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Aggregation Using the Fuzzy Weighted Average as
Computed by the Karnik–Mendel Algorithms

Feilong Liu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—By connecting work from two different problems—
the fuzzy weighted average (FWA) and the generalized centroid of
an interval type-2 fuzzy set—a new -cut algorithm for solving
the FWA problem has been obtained, one that is monotonically
and superexponentially convergent. This new algorithm uses the
Karnik–Mendel (KM) algorithms to compute the FWA -cut end-
points. It appears that the KM -cut algorithms approach for com-
puting the FWA requires the fewest iterations to date, and may
therefore be the fastest available FWA algorithm to date.

Index Terms—Centroid, fuzzy weighted average, interval type-2
fuzzy set, Karnik–Mendel (KM) algorithms.

I. INTRODUCTION

SOMETIMES the same or similar problems are solved in
different settings. This is a paper about such a situation,

namely, computing the fuzzy weighted average (FWA), which
is a problem that has been studied in multiple criteria decision
making [2]–[5], [8], [9] and computing the generalized centroid
of an interval type-2 fuzzy set [herein referred to as the gener-
alized centroid (GC)], which is a problem that has been studied
in rule-based interval type-2 fuzzy logic systems [6], [10], [11].
Here it is demonstrated how very significant computational ad-
vantages can be obtained for solving the FWA problem by using
the GC algorithms developed by Karnik and Mendel.1

The FWA, which is a weighted average involving type-1 (T1)
fuzzy sets2 and is explained mathematically below, is useful as
an aggregation (fusion) method in situations where decisions

and expert weights are modeled as T1 fuzzy sets,
thereby allowing some uncertainties about either the decisions,
or weights, or both to be incorporated into the average.

To begin, consider the following weighted average:

(1)

In (1), are weights that act upon decisions (or, attributes,
indicators, features, etc.) . While it is always true that the sum
of the normalized weights that act upon each add to one, it
is not a requirement that the sum of the unnormalized weights
must add to one. In many situations requiring is
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1These algorithms are often referred to in the T2 fuzzy logic system (FLS)
literature as the “KM algorithms” and are also referred to herein in this way.

2This includes the special case when the fuzzy sets are interval sets.

too restrictive, especially when are no longer crisp numbers
[as in items 3)–5) below]; so, such a requirement is not imposed.
It is the normalization that makes the calculation of the FWA
very challenging.

There is a hierarchy of averages that can be associated with
(1). They are enumerated next so that it will be clear where the
FWA stands in this hierarchy.

1) and are crisp numbers: In this case, is a crisp
number, the commonly used arithmetic weighted average,
a number that is easily computed using arithmetic.

2) are crisp numbers, and are interval numbers, i.e.,
where interval end-points and are pre-

specified: In this case, is an interval number (a weighted
average of intervals), i.e., , where and are
easily computed [because interval sets only appear in the
numerator of (1)] using interval arithmetic.

3) are crisp numbers and are interval numbers, i.e.,
where interval end-points and are pre-

specified: This is a special case of the FWA that also corre-
sponds to the so-called centroid of an interval type-2 fuzzy
set [6], [10]. In this case, is also an interval number (a
normalized interval-weighted average of crisp numbers),
i.e., , but there are no known closed-form for-
mulas for computing and . What makes these a chal-
lenging set of computations is the appearance of interval
sets in both the numerator and the denominator of (1). The
KM iterative algorithms [6], [10] have been used to com-
pute and . These algorithms converge to exact solu-
tions monotonically and superexponentially fast [10], so it
takes very few iterations for them to converge to the actual
values of and . They are explained in Section III.

4) are interval numbers, i.e., where interval
end-points and are prespecified and are interval
numbers, i.e., where interval end-points
and are prespecified: This is another special case of the
FWA that also corresponds to the so-called generalized
centroid of interval type-2 fuzzy sets. As in case 3), is
also an interval number (a normalized interval-weighted
average of interval numbers), i.e., , but again
there are no known closed-form formulas for computing
and . The KM iterative algorithms have also been used to
compute and . In this case, theory shows (as explained
more fully in Sections II and III) that is obtained by re-
placing each in (1) with its associated interval left-end
point and is obtained by replacing each in (1) with
its associated interval right-end point, .

