
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008 1503

Encoding Words Into Interval Type-2 Fuzzy Sets
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Abstract—This paper presents a very practical type-2-fuzzistics
methodology for obtaining interval type-2 fuzzy set (IT2 FS) mod-
els for words, one that is called an interval approach (IA). The basic
idea of the IA is to collect interval endpoint data for a word from a
group of subjects, map each subject’s data interval into a prespec-
ified type-1 (T1) person membership function, interpret the latter
as an embedded T1 FS of an IT2 FS, and obtain a mathematical
model for the footprint of uncertainty (FOU) for the word from
these T1 FSs. The IA consists of two parts: the data part and the FS
part. In the data part, the interval endpoint data are preprocessed,
after which data statistics are computed for the surviving data in-
tervals. In the FS part, the data are used to decide whether the word
should be modeled as an interior, left-shoulder, or right-shoulder
FOU. Then, the parameters of the respective embedded T1 MFs are
determined using the data statistics and uncertainty measures for
the T1 FS models. The derived T1 MFs are aggregated using union
leading to an FOU for a word, and finally, a mathematical model is
obtained for the FOU. In order that all researchers can either du-
plicate our results or use them in their research, the raw data used
for our codebook examples, as well as a MATLAB M-file for the
IA, have been put on the Internet at: http://sipi.usc.edu/∼mendel.

Index Terms—Computing with words, encoder, fuzzistics,
interval approach (IA), interval type-2 fuzzy sets (IT2 FS),
perceptual computer (per-C).

I. INTRODUCTION

ZADEH [37], [38] proposed the paradigm of computing
with words (CWW), i.e., “CWW is a methodology in

which the objects of computation are words and propositions
drawn from a natural language.” CWW is fundamentally differ-
ent from the traditional expert systems that are tools to realize
an intelligent system but are not able to process natural language
because it is imprecise, uncertain, and partially true.

Words in the CWW paradigm can be modeled by type-1 fuzzy
sets (T1 FSs) or their extension, type-2 (T2) FSs. CWW using
T1 FSs has been studied by many researchers, e.g., [1], [4], [9],
[12], [26], [27], [29], [30], and [34]–[38]; however, as claimed
in [12]–[15] and [17], “Words mean different things to different
people, and so are uncertain. We therefore need an FS model for
a word that has the potential to capture its uncertainties, and an
interval T2 FS (IT2 FS) should be used as a model of a word.”
Consequently, in this paper, IT2 FSs are used to model words.
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A specific architecture for CWW using IT2 FSs, called a per-
ceptual computer (per-C), proposed in [14], is shown in Fig. 1.
The per-C consists of three components: encoder, CWW engine,
and decoder. The encoder transforms linguistic perceptions, i.e.,
words into IT2 FSs that activate a CWW engine. A CWW en-
gine maps its input IT2 FSs into output IT2 FSs, and this can
be done in many different ways, including by rules [12], [19],
linguistic summarizations [5], [24], [34], linguistic weighted av-
erage [31], [32], etc. The decoder maps the IT2 FS outputs of the
CWW engine into a specific word [33]. This paper is about the
encoding problem, i.e., how to transform a word into an IT2 FS.
A collection of application-specific words and their footprints
of uncertainty1 (FOUs) is a codebook for the application. The
codebook is also needed for the decoder.

How to collect data from a group of subjects, and how to
then map that data into the parameters of a T1 MF have been
reported by a number of authors (e.g., [8]). Names for the
different T1 methods include polling, direct rating, reverse
rating, interval estimation, and transition interval estimation.
Unfortunately, none of these methods transfers the uncertainties
about collecting word data from a group of subjects into the MF
of a T1 FS, because a T1 FS does not have enough degrees of
freedom to do this; hence, they are not elaborated upon in this
paper.

Recently [15], two approaches have been described for col-
lecting data about a word from a group of subjects and then map-
ping that data into an FOU for that word: the person-membership
function (MF) approach and the interval endpoints approach.
Both approaches have been referred to as T2 fuzzistics [15].

In the person-MF approach, a subject provides its FOU for
a word on a prescribed scale (e.g., 0–10), and this is done for a
group of subjects. Each person FOU captures the intralevel of
uncertainty about a word, i.e., the uncertainty that each subject
has about the word. All of the person FOUs are aggregated,
which captures the interlevel of uncertainty about the word
across the group of subjects. Finally, an IT2 FS model is fit
to the aggregated data. Note that when the aggregation oper-
ation is the union, then this approach is based on the T2 FS
representation theorem [18] for an IT2 FS, which states that the
FOU of an IT2 FS equals the union of all of its embedded2 T1
FSs. Each subject’s person FOU is also interpreted as a union
of its embedded T1 FSs.

1An IT2 FS is completely described by its FOU, which, in turn, is completely
described by its lower and upper bounding functions that are called its lower
and upper MFs, respectively. See [16] for an overview of IT2 FSs.

2An embedded T1 FS is a T1 FS that resides within an FOU. The union
of all such embedded T1 FSs covers the FOU and provides a very powerful
representation for an IT2 FS, because it permits one to use T1 FS mathematics
to derive all results about IT2 FSs [23].
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Fig. 1. Perceptual computer (per-C) for CWW using IT2 FSs.

Strong points of this approach are that: 1) the union of the
person FOUs (the data) establishes the shape of the FOU di-
rectly; 2) no statistics about the data are used, i.e., all of the
data (the person FOUs) are used so that no information is lost;
3) an a priori uncertainty measure of an FOU is not required in
order to map the person FOUs into the IT2 FS that is fit to the
aggregated data; and 4) if all uncertainty disappears, then the
IT2 FS word model reduces to a T1 FS word model.3

The weak point of this approach is that it requires subjects to
be knowledgeable about FSs. Unfortunately, this weakness may
be so large that (in the opinion of the authors) it may obliterate
the advantages of the approach; hence, the person FOU approach
is very limited in applicability.

In the interval endpoints approach, each subject provides the
endpoints of an interval associated with a word on a prescribed
scale. Subjects are asked the following question:

On a scale of 0–10, what are the end-points of an interval that
you associate with the word W?

The mean and standard deviation are then computed for the
two endpoints using the data collected from all of the subjects.
Doing this captures the interlevel uncertainties about the word.
These endpoint statistics are then mapped into an IT2 FS model
for the word by bounding the endpoints of the centroid of a
prespecified FOU. Mendel and Wu [20] have shown that the
centroid of an IT2 FS is a measure of the uncertainty of such
an FS, and that, although the centroid cannot be computed in
closed form [6], centroid bounds4 can be expressed explicitly
in terms of the geometry (parameters) of an FOU. They provide
formulas for these bounds for many different FOUs [20]. De-
sign equations are then used to map the endpoint statistics into
FOU parameters. Explicit mappings have been provided only
for symmetrical FOUs [21].

The strong point of this approach is that collecting interval
endpoint data is not limited to people who are knowledgeable
about FSs; hence, it is presently a preferable way to collect data
from people. Weak points of this approach are: 1) closed-form
mappings are only available for symmetrical FOUs that are as-
sociated with data intervals whose two endpoint standard devia-
tions are approximately equal, whereas actual interval endpoint
data show that most words do not have equal endpoint standard
deviations [12], [13], [15]; 2) the shape of an FOU must be
chosen ahead of time, independent of the endpoint statistics;
3) the centroid has to be chosen as the measure of uncertainty
of an FOU, and because no closed-form formulas are available
for the centroid, uncertainty-bound surrogates must be used in
their place; and 4) if all uncertainty disappears (i.e., all subjects

3In this case, all subjects would provide the same person T1 MF (not an
FOU).

