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Abstract: In this article, after explaining Zadeh’s computing with words (CWW) para-
digm, I argue that for this paradigm to be embraced, it must be validated using a Turing-
like test, use a scientifically correct fuzzy set model for words, namely interval type-2 fuzzy
sets (IT2 FSs), and be simple, meaning that fuzzy set operations should be as simple as pos-
sible. These conclusions are drawn using the ideas of Turing, Popper and Occam. Short
descriptions are provided for a Perceptual Computer (Per-C), which is an architecture for
CWW for making subjective judgments, IT2 FSs, IT2 FS models for words, and why an
IT2 FS model captures first-order uncertainties about a word. Short biographies of Zadeh,
Turing, Popper and Occam are also provided. 
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Computing with Words: 
Zadeh, Turing, Popper and Occam



1. Introduction

I
n 1996 Zadeh [45] published a paper that first equated
fuzzy logic (FL) with computing with words (CWW or CW).
Of course, he did not mean that computers would actually
compute using words, a single word or phrase, rather than

numbers. He meant that computers would be activated by
words, which would be converted into a mathematical repre-
sentation using fuzzy sets (FSs) (e.g., [43], [44]), and that these
FSs would be mapped by means of a CWW engine into some
other FS, after which the latter would be converted back into
a word (Figure 1).

Since the publication of Zadeh’s CWW paper, there have
been many articles and even books bearing the phrase “com-
puting with words.” A small sampling of these are [12], [13],
[15]–[18], [21], [39], [46], and [47]. A related reference is
[38]. FL is viewed in these publications as the machinery that
will let “input” words, which are provided by a human, be
transformed within the computer to “output” words, which
are provided back to that human, or to other humans. One
instantiation of the CWW Paradigm, a Perceptual Computer, is
described in Box 1. Potential applications for CWW are many
and include Web-based searches, summarizations, subjective
judgments, subjective decisions, etc. Box 2 describes how the
social judgment of flirtation can be addressed using a Percep-
tual Computer. It is easy to extend this light-hearted applica-
tion to many other judgment situations.

A person interacting with such a CWW computer interface
would not be concerned with the CWW engine, but would
only be interested in knowing the output word for their input
word. On the other hand, the designer of the CWW engine
would address some very fundamental questions, including:
1. How can a CWW engine be validated?
2. What FS models should be used?
3. What choices should be made to keep the design of the

CWW engine as simple as possible?
The purpose of this article is to provide answers to these

questions, answers that are built upon the shoulders of three
critical thinkers, Alan Turing, Karl Popper and William of
Occam, and that no doubt will provoke readers into argu-
ing against my answers or suggesting other answers. Biogra-
phies of Zadeh, Turing, Popper and Occam appear at the
end of the article.

2. How Can A CWW Engine be Validated?
It is my belief that for the CWW Paradigm to be successful it
must provide end-users with results that are equivalent to those
from a human. This is in spirit with what the great computer
scientist and philosopher Alan Turing [5], [33] proposed as a
test, the Turing Test, for machine intelligence. I believe that
this test is as applicable to CWW as it is to machine intelli-
gence, because CWW is a form of artificial intelligence.

Paraphrasing [5], consider an “imitation game” played
with three players, a human being, a machine and an inter-
rogator. The interrogator stays in a room apart from the oth-

ers. The object is for the interrogator to determine which of
the others is the human being or the machine. If the machine
cannot be distinguished from the human being under these
conditions, then we must credit it with human intelligence.
This is the essence of a Turing Test.

According to the marvelous article by Saygin, et al. [31],
“The Turing Test is one of the most disputed topics in artifi-
cial intelligence and cognitive sciences,” because it can be
interpreted in many different ways, e.g., by philosophers, soci-
ologists, psychologists, religionists, computer scientists, etc. I
am not interested in using a Turing Test to establish whether
the Perceptual Computer can think, to demonstrate that it is
intelligent. I am interested in using a Turing Test, as explained
in [31, p. 467]: “Alternatively, the TT [Turing Test] for
machine intelligence can be re-interpreted as a test to assess a
machine’s ability to pass for a human being.”