5) are type-1 fuzzy numbers, i.e., each is described
by the membership function (MF) of a type-1 fuzzy set
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, where this MF must be prespecified, and are
also type-1 fuzzy numbers, i.e., each is described by the
MF of a type-1 fuzzy set , where this MF must also
be prespecified. Of course, there could be special subcases
of this case, e.g., only the weights are type-1 fuzzy numbers.
This case is the FWA, and now is a type-1 fuzzy set, with
MF , but there is no known closed-form formula for
computing . -cuts, an -cut decomposition the-
orem [7] of a type-1 fuzzy set, and a variety of algorithms
can be used to compute , as will be described in
Sections II–IV. This is the case that is of immediate interest
and importance and is the one on which this paper focuses.

The rest of this paper is organized as follows. Section II pro-
videsdiscussionsaboutprevious -cutapproachesforcomputing
the FWA. Section III provides a lot of information about the KM
algorithms including their derivations, statements for solving the
FWA problem, and convergence properties. Section IV provides
summaries of Lee and Park’s [8] efficient FWA algorithms be-
cause they are the computationally most efficient ones that have
appeared in the literature prior to this paper and have a structure
similar to the KM algorithms. Section V presents experimental
results in which the KM and efficient (EFWA) algorithms are
compared. Section VI draws conclusions. Appendixes A and B
provide important properties about the FWA; they should be
read when the reader reaches Comment 3 in Section III-B.

II. PREVIOUS APPROACHES FOR COMPUTING THE FWA

According to [3], “The fuzzy weighted average (FWA)
problem is, given fuzzy weights and fuzzy , how
to obtain the fuzzy weighted average of the variable in (1).”
Beginning in 1987, various solutions to this problem have
been proposed. Dong and Wong [2] presented the first FWA
algorithm; Liou and Wang [9] presented an improved FWA
(IFWA) algorithm; and Lee and Park [8] presented an EFWA.
All three algorithms are based on -cuts.

A. On Dong and Wong’s FWA Algorithm

Dong and Wong [2] were apparently the first to develop a
method for computing the FWA. Although their algorithm is
based on -cuts and an -cut decomposition theorem [7], it is
very computationally inefficient because it uses an exhaustive
search. Their algorithm is [5] the following.

1) Discretize the complete range of the membership [0, 1]
of the fuzzy numbers into the following finite number of

-cuts, , where the degree of accuracy de-
pends on the number of -cuts, i.e., .

2) For each , find the corresponding intervals for in
and in . Denote the end-points of the intervals

of and by and
, respectively.

3) Construct the distinct permutations3 of the array
that involve just the interval

end-points of and ; and and .
4) Compute ,

where is the th permu-

3In obtaining the number , the fact that each of the and can take
on its respective two end-point values was used.

tation of the 2 distinct permutations, and .
Then the desired interval for is

(2)

5) Repeat steps 2)–4) for every .
Compute using and an -cut de-
composition theorem [7], i.e., let

(3a)

so that

(3b)

Since there are 2 permutations; this algorithm requires 2 it-
erations4 for each -cut, or a total of iterations; hence, the
complete algorithm is intractable and therefore is not a practical
FWA algorithm, even for moderate values of .

B. On Liou and Wang’s Improved FWA (IFWA) Algorithm

Liou and Wang [9] did some important analyses that led to an
algorithm that drastically reduced the computational complexity
of Dong and Wong’s algorithm. They were the first to observe
that since the appear only in the numerator of (1), only the
smallest values of the are used to find the smallest value of
(1), and only the largest values of the are used to find the
largest value of (1); hence

(4)

where

(5)

and

(6)

where

(7)

Note that and
are interval sets and and are

the left-end and right-end values of and
, respectively.

Based on some theorems and a lemma, Liou and Wang de-
veloped the first iterative algorithms for computing and

4In some papers (e.g., [9]) the term “evaluation” is used instead of “iteration.”
Note also that number of arithmetic operations, sorts, and searches are not con-
sidered herein.



LIU AND MENDEL: AGGREGATION USING THE FUZZY WEIGHTED AVERAGE 3

. The maximum number of iterations for the two IFWA
algorithms, as reported in [9], is for each -cut, or
at most iterations; hence, the IFWA algorithms
have significantly fewer iterations than the iterations of
Dong and Wong’s FWA.