4The centroid is an interval-valued set, and centroid bounds are the lower and
upper bounds for both the left- and right-end points of that set.

provide the same intervals), then the IT2 FS word model does
not reduce to a T1 FS word model.5 Regardless of all of the
weaknesses of this approach, its strong point is so large that it
has masked the weak points, and has been the recommended
approach.

In this paper, a new and simple approach, called the interval
approach (IA) to T2 fuzzistics is presented, one that captures
the strong points of both the person-MF and interval endpoints
approaches. By using the IA, one is able to easily create a code-
book for a new application of CWWs. Without such a codebook,
it is not possible to implement the per-C in Fig. 1. Therein lies
the importance of this paper.

The rest of this paper is organized as follows. Section II pro-
vides an overview of the IA, in which it is explained that the
IA has two parts, the data part and the FS part. Section III de-
scribes the data part. Section IV describes the FS part. Section V
provides some observations about the IA. Section VI contains
two codebook examples, and Section VII draws conclusions
and presents suggestions for future research. Detailed proofs
are provided in the Appendixes.

II. IA: OVERVIEW

In this section, the IA to T2 fuzzistics is overviewed. The IA
captures the strong points of both the person-MF and interval
endpoints approaches, i.e., it: 1) collects interval endpoint data
from a group of subjects; 2) does not require the subjects to
be knowledgeable about FSs; 3) has a straightforward mapping
from data to an FOU; 4) does not require an a priori assumption
about whether or not an FOU is symmetric or nonsymmetric;
and 5) leads to an IT2 FS word model that reduces to a T1
FS word model automatically if all subjects provide the same
intervals.

The basic idea of the IA is to map each subject’s data interval
into a prespecified T1 person MF, and to interpret the latter
as an embedded T1 FS of an IT2 FS (this is motivated by the
representation theorem for an IT2 FS [16]). The IA consists of
two parts, the data part (Fig. 2) and the FS part (Fig. 5). In the
data part, data that have been collected from a group of subjects
are preprocessed, after which data statistics are computed for the
surviving data intervals. In the FS part, FS uncertainty measures
are established for a prespecified T1 MF [always beginning with
the assumption that the FOU is an interior FOU (Fig. 3), and, if
need be, later switching to a shoulder FOU (Fig. 3)]. Then the
parameters of the T1 MF are determined using the data statistics,
and the derived T1 MFs are aggregated using union leading to
an FOU for a word, and finally to a mathematical model for the
FOU.

5This last point seems to have been missed when Mendel and Wu [21] set up
their two design equations.
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Fig. 2. Data part of the IA. Note that the data statistics, S1 , . . . , Sm , and data
intervals feed into the FS part of the IA, in Fig. 5. The extra heavy lines and
blocks denote the flow of processing once the data are collected.

Fig. 3. Left-shoulder, right-shoulder, and interior FOUs, all of whose LMFs
and UMFs are piecewise linear.

Sections III and IV explain each of the blocks in Figs. 2 and 5.

III. IA: DATA PART

Once data intervals [a(i) , b(i) ] have been collected for a word
from a group of n subjects (i = 1, . . . , n), the data part of the
IA consists of two major steps: 1) preprocessing the n data
intervals and 2) computing statistics for the data intervals that
survive the preprocessing step. The details of these steps are
described in this section. They are applied to the data intervals
for each codebook word, one word at a time.

A. Data Preprocessing

Preprocessing (Fig. 2) the n interval endpoint data [a(i) , b(i) ]
(i = 1, . . . , n) consists of four stages: 1) bad data process-
ing; 2) outlier processing; 3) tolerance-limit processing; and 4)
reasonable-interval processing. As a result of data preprocess-
ing, some of the n interval data are discarded and the remaining
m intervals are renumbered, 1, 2, . . . ,m. In the rest of this sec-
tion, details are provided for each of these four stages.

1) Stage 1—Bad Data Processing: Such processing re-
moves nonsensical results (some subjects do not take a sur-
vey seriously and provide useless results). If interval endpoints
satisfy

0 ≤ a(i) ≤ 10
0 ≤ b(i) ≤ 10

b(i) ≥ a(i)


 , i = 1, . . . , n (1)

then an interval is accepted; otherwise, it is rejected. These
conditions are obvious and do not need further explanations.
After bad data processing, there will be n′ ≤ n remaining data
intervals.

2) Stage 2—Outlier Processing: Such processing uses a Box
and Whisker test [28] to eliminate outliers. Recall that outliers
are points that are unusually large or small.

A Box and Whisker test is usually stated in terms of first
and third quartiles and an interquartile range. The first and third
quartiles, Q(0.25) and Q(0.75), contain 25% and 75% of the
data, respectively. The interquartile range IQR is the difference
between the third and first quartiles; hence, IQR contains 50%
of the data between the first and third quartiles. Any point that
is more than 1.5IQR above the third quartile or more than
1.5IQR below the first quartile is considered an outlier [28].

Outlier tests are applied not only to the interval endpoints but
also to interval lengths L(i) = b(i) − a(i) . Consequently, if the
subject interval endpoints and lengths satisfy

a(i) ∈ [Qa(0.25) − 1.5IQRa,Qa(0.75) + 1.5IQRa ]
b(i) ∈ [Qb(0.25) − 1.5IQRb,Qb(0.75) + 1.5IQRb ]

L(i) ∈ [QL (0.25) − 1.5IQRL,QL (0.75) + 1.5IQRL ]


 ,

i = 1, . . . , n′ (2)

a data interval is accepted; otherwise, it is rejected. In these
equations, Qa (Qb,QL ) and IQRa (IQRb, IQRL ) are the quar-
tile and interquartile ranges for the left (right) endpoints and
interval length.

After outlier processing, there will be m′ ≤ n′ remaining
data intervals for which the following data statistics are then
computed: ml, sl (sample mean and standard deviation of the m′

left endpoints), mr, sr (sample mean and standard deviation of
the m′ right endpoints), and mL, sL (sample mean and standard
deviation of the lengths of the m′ intervals).

3) Stage 3—Tolerance Limit Processing: If a data interval
[a(i) , b(i) ] and its length L(i) satisfy [28]

a(i) ∈ [ml − ksl ,ml + ksl ]
b(i) ∈ [mr − ksr ,mr + ksr ]

L(i) ∈ [mL − ksL ,mL + ksL ]


 , i = 1, . . . ,m′ (3)

the interval is accepted; otherwise it is rejected. In (3), k is
determined as follows.

Recall that for a normal distribution [28] of measurements
with unknown mean and standard deviation, tolerance lim-
its are given by ml ± ksl (or mr ± ksr ,mL ± ksL ), where
tolerance factor k is determined so that one can assert with
100(1 − γ)% confidence that the given limits contain at least the
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TABLE I
TOLERANCE FACTOR k FOR A NUMBER OF COLLECTED DATA (m ′), A

PROPORTION OF THE DATA (1 − α), AND A CONFIDENCE LEVEL 1 − γ [28]

proportion 1 − α of the measurements. Table I (adapted from6

[28, Table A7]) gives k for eight values of m′, two values of
1 − γ, and two values of 1 − α. Knowing m′ and choosing val-
ues for 1 − γ and 1 − α, one can obtain k. If, e.g., k = 2.549
(for which m′ = 30), then one can assert with 95% confidence
that the given limits contain at least 95% of the subject data
intervals.