In order to implement the CWW Paradigm, data will be
needed. This data must be collected from people who are sim-
ilar to those who will ultimately be interacting with the CWW
engine. If such data collection is feasible, then the design of a
CWW engine can proceed using the data in the usual way,
i.e., by using some of it for training1, some for testing, and the
rest for validation. The validation of the designed CWW com-
puter using some of the collected data (the validation set) can
be interpreted as a Turing Test.

If, on the other hand, such data collection is not feasible,
then the designer of the CWW engine must fabricate it, or
even worse, design the CWW engine using no data at all.
After such a design, the CWW engine will have to be validat-
ed by testing it on a group of subjects, and such a test will
again constitute a Turing Test.

Hence, one way or another, validation of a CWW design is
by a Turing Test.

3. What Fuzzy Set Models Should be Used?
Because words can mean different things to different people, it
is important to use an FS model that lets us capture word
uncertainties. At present, there are two possible choices, a
type-1 (T1) FS or an interval type-2 (IT2) FS2 [16], [20], [22]

FIGURE 1  The CWW Paradigm.

CWW Engines Based
on Fuzzy Sets

Words Words
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1When the CWW Engine (Figure 2) is a set of IF-THEN rules, then a training set can
be used to optimize the parameters of antecedent and consequent membership func-
tions, to establish the presence or absence of antecedent terms, and to even determine
the number of significant rules, after which the optimized rules can be tested using a
testing set.

2General type-2 FSs are presently excluded, because they model higher degrees of
uncertainty, and how to do this is totally unknown.



(see Box 3). In order to decide which model to use, two dif-
ferent approaches can be taken:
1. Use a T1 FS, design a CWW engine, and see if it passes a

Turing Test. If it does, then it is okay to use such an FS
model.

2. Choose between a T1 FS model and an IT2 FS model
before designing the CWW engine. Then design the
CWW engine and see if it passes a Turing Test.
The first approach needs no further discussion. Regarding

the second approach, in order to choose between a T1 FS
and an IT2 FS model, we shall rely on the great 20th century
scientific philosopher, Sir Karl Popper, who proposed falsifica-
tionism [29], [30], [32] as a way to establish if a theory is or is
not scientific. Falsificationism states: “A theory is scientific
only if it is refutable by a conceivable event. Every genuine
test of a scientific theory, then, is logically an attempt to
refute or to falsify it, and one genuine counter instance falsi-
fies the whole theory.”

According to [32], by falsifiability, Popper meant “if a
theory is incompatible with possible empirical observations it
is scientific; conversely, a theory which is compatible with
all such observations, either because, as in the case of Marx-
ism, it has been modified solely to accommodate such obser-
vations, or because, as in the case of psychoanalytic theories,
it is consistent with all possible observations, is unscientific.”

For a theory to be called scientific it
must be testable. This means that it must
be possible to make measurements that
are related to the theory. A scientific
theory can be correct or incorrect. An
incorrect scientific theory is still a scien-
tific theory, but is one that must be

replaced by another scientific theory that is itself subject to
refutation at a later date.

We suggest that using either a T1 FS or an IT2 FS as a
word model can be interpreted as a scientific theory.3 We
must therefore question whether each FS word model qualifies
as a scientific theory, and then if each is a correct or incorrect
scientific theory.

Data collection and mapping into the parameters of a T1
MF has been reported on by a number of authors (e.g., [11])
but has only started to be researched for a T2 MF [14],
[24]–[26] (see Box 4). Names for the different T1 methods
include: polling ([4], [12]), direct rating ([11], [27], [28]),
reverse rating ([28], [34]–[37]), interval estimation ([1]–[3],
[48]), and transition interval estimation [1]. The term fuzzistics
has been coined [19], [21] for doing this, and represents an
amalgamation of the words fuzzy and statistics.

That using a T1 FS model for a word is an incorrect sci-
entific theory follows from the following line of reasoning
[19]: (1) A T1 fuzzy set A for a word is well-defined by its
MF μA(x)(x ∈ X ) that is totally certain once all of its para-
meters are specified; (2) words mean different things to dif-
ferent people, and so are uncertain; and, therefore, (3) it is a
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Box 1. Perceptual Computer
A specific architecture for CWW using interval type-2 fuzzy sets (IT2 FSs) (see Box 3 for a brief description of such fuzzy sets) was pro-
posed in [18], called a Perceptual Computer–Per-C for short. The Per-C consists of three components (Figure 2): encoder, CWW engine
and decoder. Perceptions (i.e., granulated terms, words) activate the Per-C and are the Per-C output; so, it is possible for a human to
interact with the Per-C using just a vocabulary. 

