-
lowing form:

(43)

and its upper and lower MFs and are obtained

from (17) and (18), respectively, by replacing by ,

by and by . Observe that there are six pa-
rameters that determine these two type-2 Gaussian MFs:,

, , , , and . In this example, as in [27],
we assume that

(44)

and our objective is to evaluate (34) and (35). Equation (44)
means that uncertainty in each input set is always no more than
the uncertainty in the antecedent.

We denote the value of at which the supremum of (34)
occurs as and the value of at which the supremum of
(35) occurs as . The results for and of this
example are carried out in Appendix A, and are summarized in
Tables I–III. From these results, it is straightforward to compute

and using (34) and (35), i.e.,

(45)

(46)

When the input is fuzzified to a type-1 Gaussian MF, then
, and we can easily obtain and

based on Tables I–III. When a singleton fuzzifier is used, the
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TABLE III
x FOR EXAMPLE 4 BASED ON MINIMUM t-NORM

results in Tables I–III simplify even further since
.

VI. TYPE REDUCTION AND DEFUZZIFICATION

A type-2 FLS is a mapping . After fuzzification,
fuzzy inference, type-reduction, and defuzzification, we obtain
a crisp output. For an interval type-2 FLS, this crisp output is the
center of the type-reduced set. Based on Theorem 3 and Corol-
laries 1 and 2, we know that for an interval type-2 FLS, regard-
less of singleton or nonsingleton fuzzification and minimum or
product -norm, the result of input and antecedent operations
(firing strength) is an interval type-1 set, which is determined by
its left-most and right-most points and (e.g., see Fig. 2).
The fired output consequent set of rule can be ob-
tained from the fired interval strength using (24) or Corollaries
1 or 2 and (24). Then the fired combined output consequent set

can be computed using (25).
Type-reduction was proposed by Karnik and Mendel [11],

[12], [17]. It is an “extended version” [using the extension prin-
ciple [41] of type-1 defuzzification methods and is called type-
reduction because this operation takes us from the type-2 output
sets of the FLS to a type-1 set that is called the “type-reduced
set.” This set may then be defuzzified to obtain a single crisp
number; however, in many applications, the type reduced set
may be more important than a single crisp number since it con-
veys a measure of uncertainties that have flown through the
type-2 FLS.

There exist many kinds of type-reduction, such as centroid,
center-of-sets, height, and modified height, the details of which
are given in [11], [12], and [17]. In this paper, for illustrative
purposes, we focus on center-of-sets type-reduction, which can
be expressed as

(47)

where
interval set determined by two end
points and ;

;

and
centroid of the type-2 interval conse-
quent set (the centroid of a type-2
fuzzy set is described in [11], [16], and
[12]);

.
Observe, that each set on the right-hand side (RHS) of (47) is an
interval type-1 set, hence,
is also an interval type-1 set. So, to find

, we just need to compute the two
end-points of this interval. Unfortunately, no closed-form
formula is available for .

For any value , can be represented as

(48)

the maximum value of is and the minimum value of is
. From (48), we see thatis a monotonic increasing function

with respect to ; so is associated only with and, similarly,
is associated only with . In the center of sets (COS)-type-

reduction method, Karnik and Mendel [12], [17] have shown
that the two end points of , , and depend only on a
mixture of or values, since . In this
case, and can each be represented as a fuzzy basis function
(FBF) expansion, i.e.,

(49)

where denotes the firing strength membership grade
[either or ] contributing to the left-most point and

is the FBF. Similarly

(50)
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where denotes the firing strength membership grade (either
or ) contributing to the right-most point and

is another FBF.

Note that whereas a type-1 FLS is characterized by a single
FBF expansion [22], [37], an interval type-2 FLS is character-
ized by two FBF expansions. A general type-2 FLS is charac-
terized by a huge number of FBF expansions [12], [17]; hence,
we have demonstrated that by choosing secondary membership
functions to be interval sets, the complexity of a general type-2
FLS is vastly reduced.