C. On Lee and Park’s Efficient FWA (EFWA) Algorithm

Lee and Park [8] also provided iterative search algorithms for
computing and . Their algorithms build upon the
observations of Liou and Wang that were discussed above, as
summarized in (4) and (6). A statement of the EFWA is pro-
vided in Section IV because it will be easier to do this after
the KM algorithms have been stated. The maximum number of
iterations for the two EFWA algorithms, as reported in [8], is

for each -cut, or at most iterations, which
is significantly less than the at most iterations of the IFWA
algorithms.

D. Comments

These are not the only methods that have been published.
Others are in [3]–[5]. Except for [3], all of these methods are
based on -cuts and an -cut decomposition theorem. Of the ex-
isting algorithms that use -cuts, the EFWA represents the most
computationally efficient one to compute the FWA (prior to the
KM algorithms approach for computing the FWA) and will be
compared with the KM algorithm approach in Section V.

III. THE KM ALGORITHMS

A. Derivation

Regardless of whether in (4) or in (6) are
computed, it is necessary to minimize or maximize the function5

(8)

where for the purposes of this section the notation is simplified
by not showing the explicit dependencies of the and on
the -cut, . Differentiating with respect to ,
observe that

(9)

As noted by Karnik and Mendel [6], equating to zero
does not give us any information about the value of that
optimizes , i.e.,

(10)

5In order to compute , set in (8), so that (8) reduces to (5),
and to compute set , so that (8) reduces to (7).

Observe that no longer appears in the final expression in
(10), so that the direct calculus approach does not work. Re-
turning to (9), because , it is true that

if
if

(11)

This equation gives us the direction in which should be
changed in order to increase or decrease , i.e.,

If
increases as increases
decreases as decreases

If
increases as decreases
decreases as increases

(12)

Because , the maximum value can attain
is and the minimum value it can attain is . Equation (12)
therefore implies that attains its minimum value

if 1) for those values of for which6 ,
set and 2) for those values of for which

, set . Similarly, deduce from (12) that
attains its maximum value if 1) for those

values of for which , set and
2) for those values of for which , set

. Consequently, to compute or switches only
one time between and , or between and , respectively.
The KM algorithms (described below) locate each switch point
and, in general, the switch point for , is different from the
switch point for .

Putting all of these facts together, in (4) and in (6) can
be expressed as (see footnote 5)

(13)

(14)

where and are computed using the KM algorithms, which
are described next.

B. KM Algorithms

The algorithms for finding and , and and , are
very similar [6], [10].

KM algorithm for and :
0) Rearrangement for the calculations: In (8), are re-
placed by the , where are arranged in ascending order,
i.e., . Associate the respective with
its (possibly) relabeled . In the remaining steps it is as-
sumed that the notation used in (8) is for the reordered (if
necessary) and .

6These results are stated in the order and then
because in (8) are naturally ordered, i.e.,

. If are not so ordered, then they must first be so reordered.
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1) Initialize for and then compute

(15)

Two ways for initializing are:
a) for ;
b) and

, where denotes the first integer equal to or
smaller than .

2) Find such that .
3) Set for and for and
compute

(16)

4) Check if . If yes, then stop. is the
maximum value of which equals ,
and equals the switch point If no, go to step 5)
5) Set equal to and go to step 2).

KM algorithm for and :
Rearrangement for the calculations: In (8), are re-
placed by the , where are arranged in ascending order,
i.e., . Associate the respective with
its (possibly) relabeled . In the remaining steps it is as-
sumed that the notation used in (8) is for the reordered (if
necessary) and .

1) Initialize [in either of the two ways listed after (15)] and
then compute

(17)

2) Find such that .
3) Set for and for , and

compute

(18)

4) Check if . If yes, then stop. is the min-
imum value of and equals , and
is the switch point . If no, go to step 5).