Assumption: Data interval endpoints are approximately nor-
mal, so that the tolerance limits that are given in Table I can be
used.

Note that m′ may be different for each word, because m′ is
a result from preprocessing stages 1 and 2, and those stages are
applied independently to each word.

After tolerance limit processing, there will be m′′ ≤ m′ re-
maining data intervals (1 ≤ m′′ ≤ n), and the following data
statistics are then recomputed: ml, sl (sample mean and stan-
dard deviation of the m′′ left endpoints) and mr, sr (sample
mean and standard deviation of the m′′ right endpoints).

4) Stage 4—Reasonable-Interval Processing: In our first at-
tempt at the IA [10], only the first three stages of data prepro-
cessing were used (without the tests on interval lengths). FOUs
were obtained that did not look so good (this is subjective, but is
demonstrated in Section VI), and many were filled in or almost
filled in, i.e., LMF(Ã) ≈ 0. Because the centroid of a filled-in
FOU is completely independent of UMF(Ã) [22], such an FOU
is not considered to be a good one. As a result, something else
had to be done.

It dawned on us that, in addition to focusing on words mean
different things to different people (which was our rationale for
using IT2 FS models for words), one also needs to focus on
words mean similar things to different people. In fact, if there
is understanding about a word across a group of subjects, it is
the latter that causes it. This led us to require only overlapping
intervals be kept. Such intervals are called reasonable.

Definition 1: A data interval is said to be reasonable if it
overlaps with another data interval in the sense of Fig. 4.

In the last step of data preprocessing, only reasonable data
intervals are kept. Appendix A provides a derivation of the
following.

6Their table is in turn adapted from [3], and contains entries for 47 values of
n, beginning with n = 2.

Fig. 4. Example of two overlapping data intervals for the same word. The
intervals are raised off of the horizontal axis just for purposes of clarity.

Reasonable-interval test: IF

a(i) < ξ∗

b(i) > ξ∗

}
∀i = 1, . . . ,m′′ (4)

where ξ∗ is one of the values

ξ∗=
(mrσ2

l −mlσ
2
r)± σlσr

[
(ml−mr)2+ 2(σ2

l − σ2
r)ln(σl/σr)

]1/2

σ2
l − σ2

r

(5)

such that

ml ≤ ξ∗ ≤ mr. (6)

THEN the data interval is kept; OTHERWISE, it is deleted.
As a result of reasonable-interval processing, some of the

m′′ data intervals may be discarded, and there will finally be
m remaining data intervals (1 ≤ m ≤ n) that are renumbered,
1, 2, . . . ,m.

In summary, data preprocessing starts with all n data intervals
and ends with m data intervals, i.e.

n
bad data→ n′ outliers→ m′ tolerance limits→ m′′ reasonable interval→ m.

B. Computing Data Statistics for Each Interval

A probability distribution is assigned to each of the m surviv-
ing data intervals, after which statistics are computed for each
interval using the assumed probability model and the interval
endpoints. These statistics are used as described in Section IV-D.

Although many choices are possible for an assumed proba-
bility distribution for a subject’s data interval, unless a subject
provides more information about that interval (e.g., a greater be-
lief in the center of the interval), a uniform distribution is most
sensible, and is the one chosen herein.7 According to Dubois
et al. [2], “. . . a uniform probability distribution on a bounded
interval . . . is the most natural probabilistic representation of
incomplete knowledge when only the support is known. It is

7Dubois et al. [2] explain how to map a collection of confidence intervals into
a symmetrical triangle T1 MF, where the confidence intervals are associated
with data that are collected from a group of subjects about a single point. More
specifically, in their problem, n measurements, y1 , y2 , . . . , yn , are collected,
after which the sample mean m̄y is computed as m̄y =

∑n

i=1 yi /n. The α

confidence intervals of m̄y , denoted [CI(α), CI(α)], are then computed for
a fixed value of α. When each confidence interval is assumed uniformly dis-
tributed, their method maps the confidence intervals into a symmetric triangular
fuzzy number. Note, however, that their problem is different from ours, because
in our problem, we begin with a collection of n intervals rather than with a
collection of n numbers; so, their results have not been used by us.
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Fig. 5. FS part of the IA. The extra heavy lines and blocks denote the flow of
processing once the data are collected.

non-committal in the sense of maximal entropy . . . and it applies
Laplace’s indifference principle stating that what is equipossible
is equiprobable.”

In order to keep things as simple as possible, only two statis-
tics are used for a uniform distribution—its mean and standard
deviation. Recall that if a random variable Y is uniformly dis-
tributed in [a, b] [28], then

mY =
a + b

2
(7)

σY =
b − a√

12
. (8)

In the second stage of the data part, data statistics S1 , . . . , Sm

are computed for each interval, [a(i) , b(i) ], where

Si = (m(i)
Y , σ

(i)
Y ), i = 1, . . . , m (9)

and these data statistics are then used in the FS part of the
IA where they are mapped into the parameters of a T1 MF, as
explained in Section IV-F.

This completes the data part of the IA.

IV. IA: FS PART

The FS part of the IA (Fig. 5) consists of nine steps, each of
which is described in this section.

A. Choose a T1 FS Model

In the present IA, because the mapping from an interval of
data to a T1 MF uses only the mean and variance of the (just)
assumed uniform probability distribution, only T1 MFs with
2 DOF can be used. In this paper, only a symmetrical triangle
interior T1 MF, a left-shoulder T1 MF, or a right-shoulder T1
MF is used.

B. Establish FS Uncertainty Measures

Definition 2: The mean and standard deviation of a T1 FS A
are

mA =

∫ bM F

aM F
xµA (x)dx∫ bM F

aM F
µA (x)dx

(10)

σA =

[∫ bM F

aM F
(x − mA )2µA (x)dx∫ bM F

aM F
µA (x)dx

]1/2

(11)

where aMF and bMF are the parameters of the MFs that are
depicted in the figures of Table II.

Obviously, if µA (x)
/∫ bM F

aM F
µA (x)dx is the probability dis-

tribution of x, where x ∈ [aMF , bMF], then (10) and (11) are the
same as the mean and standard deviation used in probability.

Usually, aMF and bMF denote the left-end and right-end of the
support of a T1 MF; however, shoulder T1 MFs pose a problem
because for a left-shoulder T1 MF, there is no uncertainty for
x ∈ [0, aMF], whereas for a right-shoulder T1 MF, there is no
uncertainty for x ∈ [bMF ,M ]; hence, for shoulder MFs, aMF
and bMF do not cover the entire span of the MF, and are as
shown in the second and third row figures of Table II.

C. Compute Uncertainty Measures for T1 FS Models

The mean and standard deviations for symmetric triangle
(interior), and left-shoulder and right-shoulder T1 MFs are easy
to compute, and they are also summarized in Table II. Observe
that by using the primed parameters for the right-shoulder T1
MF, the equation for its σMF looks just like the comparable
formula for the left-shoulder T1 MF.