For each application a vocabulary must first be established, one that lets the end-user interact with the Per-C in a user-friendly man-
ner. The encoder transforms linguistic perceptions into IT2 FSs and leads to a codebook of words with their associated IT2 FS models.
The outputs of the encoder activate a CWW engine, whose output is another IT2 FS, which is then mapped by the decoder into a
word most similar to a vocabulary word.

Box 4 describes the transformation of linguistic perceptions into IT2 FSs (the encoding problem). 
The CWW Engine may take the form of IF-THEN rules, e.g. [11], [16], a linguistic weighted average [40], linguistic summarizations

[6]–[10], [42], etc., for which the estab-
lished mathematics of fuzzy sets provides
the transformation from the input FSs to
the output FSs.

[41] discusses mapping an IT2 FS into a
word (the decoding problem). 

Box 2 explains how the Per-C can be
used in an application of making subjective
judgments. FIGURE 2  Specific architecture for CWW—the Perceptual Computer.

CWW Engine Encoder Decoder
Words Words

IT2 FS IT2 FS

Perceptual Computer, the Per-C

3Note that this is very different from T1 FSs and IT2 FSs as mathematics, which are
not scientific theories, and about which we should not take any issues.

For the CWW Paradigm to be successful it must provide
the end-users with results that cannot be distinguished
from those they would have received from a human.



contradiction to say that something cer-
tain can model something that is uncer-
tain. In the words of Popper,
associating the original T1 FS with a
word is a “conceivable event” that has
provided a “counter-instance” that fal-
sifies this approach to fuzzy sets as models for words.

An IT2 FS model for a word only lets us model first-order
uncertainties (see Box 5) as is clearly visible from its FOU
(Figure 3); hence, an IT2 FS is a scientifically correct first-
order uncertainty model for a word; and, in the future the
scientific correctness of an IT2 FS model may be falsified by
a more complete T2 FS model because measurements can be
made about words.

An objection may be raised that a fixed T1 MF also applies
to an IT2 FS model, i.e. once the parameters of an IT2 FS
model are specified there no longer is anything uncertain
about the IT2 FS. This objection is incorrect because the IT2
FS is a first-order uncertainty model, i.e. at each value of the
primary variable (at x ′ in Figure 3) the MF is an interval of
values. For a T1 FS the MF is a point value, and it is the inter-
val nature of the MF that provides uncertainty to the IT2 FS
model. This argument is similar to one that can be given for a
probability distribution function. Once we agree that such a

function does indeed model unpredictable (random) uncertain-
ties then fixing its parameters does not cause us to conclude
that it no longer is a probability model.

One may argue that a T1 FS model for a word is a model
for a prototypical word; however, if one also believes that words
mean different things to different people, then this calls into ques-
tion the concept of a prototypical word.

When random uncertainties are present, most of us have no
problem with using probability models and analyses from the
very beginning; hence, when linguistic uncertainties are pre-
sent, I suggest that we must have no problem with using IT2
FS models and analyses from the very beginning. Some may
ask the question “How much linguistic uncertainty must be
present before I need to use an IT2 FS?” Maybe, in the very
early days of probability a similar question was asked; however,
it no longer seems to be asked. When randomness is suspected
we use probability. So, I propose that when linguistic uncer-
tainties are suspected we use IT2 FSs.
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In everyday social interaction, each of us makes judgments about
the meaning of another’s behavior (e.g., kindness, generosity, flirta-
tion, harassment, etc.). Such judgments are far from trivial, because
they often affect the nature and direction of the subsequent social
interaction and communications. Although a variety of factors may
enter into our decision, behavior (e.g., touching, eye contact) plays a
critical role in assessing the level of the variable of interest.

Suppose the variable of interest is flirtation and the only indicator
of importance is eye contact. The following user friendly vocabulary
is established for both eye contact and flirtation: none to very little, a
small amount, a little bit, some, a moderate amount, a good
amount, a considerable amount, a large amount, a lot, and an
extreme amount. Surveyed respondents are asked a question such
as: “On a scale of zero to ten where would you locate the end-points
of an interval for this word?” These data are then mapped by means
of the encoder into a footprint of uncertainty, FOU (see Box 3), for
each word. The ten words and their FOUs constitute the codebook
for the subjective judgment of flirtation and for eye contact.