5) Set equal to and go to step 2).
Computing the FWA: In order to compute the FWA using the

KM algorithms, steps 1), 2), 5), and 6) in Dong and Wong’s
FWA algorithm remain unchanged (see Section II-A). Steps 3)
and 4) are replaced by:

3. Compute using the KM algo-
rithm for .
4. Compute using the KM algo-
rithm for .

Comments:
1) Recently, we came across the very interesting paper by

Auephanwiriyakul and Keller [1], in which they have pro-
posed using the KM algorithms and -cuts for computing
cluster centers, which, as they point out, is an FWA. Con-
sequently, we acknowledge that they are the first to do this.
Although they refer to Dong and Wong’s [2] original FWA
algorithm, which as pointed out above is terribly ineffi-
cient, they do not mention the other algorithms, most no-
tably the EFWA [8].

2) It is easy to modify the KM algorithms so that their stop-
ping rules occur in step 2) instead of in step 4). Extensive
simulations have shown that doing this does not reduce
the number of iterations required by the algorithms; hence,
the algorithms have been presented above as they have ap-
peared previously in the literature.

3) Fig. 1 provides a graphical interpretation of the KM al-
gorithm that computes . Justification for the shape and
location of (in relation to ) is provided in
Appendix A. The large dots are plots of for

; note that is associated with the subscript of
. The 45 line is shown because of the com-

putations in step 2) of the KM algorithm. has been
chosen according to method (b) stated below (15). Because

, which is why is located at
. After has been computed, then a horizontal line is

drawn until it intersects . By virtue of step 2) of
the algorithm, , and the 45 line
is slid down until is reached, at which point is
computed. This is the vertical line from that intersects
a large dot. Because , the algorithm then goes
through another complete iteration before it stops, at which
time has been determined to be . For this example,
the KM algorithm converges in two iterations.

C. Properties of the KM Algorithms

Auephanwiriyakul and Keller [1] provide an equation for the
computational complexity per -cut for each of the KM algo-
rithms and then for the two algorithms. The maximum number
of iterations for each KM algorithm is [6] for each -cut, or
at most iterations per KM algorithm. Below it is explained
why this upper bound, which is extremely conservative, is incor-
rect as a greater upper bound and can be vastly improved upon
by an approximate least upper bound.

Recently, the following have been proved [11].
1) The KM algorithms are monotonically convergent.
2) Within the quadratic domain of convergence, the KM al-

gorithms are superexponentially convergent. Let denote
an iteration counter . A formula for as a
function of prescribed bits of accuracy is derived in [11].
Because this formula is used in Section V to support our
simulations, it is stated next for . A comparable formula
exists for .
Let denote the first value of as given in (17) and7

(19)

7 is a result of the monotonic convergence of the KM algorithms.
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Fig. 1. A graphical interpretation of the KM algorithm that computes . The solid line shown for only has values at . The large dots are
.

Superexponential convergence8 of the KM algorithm oc-
curs to within bits of accuracy when

(20)

which, as proven in [11], is satisfied by the first integer
for which

(21)

In general, this equation has no closed-form solution for
; however, for small values of , the term (which is

much smaller than the term ) can be dropped, and
the resulting equation can be solved for as

(22)

first integer larger than (23)

3) The use of (22) and (23) requires knowing the answer
as well as , and that one is in the quadratic domain
of convergence. The latter also depends on knowing ,

8Why this is “superexponential convergence” rather than “convergence” is
explained fully in [11]. It is evidenced by the appearance of in (21), the
amplitude of whose logarithm is not linear but is concave upwards, which is
indicative of a superexponential convergence factor.

whereas is only available after the first iteration of
the KM algorithm; hence, the use of these equations is lim-
ited. However, these equations can be used after the fact (as
done in Section V) to confirm the very rapid convergence
of the KM algorithms.

Our many simulations have revealed that, for two significant
figures of accuracy, the convergence of the KM algorithms oc-
curs in two to six iterations regardless of . Discussions about
this are provided in Section V.

IV. EFWA ALGORITHMS

In Section V convergence results for the KM algorithms are
compared with the EFWA algorithms. Based on the derivation
of the KM algorithms, it is relatively easy to understand the
following.

EFWA Algorithm for :
0) Rearrangement for the calculations: Same as Step
0) in the KM Algorithm.
1) Initialize first and last .
2) Let first last and compute in (16).
3) If , stop and set and

; otherwise, go to step 4).
4) If , set first ; otherwise, set last .
Go to step 2).