In order to compute and , we need to compute
and . This can be done

using the exact computational procedure given in [12], [16], and
[17]. Here, we briefly provide the computation procedure for

. Without loss of generality, assume thes are arranged in
ascending order, i.e., .

1) Compute in (50) by initially setting
for , where and have been previously

computed using (22) and (23) and let .
2) Find ( ) such that .
3) Compute in (50) with for and

for and let .
4) If , then go to Step 5). If , then stop and

set .
5) Set equal to and return to Step 2).

This four-step computation procedure [Step 1) is an initial-
ization step] has been proven to converge to the exact solution
in no more than iterations [12]. Observe that in this proce-
dure, the number is very important. For , , and
for , ; so can be represented as

(51)

The procedure for computing is very similar. Just replace
by and, in Step 2), find ( ) such that

and, in step 3, let for , and
for . Then can be represented as

(52)

Because is an interval set, we defuzzify it using the av-
erage of and ; hence, the defuzzified output of an interval
type-2 FLS is

(53)

A perfect FLS should have , where is the de-
sired output but, generally, there exist errors between the desired
output and actual output. We, therefore, need a design procedure
for tuning the parameters of the FLS in order to minimize such
errors.

VII. D ESIGNINGINTERVAL TYPE-2 FLSS BASED ONTUNING

Given an input–output training pair , and
, we wish to design an interval type-2 FLS with output (53) so

that the error function

(54)

is minimized. Based on the analysis in Section VI, we know that
only the upper and lower MFs and the two endpoints of(the
center of the consequent set) determine . So we want to
tune the upper and lower MFs and the consequent parameters

. Since an interval type-2 FLS can be character-
ized by two FBF expansions that generate the pointsand ,
respectively, we can focus on tuning the parameters of just these
two type-1 FLSs.

Given input–output training samples ,
( ), we wish to update the design parameters
so that (54) is minimized for training epochs (updating the
parameters using all the training samples one time is called
“one epoch”). A general method for doing this is as follows.

1) Initialize all the parameters including the parameters in
antecedent and consequent MFs and input sets.

2) Set the counter of training epoch .
3) Set the counter of training data sample .
4) Apply input to the type-2 FLS, and compute the

total firing degree for each rule, i.e., computeand
( ) using Theorem 3.

5) Compute and , as described in Section VI (which
leads to a reordering of the rules; but, they are then
renumbered 1, 2, , ). This will establish and ,
so that and can be expressed as

(55)

(56)

6) Compute , which is the defuzzified
output of the type-2 FLS.

7) Determine the explicit dependence of and on
membership functions (becauseand obtained in
Step 5) may have changed from one iteration to the
next, the dependence ofand on MFs may also have
changed). To do this, first determine the dependence of

and on membership functions, using (34)–(37),
i.e., is determined by , , ,
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, , and, is determined by

, , , , .
Consequently

(57)

Similarly

(58)

8) Test each component of to determine the active
branches in , , and ,

, and represent the active branches
as functions of their associated parameters, e.g., use
Tables I–III for the membership functions described in
Example 4. This step depends on the locations ofin
relation to the MFs.

9) Tune the parameters of the active branches and the pa-
rameters in the consequent using a steepest-descent (or
any other optimization) method. The error function is
(54).

10) Set . If , go to Step 11); otherwise go to
Step 4).

11) Set . If , stop; otherwise, go to Step 3).
When the input is fuzzified to a type-1 fuzzy set, (57) and (58)

are simplified since , or,
if a singleton fuzzifier is used, (57) and (58) are simplified even
further since all and disappear in (57) and
(58), because and are two singletons.

What makes the tuning of the parameters of this type-2 FLS
challenging and different from the tuning of the parameters in a
type-1 FLS is having to first determine which parametersand

depend on. This requires comparing( ) to
some points associated with parameters of the upper and lower
antecedent membership functions (e.g., as in Example 4). As
these parameters change due to their tuning, it is highly likely
that the dependency of and on parameters also changes.
This behavior does not occur in a type-1 FLS.