A small set of five rules (the CWW engine) is then established,
using a subset of five of the ten words, e.g. none to very little,
some, a moderate amount, a large amount, and an extreme
amount. One such rule is “IF eye contact is a moderate amount,
THEN the level of flirtation is ________?” Another survey is con-
ducted in which respondents choose one of these five flirtation
terms for each rule (i.e., for the rule’s consequent). Because all
respondents do not agree on the choice of the consequent, this
introduces uncertainties into the CWW engine. 

An end user can interact with the Flirtation Adviser Per-C by
inputting any one of the ten words from the codebook for a spe-
cific flirtation scenario. Rules are fired using the mathematics of
IT2 FSs [22], the result being fired-rule IT2 FSs, i.e. an FOU for
each fired rule. These FOUs are aggregated into a composite FOU
that is then compared to the word-FOUs in the codebook. This
comparison is done using fuzzy set similarity computations [41],
the result being the word that best describes the flirtation state
to the end user.

Such a flirtation adviser can be used to train a person to better
understand the relationship between eye contact and flirtation, so
that they reach correct conclusions about such a social situation.

Of course, in this very simple example of only one flirtation
indicator not much confusion can occur; however, when more
indicators are used (e.g., eye contact and touching) then in an
actual social situation it is possible to get “mixed signals,” i.e.
a certain level of touching may indicate a large amount of flir-
tation, whereas a certain level of eye contact may indicate
none to very little flirtation. So which is it? In this case, more
than one rule will fire and the totality of fired rule FOUs is an
indicator of what is meant by “mixed signals.” By aggregating
the fired rule FOUs and comparing the resulting FOU to the
word-FOUs in the codebook the result will again be the word
that best describes the flirtation state to the end user. In this
way, the flirtation adviser can be used to train a person to
reach correct conclusions about social situations when he or
she is receiving mixed signals.

Box 2. The Per-C for Making Social Judgments

An IT2 FS is a scientifically correct first-order uncertainty
model for a word.



Finally, even a CWW engine that is designed using IT2 FSs
needs to be validated by a Turing Test. The difference in this
second approach is that we begin the design using an FS word
model that is scientifically correct. This, in itself, does not
mean that the resulting CWW engine will pass a Turing Test,
because that test is applied to the outputs of the CWW engine,
and it is (Figure 2) the combination of a scientifically correct
FS input word model, the CWW engine, and a good decoder
that leads to the word-output.

4. What Choices Should be Made to Keep the Design 
of the CWW Engine as Simple as Possible?
Many choices have to be made when designing the CWW
engine. For example, if the CWW engine is a set of IF-THEN
rules, then choices must be made about: 
❏ Shapes of lower and upper MFs for each FOU (e.g., trian-

gles, trapezoids, Gaussians).
❏ Mathematical operators used to model the antecedent con-

nector words and and or. Such operators are called t-norms
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A T1 FS has a grade of membership that is crisp; whereas, a T2 FS
has grades of membership that are fuzzy, so it could be called a
“fuzzy-fuzzy set.” Such a set is useful in circumstances where it is
difficult to determine the exact membership function (MF) for an
FS, as in modeling a word by an FS.

As an example [20], suppose the variable of interest is eye
contact, denoted x, where x ∈ [0, 10] and this is an intensity
range in which 0 denotes no eye contact and 10 denotes maxi-
mum amount of eye contact. One of the terms that might char-
acterize the amount of perceived eye contact [e.g., during
flirtation (see Box 2)] is “some eye contact.” Suppose that 50
men and women are surveyed, and are asked to locate the ends
of an interval for some eye contact on the scale of 0–10. Surely,
the same results will not be obtained from all of them because
words mean different things to different people. 

One approach for using the 50 sets of two end-points is to
average the end-point data and to then use the average values
to construct an interval associated with some eye contact. A
triangular (other shapes could be used) MF, MF(x), could then
be constructed, one whose base end-points (on the x-axis) are
at the two end-point average values and whose apex is mid-
way between the two end-points. This
T1 triangular MF can be displayed in
two dimensions (Figure 3). Unfortu-
nately, it has completely ignored the
uncertainties associated with the two
end-points.