D. Compute General Formulas for Parameters of T1 FS Models

The parameters of a T1 FS (triangle, left-, or right-shoulder)
are computed by equating the mean and standard deviation of
a T1 FS to the mean and standard deviation, respectively, of a
data interval, i.e., m

(i)
MF = m

(i)
Y and σ

(i)
MF = σ

(i)
Y , where m

(i)
MF

and σ
(i)
MF are in Table II, and m

(i)
Y and σ

(i)
Y are computed using

(7) and (8). This is done for each of the m remaining data
intervals. The resulting T1 MF parameters, a

(i)
MF and b

(i)
MF , are

summarized in Table III.

E. Establish Nature of FOU

Given a set of m data intervals, they must be mapped into an
interior FOU, left-shoulder FOU, or a right-shoulder FOU. This
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TABLE II
MEAN AND STANDARD DEVIATION FOR INTERIOR AND SHOULDER T1 MFS [10].

TABLE III
TRANSFORMATIONS OF THE UNIFORMLY DISTRIBUTED DATA INTERVAL

[a(i) , b(i) ] INTO THE PARAMETERS a
(i)
M F AND b

(i)
M F OF A T1 FS [10]

is a classification problem. In this section, a rationale for decid-
ing which of these FOUs is chosen and an FOU classification
procedure are explained.

1) FOU Rationale: To begin, it is always assumed that the
m data intervals can be mapped into an interior FOU, and if this
cannot be done, then the data can be mapped into a left-shoulder
FOU, and if this cannot be done, then the data can be mapped
into a right-shoulder FOU. This rationale is the basis for the
classification procedure that is given next.

2) FOU Classification Procedure: To begin, the following
admissibility requirement for an interior FOU is defined.

Definition 3: For the scale [0, 10], an interior FOU is said to
be admissible if and only if (see first row of Table II)

a
(i)
MF ≥ 0

b
(i)
MF ≤ 10

}
∀i = 1, . . . ,m. (12)

By using the formulas for a
(i)
MF and b

(i)
MF that are given in the

first row of Table III, it is straightforward to show that (12) is
equivalent to

1.207a(i) − 0.207b(i) ≥ 0
1.207b(i) − 0.207a(i) ≤ 10

}
∀i = 1, . . . ,m (13)

or, equivalently,

b(i) ≤ 5.831a(i)

b(i) ≤ 0.171a(i) + 8.29

}
∀i = 1, . . . ,m. (14)

Additionally, there is the obvious constraint that

b(i) ≥ a(i) ∀i = 1, . . . ,m. (15)

Fig. 6 depicts the three inequalities in (14) and (15), and
shows the admissible region for an interior FOU. Unfortunately,
requiring (14) and (15) to be satisfied for all m data intervals is
too stringent, as explained next.

Consider two situations, where in the first situation, only
one of the m data pairs (barely) falls outside of the admissible
region, whereas in the second situation, more than half of the
data pairs fall outside of that region. Using (14) and (15), an
interior FOU would be rejected for both situations, which does
not seem so reasonable; hence, requiring all {a(i) , b(i)}m

i=1 to
fall in the admissible region seems too stringent.
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Fig. 6. Admissible region for an interior FOU that is based on (14) and (15).

Fig. 7. Admissible region for an interior FOU that is based on (16) and (17).

To that end, instead of using (14) and (15), their expected
values are used, i.e.,

mb ≤ 5.831ma

mb ≤ 0.171ma + 8.29

}
(16)

mb ≥ ma. (17)

The figure that is analogous to Fig. 6 is now depicted in Fig. 7.
It looks just like the one in Fig. 6, except that the lines are for
(16) and (17) instead of for (14) and (15). Note that even though
(15) has been reexpressed in (17) in terms of expected values,
it will always be satisfied by all of the remaining m intervals

by virtue of (1). Our attention is therefore directed at the two
inequalities in (16).

In practice, the population means ma and mb are not avail-
able, so (16) cannot be used as is. As explained next, our ap-
proach to implementing (16) is to develop two hypothesis tests.

Let

c ≡ b − 5.831a (18)

d ≡ b − 0.17a − 8.29. (19)

From (16), (18), and (19), it follows that to determine if (16)
is satisfied is equivalent to determining if the following are
satisfied:

mc ≤ 0
md ≤ 0

}
. (20)

According to statistics [28, Ch. 10], to verify (20), we need
to test the population means mc and md using the following
one-tailed tests (H0 denotes the null hypothesis and H1 denotes
the alternative hypothesis):

For mc :

H0 : mc = 0

H1 : mc < 0. (21)

For md :

H0 : md = 0

H1 : md < 0. (22)

It is well known that for the one-sided hypotheses in (21)
and (22) for which the population variances are unknown but
sample variances are available, rejection of H0 occurs when a
computed t-statistic is smaller than−tα,m−1 , where m − 1 is the
degrees of freedom for the t-distribution, and m is the number
of intervals that have survived our preprocessing stages.

For mc, t ≡ Tc , where [28, Sec. 10.7]

Tc =
c̄ − 0

sc/
√

m
< −tα,m−1 (23)

in which c̄ is the sample mean of c and sc is the sample standard
deviation of c. In order to obtain a decision boundary on the
ml − mr plane (as in Fig. 7), we begin with (18) and express c̄ as

c̄ = mr − 5.831ml (24)

where ml and mr are the sample means of the surviving
m intervals that are available from the data part of the IA.
Substituting (24) into (23), it is straightforward to obtain the
following decision inequality for mc :

mr < 5.831ml − tα,m−1
sc√
m

. (25)

For md, t ≡ Td , where

Td =
d̄ − 0

sd/
√

m
< −tα,m−1 (26)
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Fig. 8. Classification diagram with FOU decision regions.

in which d̄ is the sample mean of d and sd is the sample standard
deviation of d. Proceeding as we did for Tc , but beginning
with (19), it is straightforward to obtain the following decision
inequality for md :

mr < 0.171ml + 8.29 − tα,m−1
sd√
m

. (27)

By these analyses, (16) is replaced by (25) and (27), and in
addition, (17) is replaced by

mr ≥ ml. (28)

Equations (25), (27), and (28) are plotted in the classification
diagram depicted in Fig. 8, on which the decision regions for in-
terior, left-shoulder, and right-shoulder FOUs are shown shaded.
Observe that there is a small region for which no FOU is as-
signed. It is called the unreasonable region, because to assign a
shoulder FOU for values in it leads to FOUs that extend unrea-
sonably far to the left (for a right-shoulder FOU) or right (for
a left-shoulder FOU). No interval data that we have collected
have led to (ml,mr ) that fall in the unreasonable region.

Our FOU classification procedure is: Compute ml and mr ,
and

1) IF mr ≤ 5.831ml − tα,m−1
sc√
m

, mr ≤ 0.171ml +8.29
− tα,m−1

sd√
m

, and mr ≥ ml, THEN FOU is an
INTERIOR FOU.

2) OTHERWISE, IF mr > 5.831ml − tα,m−1
sc√
m

, and
mr < 0.171ml + 8.29 − tα,m−1

sd√
m

, THEN FOU is a
LEFT-SHOULDER FOU.

3) OTHERWISE, IF mr < 5.831ml − tα,m−1
sc√
m

, and
mr > 0.171ml + 8.29 − tα,m−1

sd√
m

, THEN FOU is a
RIGHT-SHOULDER FOU.