VIII. F ORECASTING OFCHAOTIC TIME SERIES

Type-1 FLSs have been extensively used in time-series fore-
casting (e.g., [7], [8], [22], [24]). Here, we evaluate the perfor-
mance of our design method by applying it to the forecasting
of a Mackey–Glass chaotic time-series. We compare the perfor-
mance of interval type-2 designs with that of type-1 designs.

A. Mackey–Glass Chaotic Time Series

The Mackey–Glass chaotic time series can be represented as
[20]

(59)

When , (59) exhibits chaotic behavior. In simulating
(59), we converted it to a discrete-time equation by using Euler’s
method [30]. Denoting

(60)

then

(61)

where is a small number and the initial values of
are set randomly. We chose and .

In our simulations, we assumed that the sampled time-se-
ries is corrupted by uniformly distributed additive noise

and only noisy measured values of are available, i.e.,
, . In actual time-series

such as the price curve for the U.S. dollar versus the German
mark, market volatility can change noticeably over the course
of time, so that the variance of the noise component, which is
related to volatility, need not be constant [21]. In our simula-
tion, we therefore assumed the noise is zero mean but has a
signal-to-noise ratio (SNR) ranging from 0 dB [with standard
deviation (std) )] to 10 dB (with std ); it is uni-
formly distributed into 100 levels from to and

(62)

Our simulations were based on points, ,
, , . The first 500 data , ,

, are for training and the remaining 500 data
, are for testing. In Fig. 3(a),

we plot the Mackey–Glass chaotic time series ,
, , and, in Fig. 3(b), we plot one realization

of the noise corrupted data , , , .

B. Simulations

We used four antecedents for forecasting, i.e., ,
, , and were used to predict . As in [7],

we used only two fuzzy sets for each antecedent, so the number
of rules is . The initial locations of antecedent MFs were
based on the mean and std of the first 500 points ,

, , .



LIANG AND MENDEL: INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 545

Fig. 3. The Mackey–Glass chaotic time series shows (a) the noise-free datas(1001), s(1002), . . ., s(2000) and (b) the noise corrupted data (in one realization),
x(1001), x(1002), . . ., x(2000).

We compared the performance of the following five
forecasting FLSs: type-1 singleton FLS (SFLS); type-1 non-
singleton FLS (NSFLS),; type-2 SFLS; type-2 NSFLS with
type-1 fuzzifier (type-2 NSFLS-1); and type-2 NSFLS with
type-2 fuzzifier (type-2 NSFLS-2). Gaussian MFs were chosen
for the antecedents of the type-1 FLSs; the Gaussian MFs
of Example 1 were chosen for theantecedentsof the type-2
FLSs; type-1 Gaussian MFs were chosen for the inputs of
the type-1 NSFLS and type-2 NSFLS with type-1 fuzzifier
and the Gaussian MFs of Example 2 were chosen for the
inputs of the type-2 NSFLS with type-2 fuzzifier. The pa-

rameters and number of parameters in these five FLSs are
summarized in Table IV [e.g., for the type-2 SFLS, total # of
P ]. The initial values of all the design
parameters are summarized in Table V.

After training, the rules were fixed and we tested the fuzzy
logic (FL) forecaster based on the remaining 500 noisy points,

, , , .
For each of the five designs, we ran 50 Monte-Carlo real-

izations and, for each realization, each FLS was tuned using
a simple steepest-descent algorithm for six epochs. After each
epoch, we used the testing data to see how each FLS performed



546 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

TABLE IV
THE PARAMETERS AND NUMBER OF PARAMETERS IN FIVE DIFFERENT FLSS (WITH 16 RULES AND FOUR ANTECEDENTS INEACH RULE,

I.E., i = 1; . . . ; 16, AND k = 1; . . . ; 4). P IS SHORT FORPARAMETERS

TABLE V
INITIAL VALUES OF THEPARAMETERS IN FIVE FLSS. m = m = x FOR ALL NSFLS DESIGNS. EACH ANTECEDENT ISDESCRIBED BYTWO FUZZY SETS

by evaluating the rmse between the defuzzified output of each
FLS and the noise-free data, i.e.,

rmse (63)

where , and
denotes transpose.