EFWA Algorithm for :
0) Rearrangement for the calculations: Same as step 0)
in the KM algorithm.
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Fig. 2. A graphical interpretation of the EFWA algorithm that computes . The solid line shown for only has values at . The large dots
are .

TABLE I
MEAN AND ONE STANDARD DEVIATION OF CONVERGENCE NUMBERS FOR THREE FWA ALGORITHMS AND FIVE PARAMETER DISTRIBUTIONS
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Fig. 3. (a) Mean and (b) standard deviation of the convergence numbers when parameters are uniformly distributed.

1) Initialize first and last .
2) Let first last and compute in (18).
3) If , stop and set ;
otherwise, go to step 4).
4) If , set first ; otherwise, set .
Go to step 2).

Comment: Fig. 2 provides a graphical interpretation of the
EFWA algorithm that computes the same as in Fig. 1. As in
Fig. 1, the large dots are plots of for . The
45 line is shown because of the computations in step
3) of the EFWA algorithm. Since , so
that , which is why has been located at . For
this value of , the test in step 3) fails [i.e., is not
between and ] and as a result of step 4) [i.e., ]
set . Returning to step 2), and then is
computed, which is why there is a line with an arrow on it from

to . For this value of , the test in

step 3) again fails [i.e., is not between and ] and as
a result of step 4) [i.e., ] set first . Returning to
step 2), and then is computed, which is why there
is an arrow on it from to . For this value
of the test in step 3) passes [i.e., is between and

], the algorithm stops, and . This example, which
is the same as that in Fig. 1, has taken the EFWA three iterations
to converge, whereas it took the KM algorithm two iterations to
converge.

V. EXPERIMENTAL RESULTS

In this section, simulation results are presented in which con-
vergence numbers are compared for the KM and EFWA algo-
rithms. Because, for each -cut, both algorithms consist of two
parts—one for computing and one for computing —and
each part is essentially the same, this simulation study was only
performed for .
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Fig. 4. (a) Mean and (b) standard deviation of the convergence numbers when parameters are exponentially distributed.

There are many ways in which algorithm comparison exper-
iments could be designed. In our simulations, random designs
were used in which, for a fixed value of (the number of
terms in the FWA) and , each and the interval end-points
for each (i.e., and ) were chosen
randomly according to a prescribed distribution. This was done
for
and for uniform, Gaussian, noncentral exponential, and
chi-squared distributions. The three random sequences

and were generated using the same distribution
but with different seed numbers and for all the distributions

, and . The were then sorted
in increasing order, and the corresponding and always
satisfied the requirements that and .
For each value of and each distribution, 100 Monte Carlo
simulations were performed and the numbers of iterations for
both the KM and EFWA to converge to were recorded. The

mean and standard deviation of the convergence numbers were
then computed.

Results for are
summarized in Table I. Because the results from these experi-
ments looked very similar regardless of a specific distribution,
the results for are only presented in
Figs. 3 and 4 for the uniform and exponential distributions. The
parameters used for these distributions are the following.

• For the uniform distribution, , and were generated
by Matlab function using different seeds, respec-
tively. All values were scaled by ten, so that
for .
For the exponential distribution, , and were gener-
ated by Matlab function exprnd() with parameter 50, 0.5,
and 0.6 with different seeds, respectively, after which they
were scaled so that and ,
e.g., the were scaled to 10 .
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Note that “convergence number” refers to the number of itera-
tions it takes for an algorithm to STOP. Note, also, that “KM
epsilon” refers to the KM algorithm that uses the approximate
stopping rule (20) for which . This stopping rule is dif-
ferent from the exact stopping rule given in step 4) of the KM
algorithm.

Observe from Figs. 3 and 4 the following.
1) The mean values of the convergence numbers for each

algorithm are similar for both distributions, e.g., the mean
convergence number for the KM algorithm is approxi-
mately two, and it is for the EFWA algorithm,
where denotes the first integer equal to or larger than