4) OTHERWISE, IF mr > 5.831ml − tα,m−1
sc√
m

, and
mr > 0.171ml + 8.29 − tα,m−1

sd√
m

, THEN NO
FOU. (29)

Comments:
1) In order to classify a word’s surviving m data intervals,

first ml,mr , sc , and sd must be computed. ml and mr are
the sample averages of {a(i)}m

i=1 and {b(i)}m
i=1 , respec-

tively, and sc and sd are the sample standard deviations of
{b(i) − 5.83a(i)}m

i=1 and {b(i) − 0.171a(i) − 8.29}m
i=1 ,

respectively. Although these calculations could have been
put into the data part of the IA, we have chosen to put
them into the FS part because sc and sd first appear in the
latter part of the IA.

2) Observe from (29) [or (25) and (27)] that the nondiago-
nal decision boundaries depend upon m in two ways: a)
tα,m−1 depends upon m (as well as α) and b) 1/

√
m.

This means that when m is different for different words
(as frequently occurs), the decision diagrams for different
words will be different. It also means that when m is large,
so that tα,m−1sc/

√
m → 0 and tα,m−1sd/

√
m → 0, then

Fig. 8 reduces to the asymptotic classification diagram
that is depicted in Fig. 9.

3) The decision boundaries depend on α. For example, when
m = 20 and α = 0.10, then [28, Table A.4] t0.10,19 =
1.328, whereas if α = 0.05, then t0.05,19 = 1.729. From
(25) and these two (representative) examples, observe that
as α decreases, the left-shoulder decision line moves to
the right; and, from (27) and these two (representative)
examples, observe that as α decreases, the right-shoulder
decision line moves downward. Hence, smaller values of
α lead to larger left- and right-shoulder decision regions.
As in any decision-making situation, the specific choice of
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Fig. 9. Asymptotic classification diagram with FOU decision regions.

α is left to the user, although α = 0.05 is a very popular
choice, since it also corresponds to a 95% confidence
interval.

F. Compute Embedded T1 FSs

Once a decision has been made as to the kind of FOU for a
specific word, each of the word’s remaining m data intervals are
mapped into their respective T1 FSs using the equations that are
given in Table III, i.e.

(a(i) , b(i)) → (a(i)
MF , b

(i)
MF), i = 1, . . . , m. (30)

These T1 FSs, denoted A(i) , are called embedded T1 FSs, be-
cause they are used to obtain the FOU of the word, as described
Section IV-H.

G. Delete Inadmissible T1 FSs

It is possible that some of the m embedded T1 FSs are inad-
missible, i.e., they violate (12). Those T1 FSs are deleted, so that
there will be m∗ remaining embedded T1 FSs, where m∗ ≤ m.

H. Compute an IT2 FS Using the Union

Using the representation theorem for an IT2 FS [16], a word’s
IT2 FS Ã is computed as

Ã =
m ∗⋃
i=1

A(i) (31)

where A(i) is the just-computed ith embedded T1 FS.

Fig. 10. Example of the union of (dashed) T1 triangle MFs. The heavy lines
are the LMFs and UMFs for the interior FOU.

I. Compute Mathematical Model for FOU(Ã)

In order to compute a mathematical model for FOU(Ã), both
UMF(Ã) and LMF(Ã) must be approximated. There are many
ways in which this can be done. Our approach is very simple and
guarantees that all m∗ embedded T1 FSs are contained within
FOU(Ã). Regardless of the type of FOU, the following four
numbers must be computed first:

aMF ≡ min
i=1,...,m ∗

{a(i)
MF}

āMF ≡ max
i=1,...,m ∗

{a(i)
MF}


 (32)

bMF ≡ min
i=1,...,m ∗

{b(i)
MF}

b̄MF ≡ max
i=1,...,m ∗

{b(i)
MF}


 . (33)

1) Mathematical Model for an Interior FOU: Fig. 10 depicts
this situation. The steps to approximate UMF(Ã) are
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Fig. 11. Example of the union of (dashed) T1 left-shoulder MFs. The heavy
lines are the LMFs and UMFs for the left-shoulder FOU.

1) Compute

C
(i)
MF =

a
(i)
MF + b

(i)
MF

2
. (34)

2) Compute

CMF = min{C(i)
MF} (35)

C̄MF = max{C(i)
MF}. (36)

3) Connect the following points with straight lines:
(aMF , 0), (CMF , 1), (C̄MF , 1), and (b̄MF , 0).

The result is a trapezoidal upper (U) MF.
The steps to approximate LMF(Ã) are as follows.
1) Compute the intersection point (p, µp) of the right leg and

the left leg of the left and rightmost-extreme triangles (see
Fig. 10), using

p =
bMF(C̄MF − āMF) + āMF(bMF − CMF)

(C̄MF − āMF) + (bMF − CMF)
(37)

µp =
bMF − p

bMF − CMF
. (38)

2) Connect the following points with straight lines:
(aMF , 0), (āMF , 0), (p, µp), (bMF , 0), and (b̄MF , 0).

The result is a triangle lower (L) MF.
2) Mathematical Model for a Left-Shoulder FOU: Fig. 11

depicts this situation. To approximate UMF(Ã), connect
the following points with straight lines: (0, 1), (āMF , 1), and
(b̄MF , 0). The result is a left-shoulder UMF. To approximate
LMF(Ã), connect the following points with straight lines:
(0, 1), (aMF , 1), (bMF , 0), and (b̄MF , 0). The result is a left-
shoulder LMF.

3) Mathematical Model for a Right-Shoulder FOU: Fig. 12
depicts this situation. To approximate UMF(Ã), connect the
following points with straight lines8: (aMF , 0), (bMF , 1), and
(M, 1). The result is a right-shoulder UMF. To approximate
LMF(Ã), connect the following points with straight lines:
(aMF , 0), (āMF , 0), (b̄MF , 1), and (M, 1). The result is a right-
shoulder LMF.

8In this paper, M = 10.

Fig. 12. Example of the union of (dashed) T1 right-shoulder MFs. The heavy
lines are the LMFs and UMFs for the right-shoulder FOU.

V. OBSERVATIONS

A. Canonical FOUs for Words

Figs. 10–12 are the only FOUs that can be obtained for a
word using the IA, and so these FOUs are referred to herein as
canonical FOUs for a word.

A word that is modeled by an interior FOU has a UMF that is
a trapezoid and an LMF that is a triangle, but in general, neither
the trapezoid nor the triangle is symmetrical. A word that is
modeled as a left- or right-shoulder FOU has trapezoidal UMFs
and LMFs; however, the legs of the two respective trapezoids
are not necessarily parallel.

That there are only three canonical FOUs for a word is very
different than in function approximation applications of IT2
FSs (e.g., as in fuzzy logic control, or forecasting of time series)
where one is free to choose the shapes of the FOUs ahead of
time, and many different choices are possible.

B. No Completely Filled-In FOUs

In [22], it is explained that when LMF(Ã) = 0, then FOU(Ã)
is completely filled in. This is not considered to be a good
FOU, because the centroid of such an FOU equals the span of
LMF(Ã), and is therefore completely independent of UMF(Ã).
The following theorem shows that the IA does not lead to com-
pletely filled-in FOUs.