Since there are rmse values for each design,
we summarize the mean and std of the rmses for each epoch and
for each design in Fig. 4(a) and (b). Observe the following from
the figures.

1) Type-2 FLSs outperform type-1 FLSs. The type-2
NSFLS-2 performs the best and the type-2 NSFLS-1
also gives very good results. The reason for the latter
is because the type-2 NSFLS-1 uses in (62) as the
initial std of the input sets and this value for gives a
good approximation to the average value of the std of the
uniform noise.

2) The type-2 FLSs (especially type-2 NSFLS-2) achieve
close to their optimal performance almost at the first
epoch of tuning. This property shows that type-2 FLSs
(as compared to type-1 FLSs) are very promising for
real-time signal processing where more than one epoch
of tuning is not possible.

3) From the std of the rmses, we see that the type-2 FLSs (es-
pecially the type-2 NSFLS-2) have a considerably smaller
std than do type-1 FLSs, which demonstrates that type-2
FLSs are much more robust to the noise than are type-1
FLSs. Hence, type-2 FLSs appear to be promising for use

in adaptive filters such as channel equalizers (e.g., [29],
[31], [38]) because such equalizers must be robust to ad-
ditive noise.

IX. CONCLUSIONS ANDFUTURE WORK

We have presented the theory and design of interval type-2
FLSs, including an efficient and simplified method to compute
their input and antecedent operations. We have also provided
a method for tuning the parameters of an interval type-2 FLS.
Our simulation results show that an interval type-2 FLS outper-
forms a type-1 FLS in forecasting a chaotic time-series whose
measurements were corrupted bynonstationarynoise.

Interval type-2 FLSs provide a way to handle knowledge
uncertainty. Data mining and knowledge discovery are impor-
tant research topics that are being studied by researchers of
neural networks, fuzzy logic systems, evolutionary computing,
soft computing, artificial intelligence, etc. We believe that
interval type-2 FLSs have the potential to solve data mining and
knowledge discovery problems in the presence of uncertainty.

As we discussed, the large number of parameters and associ-
ated training complexity are the main disadvantages of interval
type-2 FLSs. The challenge is to develop ways to reduce the
number of parameters and training complexity. Some ways for
reducing the number of design parameters that remain to be ex-
plored are: 1) assume the subsets in each antecedent are the same
for all rules and 2) fix some parameters such as those in the
membership functions of measured inputs.

We believe that promising areas in which type-2 FLSs may
be advantageous over type-1 FLSs include mobile communi-
cations, communication networks, pattern recognition, and ro-
bust control because lots of uncertain information needs to be
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Fig. 4. The mean and std of the rmses (for the test data) for the five FLS
designs averaged over 50 Monte-Carlo realizations. Tuning was performed in
each realization for six epochs. (a) Mean values. (b) STD values.

handled in these areas. For example, in mobile communica-
tions, the fading channel coefficients are uncertain during ad-
jacent training periods. Existing algorithms treat them as cer-
tain. In communication networks, Tanaka and Hosaka [5], [33]
observed the difficulties of obtaining appropriate MFs for effi-
cient network control, which suggests that type-2 MFs will be a
better way to represent the uncertainty in such a network.

Finally, whether or not design procedures can be developed
for noninterval type-2 FLSs remains to be explored.