A second approach is to make use of
the average end-point values and the
standard deviation of each end-point to
establish an uncertainty interval about
each average end-point value. By doing
this, we can think of the locations of the
two end-points along the x-axis as
blurred. Triangles can then be located
so that their base end-points can be
anywhere in the intervals along the x-
axis associated with the blurred average
end-points. Doing this leads to a contin-
uum of triangular MFs sitting on the x-
axis, as in Figure 3. For purposes of this
discussion, suppose there are exactly N

such triangles. Then at each value of x, there can be up to N MF
values (grades), MF1(x), MF2(x), . . . , MFN(x). Each of the possi-
ble MF grades has a weight assigned to it, say wx1, wx2, . . . , wxN

(see the insert in Figure 3). These weights can be thought of as
the possibilities associated with each triangle’s grade at this value
of x. Consequently, at each x, the collection of grades, called sec-
ondary grades, is a function {(MFi(x), wxi), i = 1, . . . , N} (called
secondary MF). The resulting T2 MF is 3-D. 

It is not as easy to sketch 3-D figures of a T2 MF as it is to
sketch 2-D figures of a T1 MF. Another way to visualize a T2 FS is
to sketch (plot) its FOU on the 2-D domain of the T2 FS. The
heights of a T2 MF (its secondary grades) sit atop its FOU. In
Figure 3, if the continuum of triangular MFs is filled in (as
implied by the shading), then the FOU is obtained. The uniform
shading over the entire FOU means that uniform weighting
(possibilities) is assumed. Because of the uniform weighting,
this T2 FS is called IT2 FS. Observe that the FOU is completely
specified by two type-1 MFs, the lower and upper MFs, LMF(Ã)

and UMF(Ã), also shown on Figure 3. The FOU is the 2-D region
between LMF(Ã) and UMF(Ã).

For more information about IT2 FSs, see [22].

FIGURE 3  Triangular MFs when base end points (l and r) have uncertainty intervals associated
with them. The insert depicts the secondary MF at x ′. The shaded region is the FOU of T2 FS Ã.
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and t-conorms, respectively, and there are many t-norms
and t-conorms to choose from (e.g., [11]).

❏ Implication operators (an IF-THEN rule is mathematically
modeled using an implication operator), and there are
many such operators (e.g., [11]).

❏ How to aggregate fired rules, i.e., when more than one rule
is fired, rule outputs must be combined (aggregated), and
there are many different ways to do this (e.g., [11]). The
result is an aggregated FOU.

❏ How to go from the aggregated FOU to a word, i.e., the
decoder design in which a similarity measure is used, and
there are many kinds of similarity measures (e.g., [41]). 

Other examples of a CWW engine are given in Box 1, and no
doubt many new engines will be developed in the future. 

On the one hand, it is the multitude of choices that provide
FL with versatility and flexibility. On the other hand, having

so many choices, with none to very few guidelines on how to
make them, is confusing. I used to believe that a strong point
of FL was its many choices. I still do for certain applications of
FL; however, for CWW I no longer believe this to be so. 

How does one make the choices needed to implement a
CWW engine?

According to [52]–[54] Occam’s (or Ockham’s) Razor is a
principle attributed to the 14th century logician and Franciscan
friar, William of Occam. The most useful statement of the
principle is “when you have two competing theories which
make exactly the same predictions, the one that is simpler is
the better.” This principle is sometimes misstated as “keep it as
simple as possible.” We can have two (or more) competing
theories that lead to different predictions. Occam’s Razor does
not apply in that case, because the results that are obtained
from the competing theories are different.
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In order to establish IT2 FS models for words, one needs to col-
lect data about words from a group of subjects and to then map
that data into an IT2 FS. Different approaches for doing this are
described below. They map data collected from subjects into a
parsimonious parametric model of an FOU, and illustrate the
combining of fuzzy sets and statistics—type-2 fuzzistics.

In the person MF approach [21]:
1. Person MF data [a person MF is an FOU that a person provides

on a prescribed scale for a primary-variable (e.g., pressure, tempera-
ture)] are collected from a group of subjects. This data reflects both
the intra- and inter-levels of uncertainties of the group about a word;

2. An IT2 FS model for a word is defined as a specific aggrega-
tion of all such person MFs (e.g., their union); and,

3. This aggregation is mathematically modeled and approximated.
Observe that mathematical IT2 FS models are only used at the
very end of this approach.