. The standard deviation of the convergence number is
similar for both distributions for the KM algorithm, e.g.,
approximately 0.5, but it is distribution-dependent for
the EFWA algorithm, e.g., approximately 1.2 for the uni-
form distribution and 1.5 for the exponential distribution.
Consequently, for , the KM algorithm appears
to be more robust to the distribution than is the EFWA
algorithm.
According to central limit theory, the distribution of av-
erage convergence numbers (for each ) is approximately
normal with mean and standard deviation equal to the
sample mean and standard deviation shown in Figs. 3 and
4. The sample mean two times the sample standard de-
viation can be used to evaluate the convergence numbers
with 97.5% confidence.9 Consequently the KM algo-
rithm converges in approximately three iterations, and the
EFWA algorithm converges in approximately
to iterations (to within 97.5% confidence); hence,
in terms of number of iterations to converge, the KM al-
gorithm is computationally more efficient than the EFWA
algorithm.10

When , the KM algorithm needs a smaller number
of iterations than does the EFWA algorithm. When ,
both algorithms need the same number of iterations.
The KM epsilon convergence numbers depicted in Figs. 3
and 4 agree with those obtained from (22) and (23),
e.g., for data generated using a uniform distribution
and , the KM algorithm leads to

. Conse-
quently,
and . For

, so that

and therefore , which equals the true mean conver-
gence number of .

Observe from Table I the following.
1) For each , because simulations are independent of each

other, convergence number can be considered as an inde-

9Because iterations must be positive, this is a one-sided confidence interval.
10The two algorithms use the same number of sorts, searches, and arithmetic

operations; hence, their total numbers of computations can be compared solely
on the basis of iterations to converge.

pendent identically distributed random variable; hence, ac-
cording to central limit theory, the distribution of average
convergence number (across the different distributions) is
approximately normal with mean and standard deviation
equal to the sample mean and standard deviation (across
the different distributions). These statistics are provided in
the last (bottom) section of the table.

2) The average convergence numbers (across the different dis-
tributions) of the KM-epsilon algorithm seems to be inde-
pendent of the FWA parameter , whereas the convergence
number of the EFWA seems to be close to and the
convergence number of the KM algorithm varies much less
than does the EFWA with .

3) For the EFWA, the theoretical convergence number for the
worst case is (see Comment 2 in Section IV), which
agrees with observations.

4) For the KM algorithm, the upper bound of its con-
vergence number is a small number that is slightly
dependent on (to within 97.5% confidence). For

, that number (which
is the integer just larger than sample mean 2 sample
standard deviations) is four, whereas for that
number is five. This result suggests very strongly that the
theoretical worst case bound for the convergence number,
provided by Karnik and Mendel [6], can be greatly im-
proved upon. At present, this is an open research issue.
See Appendix C for a proof that the Karnik–Mendel worst
case bound is too conservative.

VI. CONCLUSION

By connecting solutions from two different problems—the
fuzzy weighted average and the generalized centroid of an IT2
FS—a new -cut algorithm for solving the FWA problem has
been obtained, one that converges monotonically and superex-
ponentially fast. Simulations demonstrate that for each -cut,
convergence occurs (to within a 97.5% confidence interval) in
three to five iterations. It appears, therefore, that the KM -cut
algorithms approach for computing the FWA requires the fewest
iterations to date, and may therefore be the fastest available
FWA algorithm to date.

If 2 parallel processors are available, the new KM -cut
algorithms can be used to compute the FWA in three to five iter-
ations (to within 97.5% confidence) because the calculations of

and are totally independent, and all -cut calculations
are also independent.

Research is under way to extend the FWA from type-1 fuzzy
sets to interval type-2 fuzzy sets, something called the linguistic
weighted average (LWA) [13]. The FWA plays a major role in
computing the LWA.

Finally, finding a (theoretical) least upper bound for the KM
algorithms is still an open research problem.

APPENDIX A
PROPERTIES OF AND CORRESPONDING PROOFS

For the following properties, it is assumed that and have
been sorted in increasing order so that and

. Additionally, recall that the minimum of
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occurs at ; hence, . is the switch
point for the minimum calculation.

Property 1 (Location of the Minimum): When , then

(A-1)

where

(A-2)

and [see (4)]11

(A-3)

This property locates the minimum of
between two values of . For ex-

ample, in Fig. 1, the minimum of is
, so that . Observe that .

Proof: That (A-1) is true follows directly from step 2) of
the KM algorithm, when ; (A-2) follows from (18) when

; and (A-3) is obviously true because it is the problem
that is solved by the KM algorithm.