APPENDIX A
DETAILS OF EXAMPLE 4

In determining and , we need the calculation
of the supremum of a product or minimum of two type-1
Gaussian MFs. Such a calculation has been carried out by

Mouzouris and Mendel in [27] for the type-1 nonsingleton
case; they derive the value of at which

is achieved, where and
are Gaussians. Denoting this value of as ,

they have shown that for product-norm

(64)

and for minimum -norm

(65)

A. Determination of

To determine , we need to consider three cases of dif-
ferent locations:

1) : This case is depicted in Fig. 5(a) (the solid
lines). As we see from (17), the active branch in the upper
MF of the antecedent comes from

so it is very straightforward to obtain based on
(64) or (65). The result is given in Case 1 in Table I. It is
easy to verify that for both product and
minimum -norm.

2) , . This case is depicted in
Fig. 5(b)–(d) (these three possible cases are needed to
determine , as we explain below, but the same
result is obtained for in all three cases). As
we see from Example 1, in all three cases, the active
branch in the upper MF of the antecedent comes from the
constant MF and, since ,

so , which leads to

. This result is given in Case 2 in
Table I.

3) : This case is depicted in Fig. 5(e). The
analysis for this case is very similar to that in Part I and
the result is given in Case 3 in Table I.

B. Determination of

1) Product -Norm: To determine under product
-norm, we again need to consider three cases of locations.

As we see from (18), the lower MF of the antecedent comes
from the intersection of two Gaussian MFs and that intersection
point is . When , the
active branch is , and, when

, the active branch is , .

1) For the cases depicted in Fig. 5(a) and (b), in-
volves the lower MF and ( , ; ), i.e.,

. For
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Fig. 5. In Example 4, possible locations of input type-2 MF and antecedent type-2 MF. The MF with the large footprint and variance is the antecedent MF, and
the other is the input MF. (a)–(e) Cases 1-5, respectively.

this point to be located to the left of ,
we require

(66)

so that

(67)

This result is given in Case 1 in Table II.
2) For the cases depicted in Fig. 5(d) and (e), in-

volves the lower MF and ( , ; ). The
analysis for this part is very similar to that for item 1 and
we give the result in Table II, Case 3.

3) For the case depicted in Fig. 5(c) based on our re-
sults in Table II, Cases 1 and 3,

. In this case, the
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supremum point of the product between the lower MF
and ( , ; ) is located to the right of

or at (recall Case 1), but ,
is only active when .

As we know, the product of two Gaussian MFs is convex
and, to the left of the supremum point, it is monotonically
increasing. Hence, the supremum point of the product
between the lower MF and ( , ; )
[ ] is at .

Additionally, the supremum point of the product be-
tween the lower MF and ( , , ), is lo-
cated to the left of or at (recall Case 2).
Hence, similar to the above analysis, the supremum point
of the product between the lower MF and ( ,

) [ ] is at .
Hence,

(68)

This result is given in Table II, Case 2.
2) Minimum -Norm: The results to obtain under

minimum -norm are given in Table III. The steps to obtain these
results are exactly the same as those used to obtain the results
in Table II and are left to the reader.

REFERENCES

[1] J. L. Chaneau, M. Gunaratne, and A. G. Altschaeffl, “An application
of type-2 sets to decision making in engineering,” inAnalysis of Fuzzy
Information—Vol. II: Artificial Intelligence and Decision Systems, J. C.
Bezdek, Ed. Boca Raton, FL: CRC, 1987.

[2] D. Dubois and H. Prade, “Operations on fuzzy numbers,”Int. J. Syst.
Sci., vol. 9, pp. 613–626, 1978.

[3] , “Operations in a fuzzy-valued logic,”Inform. Contr., vol. 43, pp.
224–240, 1979.

[4] , Fuzzy Sets and Systems: Theory and Applications. New York:
Academic, 1980.

[5] S. Ghosh, Q. Razouqi, H. J. Schumacher, and A. Celmins, “A survey of
recent advances in fuzzy logic in telecommunications networks and new
challenges,”IEEE Trans. Fuzzy Syst., vol. 6, pp. 443–447, Aug. 1998.