Theorem 1: Using the IA, none of the obtained FOUs will be
completely filled in, i.e.: 1) for an interior FOU, bMF > āMF
(see Fig. 10); 2) for a left-shoulder FOU, bMF ≥ aMF > 0 (see
Fig. 11); and 3) for a right-shoulder FOU, āMF < b̄MF < M
(see Fig. 12).

A proof of this theorem is given in Appendix B.

C. Whose FOU?

In the field of probability elicitation, O’Hagan and Oakley
[25] question how various individual expert probability dis-
tributions should be combined into a single distribution, and,
regardless of the method used for combining, whose distribu-
tion does this represent? The latter question reflects the fact
that regardless of how the distributions are combined, the final
distribution has lost the uncertainties of the individual subjects,
and, in fact, it may correspond to none of the subjects.
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One can raise a similar question for the FOU of a word that is
obtained from the IA, i.e., whose FOU does it represent? Unlike
the probability elicitation field, where each expert is assumed
to have a probability distribution,9 no assumption is ever made
in our research that a subject has a personal FOU for a word.
An FOU is a mathematical model that captures the uncertainties
about a word, and is only used in later processing or analyses.

Note, however, that the union method for combining each
subject’s T1 FS preserves all of their uncertainties because each
of their T1 FSs is contained within the FOU.

One can even provide a Bayesian-like interpretation to the
construction of an FOU. Allow the analyst to be one of the
subjects, so that her T1 FS is the first T1 FS of the remaining
m∗ T1 FSs. Then, the resulting FOU not only uses her a priori
FOU, which is a T1 FS, but modifies it by folding in the T1 FSs
of the remaining m∗ − 1 data intervals.

D. Additional Data

If at a later time, more subject data become available, then
one must repeat the entire IA procedure because such data can
affect the data and interval statistics in the data part of the IA,
and those statistics are used in the FS part of the IA. So, it is
very important not to discard the subject data intervals. How (or
if it is possible) to turn the IA into a data-adaptive procedure
remains to be explored.

E. Validity of an FOU Obtained From the IA

A reviewer of this paper correctly stated, “There is no real
verification or validation of the type-2 membership function for
the words (form of the FOUs).” As mentioned in Section V-C,
“no assumption is ever made in our research that a subject has
a personal FOU for a word. An FOU is a mathematical model
that captures the uncertainties about a word, and is used in later
processing or analyses.” In the per-C, FOUs are used not only
to activate a CWW engine, but also to describe such an engine
(e.g., as the models for antecedents and consequents in an IF–
THEN CWW engine), and also in the decoder to arrive at a word
output for the per-C.

In a recent article [17], Mendel discusses how a CWW en-
gine can be validated and also what FS models should be used
in CWWs. His conclusions are that: 1) validation of a CWW
design is by a Turing test and 2) there is no guarantee, even
when the scientifically correct IT2 FSs are used as models for
words, that the CWW engine will pass a Turing test. How-
ever, he also argues that when linguistic uncertainties are sus-
pected, an IT2 FS should be used, because such an FS is a
scientifically correct first-order uncertainty model for a word,
whereas a T1 FS is not.

9While probability is an excellent model for unpredictable uncertainty, it is
mathematics and not science; hence, to ascribe a personal probability distribu-
tion to an expert for a particular situation is fiction, regardless of how much data
are elicited from that expert. A probability model may fit that data, and the fit
may improve as more reliable data are extracted from the expert, but, that in no
way proves that this is the expert’s personal probability distribution.

VI. CODEBOOK EXAMPLES

A. 32-Word Codebook

A dataset was collected from 28 subjects at the Jet Propul-
sion Laboratory (JPL)10 for a vocabulary of 32 words. These
words were randomized, and for all words, each subject was
asked the question, “On a scale of 0–10, what are the end-
points of an interval that you associate with the word W ?”
All of the data were processed as described in Sections III and
IV. Although the results in this section are referred to as an
“example,” in essence, they are 32 examples of the IA, be-
cause each of the word’s FOUs is obtained independently of the
others.

Table IV (in which the 32 words have been ordered using a
ranking method that is explained later in this section) summa-
rizes how many data intervals survived each of the four prepro-
cessing stages, and how many intervals m∗ survived the delete
inadmissible T1 FSs step in the FS part of the IA. Observe that
m∗ is quite variable. Table IV also gives the final left and right
endpoint statistics that were used to establish the nature of each
word’s FOU. These statistics are based on the m remaining data
intervals after stage 4 of preprocessing.

Table V is the codebook for the 32 words. It provides the co-
ordinates (code) for the LMF and UMF of each FOU. A value of
α = 0.05 was used for FOU classification. We warn the reader
that while it may be very tempting to use this codebook for your
application(s), do not do this, because data collection is sensi-
tive to scale and is application-dependent; hence, although we
advocate using this paper’s methodologies, we do not advocate
using the paper’s example word FOUs for specific applications.

Fig. 13 depicts the classification diagram for all 32 words.
Each filled-in circle gives the location of (ml,mr ) for its
word. Some of the circles appear to lie very close to a decision
boundary. When we chose α = 0.10, the results did not change
much, so the IA seems to be robust to the choice of α for this set
of data.

Fig. 14 depicts the FOUs for all 32 words. Observe that the
words have been ordered so that there seems to be a very natural
flow from left-shoulder FOUs to interior FOUs to right-shoulder
FOUs. This flow was achieved by first computing the centroid of
each FOU [6], [12], [22] and then the mean of each centroid. The
results of these computations are given in the last two columns
of Table V. The words were then rank-ordered using the mean
of the centroid. Ranking the words by this method seems to give
visually acceptable results.

Interestingly, sizeable and quite a bit have the same FOUs.
This can be seen in Fig. 14, and is also evident from the LMF
and UMF columns in Table V. It means that based on the
data collected from the 28 JPL subjects, the words sizeable
and quite a bit are 100% similar. Additionally, a smidgen and
tiny, and substantial amount and a lot have almost identical
FOUs. Similarity of all of the words to one another can be com-
puted using the similarity measure for IT2 FSs that is described
in [33].

10This was done in 2002 when J. M. Mendel gave an in-house short course
on fuzzy sets and systems at JPL.
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TABLE IV
32-WORD CODEBOOK EXAMPLE—REMAINING DATA INTERVALS AND THEIR ENDPOINT STATISTICS FOR m DATA INTERVALS

TABLE V
32-WORD CODEBOOK EXAMPLE—FOU DATA FOR ALL WORDS (BASED ON m∗ DATA INTERVALS)—THE CODEBOOK
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Fig. 13. Classification diagrams for all 32 words. Start at the top row and
proceed downward scanning from left to right.

Fig. 14. FOUs for all 32 words. Start at the top row and proceed downward
scanning from left to right.

Fig. 15. FOUs for all 32 words when stage 4 of data preprocessing is omitted.
Start at the top row and proceed downward scanning from left to right.

Fig. 16. Left-shoulder FOU for very small. For this FOU, LMF: (0.10, 1.16)
and UMF: (0.64, 2.47). Additionally, the centroid = [0.38, 0.92] and the mean
of centroid = 0.65.

Section III argued for the inclusion of a fourth step of pre-
processing, namely for reasonable-interval processing. Fig. 15
depicts FOUs for the 32 words when this stage was omitted.
Observe that many of the FOUs are filled in or just about filled
in, whereas none of the FOUs depicted in Fig. 14 are filled in,
thereby confirming the results given in Theorem 1.