Property 2 (Location of in Relation to the Line
): lies above the line when is to the left of
and lies below the line when is to the right of ,

i.e.,

when
when (A-4)

This property provides interesting relations between and
on both sides of the minimum , e.g., in Fig. 1,

lies above to the left of and lies below to the
right of .

This property does not imply is monotonic on either
side of ; but, it does demonstrate that cannot be above
the line to the right of . Property 3 is about the mono-
tonicity of ; it will show, e.g., that is monotonically
nondecreasing to the right of . This could occur in two very
different ways, namely, could be above the line
or below that line to the right of . Property 2 rules out the
former.

Proof: Because is the minimum of
, it must be true that

for (A-5)

Consequently, when

(A-6)

which completes the proof of the first row of (A-4).

11Recall, also, that is associated with the subscript of .

From (A-2), observe that

(A-7)

Let and add to both sides of
(A-7), in which (via Property 1) , to see that

(A-8)

Because and (Property 1)
, it must be true that

(A-9)

Applying (A-9) and the fact that to (A-8), observe
that

(A-10)

Because , (A-10) can also be ex-
pressed as

(A-11)

Combining (A-9) and (A-11), conclude that

when (A-12)

This completes the proof of the second row of (A-4).
Property 3 (Monotonicity of ): It is true that

when
when

(A-13)

This property shows that is a monotonic function (but
not a strictly monotonic function) on both sides of the minimum
of the FWA. For example, in Fig. 1 monotonically de-
creases to the left of , whereas it monotonically
increases to the right of .
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Proof: To begin, observe that when Property 2
lets us conclude that ; hence, using (18) in this
inequality, it is true that

(A-14)

(A-14) is used below. Next, a formula for is
obtained as shown in (A-15) at the bottom of the page. Note that
going from the second to the third lines of (A-15) has involved a
moderate amount of straightforward algebra during which many
terms cancel each other. Because

, and (A-14) is true, the numerator of (A-15)
0; hence

(A-16)

which completes the proof of the first line of (A-13).
Next, consider the case when , for which Property

2 lets us conclude that ; hence, using (18) in this
inequality, it is true that

(A-17)

Because the rest of the proof of the second line of (A-13) is so
similar to that just given for the first line, its details are left to
the reader.

APPENDIX B
PROPERTIES OF

Because properties of and their proofs are so similar
to those for , the properties for are summarized in
this Appendix and their proofs are left to the readers. Recall, the
maximum of occurs at ; hence, .

is the switch point for the maximum.
Property 4 (Location of the Maximum): When , then

(B-1)

where

(B-2)

and [see (6)]

(B-3)

Property 5 (Location of in Relation to the Line
): lies above the line when is to the left of
and lies below the line when is to the right of ,

i.e.,

when
when (B-4)

Property 6 (Monotonicity of ): It is true that

when
when

(B-5)

APPENDIX C
DISPROOF OF THE KARNIK–MENDEL UPPER BOUND

As stated just after (15), different initializations can be used
for a KM algorithm. When the same initialization as used for
the EFWA is chosen, the initialization for finding and is

otherwise
(C-1)

Making use of (A-1), if
, then is the minimum, in which

case only one iteration of the KM algorithm is needed to find
the minimum. If, however, is not the minimum
value, then must obviously satisfy one of the
following inequalities:

(C-2)

(C-3)

where the second part of (C-3) follows from the ascending order
of the . From (A-4) in Property 2, when is not the min-
imum, it follows that

when
when

(C-4)

(A-15)
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When (C-2) is satisfied, observe from the second line of (C-4)
that , and so the minimum must be located to
the left of . According to step 3) of the KM algorithm,
and the monotonicity of , the value of in (18) can only
be to the left of . Similarly, when (C-3) is satisfied,
from the first line of (C-4), observe that and
so the minimum must be located to the right of . Ac-
cording to step 3) of the KM algorithm and the monotonicity
of , the value of in (18) can only be to the right of

.
Consequently, the upper bound on the number of iterations to

find and should be no larger than ; hence, the
Karnik–Mendel upper bound of on the number of iterations to
find and is too conservative.

Finally, when Karnik and Mendel [6] developed their upper
bound, properties of the GC comparable to those in Appendix A
were not known for the GC, and, they did not connect the GC
to the FWA.
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