[6] E. Hisdal, “The IF THEN ELSE statement and interval-valued fuzzy
sets of higher type,”Int. J. Man–Machine Studies, vol. 15, pp. 385–455,
1981.

[7] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference
system,” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665–685,
May/June 1993.

[8] J.-S. R. Jang and C. -T. Sun, “Neuro-fuzzy modeling and control,”Proc.
IEEE, vol. 83, pp. 378–406, Mar. 1995.

[9] R. I. John, P. R. Innocent, and M. R. Barnes, “Type 2 fuzzy sets and
neuro-fuzzy clustering of radiographic tibia images,” inProc. 1998
IEEE Int. Conf. Fuzzy Syst., Anchorage, AK, May 1998, pp. 1373–1376.

[10] N. N. Karnik and J. M. Mendel, “Introduction to type-2 fuzzy logic sys-
tems,” inProc. IEEE FUZZ Conf., Anchorage, AK, May 1998.

[11] , “Type-2 fuzzy logic systems: Type-reduction,” inIEEE Syst.,
Man, Cybern. Conf., San Diego, CA, Oct. 1998.

[12] , “An introduction to type-2 fuzzy logic systems,”, USC Report,
http://sipi.usc.edu/~mendel/report, Oct. 1998.

[13] , “Applications of type-2 fuzzy logic systems: handling the un-
certainty associated with surveys,” inProc. FUZZ-IEEE Conf., Seoul,
Korea, Aug. 1999.

[14] , “Applications of type-2 fuzzy logic systems to forecasting of time-
series,”Inform. Sci., vol. 120, pp. 89–111, 1999.

[15] , “Operations on type-2 fuzzy sets,” Fuzzy Sets Syst., 2000, to be
published.

[16] N. N. Karnik, J. M. Mendel, and Q. Liang, “Centroid of a type-2 fuzzy
set,” Inform. Sci., submitted for publication.

[17] , “Type-2 fuzzy logic systems,”IEEE Trans. Fuzzy Syst., vol. 7, pp.
643–658, Dec. 1999.

[18] A. Kaufmann and M. M. Gupta,Introduction to Fuzzy Arithmetic:
Theory and Applications. New York: Van Nostrand Reinhold, 1991.

[19] C.-T. Lin and C. S. G. Lee,Neural Fuzzy Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[20] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,”Sci., vol. 197, pp. 287–289, 1987.

[21] M. Magdon-Ismail, A. Nicholson, and Y. Abu-Mostafa, “Financial
markets: Very noisy information processing,”Proc. IEEE, vol. 86, pp.
2184–2195, Nov. 1998.

[22] J. M. Mendel, “Fuzzy logic systems for engineering: A tutorial,”Proc.
IEEE, vol. 83, pp. 345–377, Mar. 1995.

[23] , “Computing with words when words can mean different things
to different people,” inInt. ICSC Congress Computat. Intell.: Methods
Applicat., 3rd Annu. Symp. Fuzzy Logic Applicat., Rochester, NY, June
1999.

[24] J. M. Mendel and G. Mouzouris, “Designing fuzzy logic systems,”IEEE
Trans. Circuits Syst. II, vol. 44, pp. 885–895, Nov. 1997.

[25] M. Mizumoto and K. Tanaka, “Some properties of fuzzy sets of type 2,”
Inform. Contr., vol. 31, pp. 312–340, 1976.

[26] , “Fuzzy sets of type 2 under algebraic product and algebraic sum,”
Fuzzy Sets Syst., vol. 5, pp. 277–290, 1981.

[27] G. C. Mouzouris and J. M. Mendel, “Nonsingleton fuzzy logic systems:
Theory and application,”IEEE Trans. Fuzzy Syst., vol. 5, pp. 56–71, Feb.
1997.

[28] J. Nieminen, “On the algebraic structure of fuzzy sets of type-2,”Kyber-
netica, vol. 13, no. 4, Feb. 1977.