Focusing on the FOUs in Fig. 14, it is possible to question
why very small is an interior FOU when it may feel more right
for it to be a left-shoulder FOU. Observe from Table III that
many of the 28 original data intervals for very small have been
eliminated by the IA, so it may be that the classification pro-
cedure for the remaining eight intervals is not so reliable. If
the end user chooses to do some postprocessing (as we are
now doing) and wants to see what a left-shoulder FOU would
look like for very small, the result is depicted in Fig. 16. Be-
cause the mean of the centroid of this shoulder FOU is 0.65, if
the shoulder FOU is used as the model for very small, then
it exchanges positions with very little in Fig. 14. One may
also question why large has been located to the right of very
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Fig. 17. FOUs for three subvocabularies. (a) Subvocabulary 1. (b) Subvocabulary 2. (c) Subvocabulary 3.

TABLE VI
SIX-WORD CODEBOOK EXAMPLE—REMAINING DATA INTERVALS AND THEIR ENDPOINT STATISTICS FOR m DATA INTERVALS

sizeable. We believe that this is due to our ad hoc method for
ranking the FOUs. If the reader does not like the positions of
these two FOUs, he/she can change them without affecting the
codebook.

Herrera et al. [4] discuss multigranular linguistic term sets
and how in “. . . decision making problems with multiple sources
of information, linguistic performance values that are given to
the different sources can be represented as linguistic term sets
with different granularity and/or semantics.” Our interpretation
of “linguistic term sets with different granularity” is as a sub-
vocabulary from the codebook. Fig. 17 depicts three subvo-
cabularies, where the FOUs in each subvocabulary cover the
entire domain [0, 10]. Each subvocabulary was obtained from
the results given in Table V and Fig. 14. When a codebook is
established, it contains within it many subvocabularies. One im-
portant use for a subvocabulary is in designing IF–THEN rules
as a CWW engine, where it is expedient to use a small (the

smallest) subvocabulary that covers the entire domain in order
to avoid rule explosion.

B. Six-Word Codebook

Another dataset was collected from 40 subjects at the Uni-
versity of Southern California during February and March 2008
for a vocabulary of six words. The context for these words is
a weighting assigned to investment criteria for a small group
of investments. The words were randomized, and for all words,
each subject was told that “each of the 6 labels describes an
interval or a range that falls somewhere between 0 and 10,” and
was then asked “for each label, please tell us where this range
would start and where it would stop.” The data were processed
as described in Sections III and IV.

Tables VI and VII are analogous to Tables IV and V, respec-
tively. The codebook in Table VII can be used by the reader
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TABLE VII
SIX-WORD CODEBOOK EXAMPLE—FOU DATA FOR ALL WORDS (BASED ON m∗ DATA INTERVALS)—THE CODEBOOK

Fig. 18. FOUs for all six words.

for the specific investment criteria weighting application for
which these data were collected but should not be used for other
applications. Fig. 18 depicts the FOUs for the six words. It is in-
teresting to observe that the three positive-sounding weights do
not have FOUs that are symmetrically related to the three neg-
ative sounding weights. The results, though, seem to be quite
reasonable.

VII. CONCLUSION

This paper has presented a very practical T2-fuzzistics
methodology for obtaining IT2 FS models for words, one that
is called an IA. The basic idea of the IA is to collect interval
endpoint data for a word from a group of subjects, map each
subject’s data interval into a prespecified T1 person-MF, inter-
pret the latter as an embedded T1 FS of an IT2 FS, and obtain
a mathematical model for the FOU for the word from these
T1 FSs.

The IA consists of two parts, the data part and the FS part.
In the data part, the interval endpoint data are preprocessed,
after which data statistics are computed for the surviving data
intervals. In the FS part, the data are used to decide whether the
word should be modeled as an interior, left-shoulder, or right-
shoulder FOU. Then, the parameters of the respective embedded
T1 MFs are determined using the data statistics and uncertainty
measures for the T1 FS models. The derived T1 MFs are aggre-
gated using union leading to an FOU for a word, and finally to
a mathematical model for the FOU.

The IA has many strong points, i.e., it: 1) collects interval
endpoint data from subjects, and this is easy to do; 2) does

not require subjects to be knowledgeable about FSs; 3) has
a straightforward mapping from data to an FOU; 4) does not
require an a priori assumption about whether or not an FOU is
symmetric or nonsymmetric; and (5) leads to an IT2 FS word
model that reduces to a T1 FS word model automatically if all
subjects provide the same intervals. Its weak point is that it is
not data-adaptive.

So that all researchers can either duplicate our results or use
them in their research (e.g., they might choose a different kind
of pdf for a data interval), the raw data used for our codebook
examples, as well as MATLAB M-files for the IA, have been
put on the Internet at: http://sipi.usc.edu/∼mendel.

So far, it has been assumed that interval endpoint data have
been collected from a group of subjects. Although we strongly
advocate doing this, so that the data will contain both intra-
and interlevels of uncertainty, we realize that there may be
times when this is not possible, due, for example, to budget
limitations, time-constraints, or unavailability of a subject pool.
How to obtain an FOU from a single subject by an IA is an
open research issue.

Finally, the following validation problem is currently under
study. Given an interior FOU whose parameters are specified,
use it to generate N symmetrical triangle-embedded T1 FSs.
Such T1 FSs might be called the “realizations” of the FOU T1
FS generator. Using the equations that are given in Table III,
but in reverse, obtain (a(i) , b(i)) for each of the N (a(i)

MF , b
(i)
MF).

Prove that by using the IA, one can obtain the original FOU to
within a quantified level of accuracy (that will depend upon N ),
i.e., prove some sort of convergence result for the IA. Because
this validation problem is very different from the problem that
is considered in this paper, its results will appear in a future
publication.

APPENDIX A

DERIVATION OF REASONABLE-INTERVAL TEST

In this Appendix, derivations of (4)–(6) are obtained. Exam-
ining Fig. 4, and using the requirement that reasonable data
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intervals must overlap, it must be true that

min
∀i=1,...,m ′′

b(i) > max
∀i=1,...,m ′′

a(i) . (A1)

A simple way to satisfy (A1) is to require that

a(i) < ξ
b(i) > ξ

}
∀i = 1, . . . ,m′′ (A2)

where threshold ξ has to be chosen, and there can be different
ways to do this. In this paper, an optimal value of ξ, ξ∗ is chosen
so that

ξ∗ = arg min
ξ

[P (a(i) > ξ) + P (b(i) < ξ)]. (A3)

By choosing ξ∗ in this way, data intervals that do not satisfy
(A2) will occur with the smallest probability.11

In order to compute ξ∗, it is assumed that each a(i) (i =
1, . . . ,m′′) is Gaussian with mean ma and standard deviation
σa , and each b(i) (i = 1, . . . ,m′′) is also Gaussian, but with
mean mb and standard deviation σb . It follows that

P (a(i) > ξ) + P (b(i) < ξ)

=
1√

2πσa

∫ ∞

ξ

exp

[
−1

2

[
a(i) − ma

σa

]2]
da(i)

+
1√

2πσb

∫ ξ

−∞
exp

[
−1

2

[
b(i) − mb

σb

]2]
db(i) . (A4)

Setting the derivative of this function with respect to ξ equal
to zero, ξ∗is found to be the solution of

1√
2πσa

exp

[
−1

2

[
ξ∗−ma

σa

]2
]

=
1√

2πσb

exp

[
−1

2

[
ξ∗−mb

σb

]2
]
.