[29] S. K. Patra and B. Mulgrew, “Efficient architecture for Bayesian equal-
ization using fuzzy filters,”IEEE Trans. Circuits Syst. II, vol. 45, pp.
812–820, July 1998.

[30] D. Quinney,An Introduction to the Numerical Solution of Differential
Equation. Hertforshire, U.K.: Research Studies, 1985.

[31] P. Sarwal and M. D. Srinath, “A fuzzy logic system for channel equal-
ization,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 246–249, May 1995.

[32] D. G. Schwartz, “The case for an interval-based representation of lin-
guistic truth,”Fuzzy Sets Syst., vol. 17, pp. 153–165, 1985.

[33] Y. Tanaka and S. Hosaka, “Fuzzy control of telecommunications net-
works using learning technique,”Electron. Communicat. Japan, pt. I,
vol. 76, no. 12, pp. 41–51, Dec. 1993.

[34] I. Turksen, “Interval valued fuzzy sets based on normal forms,”Fuzzy
Sets Syst., vol. 20, pp. 191–210, 1986.

[35] M. Wagenknecht and K. Hartmann, “Application of fuzzy sets of type 2
to the solution of fuzzy equation systems,”Fuzzy Sets Syst., vol. 25, pp.
183–190, 1988.

[36] L.-X. Wang and J. M. Mendel, “Back-propagation of fuzzy systems as
nonlinear dynamic system identifiers,” inProc. IEEE Int. Conf. Fuzzy
Syst., San Diego, CA, Mar. 1992, pp. 1409–1418.

[37] , “Fuzzy basis functions, universal approximation, and orthogonal
least squares learning,”IEEE Trans. Neural Networks, vol. 3, pp.
807–814, Sept. 1992.

[38] , “Fuzzy adaptive filters, with application to nonlinear channel
equalization,”IEEE Trans. Fuzzy Syst., vol. 1, pp. 161–170, Aug. 1993.

[39] K. C. Wu, “Fuzzy interval control of mobile robots,”Comput. Elect.
Eng., vol. 22, no. 3, pp. 211–229, 1996.

[40] R. R. Yager, “Fuzzy subsets of type II in decisions,”J. Cybern., vol. 10,
pp. 137–159, 1980.

[41] L. A. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning—I,”Inform. Sci., vol. 8, pp. 199–249, 1975.

[42] H. J. Zimmermann,Fuzzy Set Theory and Its Applications, 2nd
ed. Boston, MA: Kluwer, 1991.

Qilian Liang received the B.S. degree from Wuhan
University, China, in 1993, the M.S. degree from
Beijing University of Posts and Telecommunica-
tions, China, in 1996, and the Ph.D. degree from
University of Southern California, Los Angeles, in
2000, all in electrical engineering.

He was a Research Assistant in the Department
of Electrical Engineering-Systems, University of
Southern California, Los Angeles, from September
1997 to May 2000. His research interests include
wireless communications, broad-band networks,

fuzzy logic systems, and video traffic classification. He is currently with
Hughes Network Systems, San Diego, CA.



550 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

Jerry M. Mendel (S’59–M’61–SM’72–F’78) re-
ceived the Ph.D. degree in electrical engineering from
the Polytechnic Institute of Brooklyn, Brooklyn, NY.

Currently, he is Professor of Electrical Engi-
neering and Associate Director for Education of the
Integrated Media Systems Center at the University
of Southern California, Los Angeles, where he
has been since 1974. He has published over 380
technical papers and is author and/or editor of seven
books. His present research interests include type-2
fuzzy logic systems and their applications to a wide

range of problems.
Dr. Mendel is a Distinguished Member of the IEEE Control Systems Society.

He was President of the IEEE Control Systems Society in 1986. Among his
awards are the 1983 Best Transactions Paper Award of the IEEE Geoscience
and Remote Sensing Society, the 1992 Signal Processing Society Paper Award,
a 1984 IEEE Centennial Medal, and an IEEE Third Millenium Medal.