(A5)

Observe that ξ∗ occurs at the intersection of the two Gaussian
distributions p(a(i)) and p(b(i)). Taking the natural logarithm of
both sides of (A5), one is led to the following quadratic equation:

(σ2
a − σ2

b )ξ∗2 + 2(maσ2
b − mbσ

2
a)ξ∗

+[m2
b σ

2
a − m2

aσ2
b − 2σ2

aσ2
b ln(σa/σb)] = 0. (A6)

The two solutions of this equation are

ξ∗ =
(mbσ

2
a−maσ2

b)±σaσb

[
(ma−mb)2 +2(σ2

a−σ2
b)ln(σa/σb)

]1/2

(σ2
a − σ2

b )
.

(A7)

The final solution is chosen as the one for which

ξ∗ ∈ [ma,mb ]. (A8)

That this solution minimizes P (a(i) > ξ) + P (b(i) < ξ),
rather than maximizes it, follows from showing that the deriva-
tive of (A5) with respect to ξ, after which ξ is set equal to ξ∗, is

11Another approach might be to choose ξ∗ that maximizes P [a(i) <

ξ, b(i) > ξ]. As of yet, we have not done this.

Fig. 19. p(a(i) ), p(b(i) ) and the four areas Ai (i = 1, . . . , 4) that can be used
to compute P (a(i) > ξ∗) + P (b(i) < ξ∗), and (a) P (a(i) > ξ ′) + P (b(i) <

ξ ′), or (b) P (a(i) > ξ ′′) + P (b(i) < ξ ′′); and (c) the concave shape of
P (a(i) > ξ) + P (b(i) < ξ).

positive. Because this is a very tedious calculation, an alternative
is presented next.

Fact: P (a(i) > ξ) + P (b(i) < ξ) is a concave function and
its minimum value, ξ∗, occurs in the interval [ma,mb ].

A proof of this fact follows from (a) and (b) of Fig. 19. From
Fig. 19(a), observe that at ξ = ξ∗

P (a(i) > ξ∗) + P (b(i) < ξ∗) = A1 + (A2 + A3) (A9)

and at ξ = ξ′

P (a(i) > ξ′) + P (b(i) < ξ′) = (A1 + A2 + A4) + A3 .
(A10)

Hence

P (a(i) > ξ′) + P (b(i) < ξ′) > P (a(i) > ξ∗) + P (b(i) < ξ∗).
(A11)
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Proceeding in a similar manner for Fig. 19(b), it follows that

P (a(i) > ξ′′) + P (b(i) < ξ′′) > P (a(i) > ξ∗) + P (b(i) < ξ∗).
(A12)

Equations (A11) and (A12) together prove that P (a(i) >
ξ) + P (b(i) < ξ) is a concave function about ξ = ξ∗. The
concave shape of P (a(i) > ξ) + P (b(i) < ξ) is depicted in
Fig. 19(c).

Above, it has been proven that ξ∗ occurs at the intersection
of p(a(i)) and p(b(i)), but, it is clear from Fig. 19(a) or (b) that
ξ∗ ∈ [ma,mb ].

Because access to the population means and standard devia-
tions is unavailable, they must be estimated in order to compute
ξ∗ and to perform the tests in (4)–(6). Our approach is to estimate
those quantities as

m̂a = ml

m̂b = mr

σ̂a = σl

σ̂b = σr


 . (A13)

Doing this, one obtains (4)–(6). Note that numerical values
for ml,mr , σl , and σr are available at the end of tolerance limit
processing, so that ξ∗ can indeed be computed.

APPENDIX B

PROOF OF THEOREM 1

This Appendix contains proofs for the three parts of Theorem
1. It uses aMF , āMF , bMF , and b̄MF that are defined in (32) and
(33).

1) Using the equations for a
(i)
MF and b

(i)
MF , which are given in

the top row of Table III, it follows that (∀i = 1, . . . , m∗)

a
(i)
MF = 1

2 [(a(i) + b(i)) −
√

2(b(i) − a(i))]

= a(i) −
√

2 − 1
2

(b(i) − a(i)) < a(i) (B1)

b
(i)
MF = 1

2 [(a(i) + b(i)) +
√

2(b(i) − a(i))]

= b(i) +
√

2 − 1
2

(b(i) − a(i)) > b(i) . (B2)

Let

ā ≡ max
i=1,...,m ∗

{a(i)} (B3)

b ≡ min
i=1,...,m ∗

{b(i)}. (B4)

Applying the definitions of āMF and bMF as well as (B3) and
(B4) to (B1) and (B2), it follows that

āMF < ā (B5)

bMF > b. (B6)

From (4), (B3), and (B4), it is true that

ā < ξ∗ < b. (B7)

Substituting (B5) and (B6) into (B7), it follows that

āMF < ξ∗ < bMF . (B8)

Consequently,

bMF > āMF . (B9)

2) Using the equation for a
(i)
MF , given in the second row of

Table III, it follows that

a
(i)
MF =

(a(i) + b(i))
2

− (b(i) − a(i))√
6

=
(

1
2

+
1√
6

)
a(i) +

(
1
2
− 1√

6

)
b(i) > 0. (B10)

Applying the definition of aMF to (B10), it follows that

aMF > 0. (B11)

Additionally, it is always true (compare b
(i)
MF with a

(i)
MF , both

given in the second row of Table III) that

b
(i)
MF > a

(i)
MF ∀i = 1, . . . ,m∗. (B12)

Hence, applying the definitions of bMF and aMF to (B12), it
follows that

bMF ≥ aMF . (B13)

Combining (B13) and (B11), it follows that

bMF ≥ aMF > 0. (B14)

3) Using the equation for b
(i)
MF , given in the third row of

Table III, it follows that

b
(i)
MF = M − (a′(i) + b′(i))

2
+

(b′(i) − a′(i))√
6

=
(b(i) + a(i))

2
+

(b(i) − a(i))√
6

. (B15)

Consequently,

b
(i)
MF <

(a(i) + b(i))
2

+
(b(i) − a(i))

2
= b(i) . (B16)

Applying the definitions of b̄MF and b̄ to (B16), it follows
that

b̄MF < b̄. (B17)

But, it is also true that

b(i) ≤ M ∀i = 1, . . . , m∗ (B18)

so that

b̄ ≤ M. (B19)

Combining (B17) and (B19), observe that

b̄MF < M. (B20)
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Next, using the equation for a
(i)
MF given in the third row of

Table III, it follows that

a
(i)
MF = M − (a′(i) + b′(i))

2
−

√
6(b′(i) − a′(i))

3

=
(b(i) + a(i))

2
−

√
6(b(i) − a(i))

3
. (B21)

Comparing (B21) and (B15), observe that

b
(i)
MF > a

(i)
MF ∀i = 1, . . . ,m∗. (B22)

Applying the definitions of b̄MF and āMF to (B22), it follows
that

b̄MF > āMF . (B23)

Finally, combining (B20) and (B23), one obtains

āMF < b̄MF < M. (B24)
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