Person MFs can only be collected from people who are
already very knowledgeable about an FS, and may therefore
be quite limited.

In the interval end points [21], [25] and interval [14]
approaches:

1. Interval end-point data about a word are collected from a
group of subjects;

2. Statistics (mean and standard deviation) are established for
the data; and,

3. Those statistics are mapped into a pre-specified parametric
FS model.
These methods are analogous in statistical modeling to first
choosing the underlying probability distribution (i.e., data-generat-
ing model) and then fitting the parameters of that model using
data and a meaningful design method, e.g., the method of maxi-
mum-likelihood. 

It is this author’s experience from collecting survey information
from subjects that they do not like to answer a lot of questions,
and they like the questions to be simple. Asking subjects to assign
a weight or a weighting function to their word data (reflecting their
degree of certainty about the interval) is much too difficult. 

Asking a subject to provide even just a crisp weight (i.e., a
number) for a word, about which we have already argued there
is much uncertainty, is contradictory. How can a subject be
absolutely sure about that number? Instead, perhaps a subject
might be able to assign linguistic terms (e.g., pretty sure, very
sure, etc.) to different regions of their word data indicating their
confidence about that data in different regions. But such terms
are words about which there will be additional uncertainties. 

We therefore categorize the uncertainty that exists about each
person’s word data as [23] a first-order kind of uncertainty, and the

uncertainty that exists about the weight that might be assigned to
each element of that data as a second-order kind of uncertainty. 

When a subject provides their data for a word, the first-order
uncertainty is across all of that data. Clearly, weight information
is itself uncertain leading to even higher-order (and never end-
ing) kinds of uncertainty. While second-order uncertainty may
be interesting from a theoretical point of view, in that it lets us
use the complete three-dimensional machinery of a type-2 FS,
this author believes that it will be difficult-to-impossible to test
the validity of second-order uncertainty by collecting data. Con-
sequently, we should focus exclusively on the first-order uncer-
tainty of each person’s word data.

In summary, an IT2 FS captures “first-order uncertainties” about
a word whereas a more general T2 FS that has non uniform sec-
ondary grades captures first- and second-order uncertainties.

Box 4. IT2 FS Models for Words 

Box 5. Why an IT2 FS Model Captures First-Order Uncertainties About a Word



What I am about to propose may seem like heresy to
many in the FL community. In this article it applies only to
the CWW Paradigm. All of our FS and FL operators origi-
nate from crisp sets and crisp logic. In the crisp domain,
although there can be many different operators, they all give
the same results; hence, I propose that for CWW Occam’s
Razor should be applied to the multitude of t-norm, t-
conorms, implication operators, etc., in the crisp domain. It
should not be applied after the operators have been fuzzified,
because then it is too late–they give different results. By this
argument, one would choose minimum or product t-norm,
maximum t-co-norm, etc.

Finally, note, that even a CWW engine that is designed
using IT2 FSs and the “simplest” operators needs to be validat-
ed by a Turing Test. If, for example, a Per-C that uses the
simplest operators does not pass a Turing Test, then more
complicated operators should be used.

5. Conclusions
In this article I have argued that Zadeh’s CWW Paradigm
must be validated, must use scientifically correct FS models for
words, and must be simple. I have also demonstrated that the
ideas of Turing, Popper and Occam can help us resolve each
of these issues. Based on Turing’s works, I conclude that vali-
dation will require a Turing Test. Based on Popper’s Falsifica-
tionism, I conclude that one should use interval type-2 FS
models in order to model first-order word uncertainties and,
using Occam’s Razor, I conclude that choices about operators
such as t-norms, t-conorms, implications, etc, should be made
back in the crisp domain where different choices all lead to the
same results. Hence, it is in that domain where it is possible to
choose the simplest operators.

Appendix: Biographies of Zadeh,
Turing, Popper and Occam

Lotfi A. Zadeh, born in Baku, Azerbaijan on
February 4, 1921, and educated at Alborz
College in Tehran, the University of Tehran,
M. I. T. and Columbia University, spent
most of his career at the University of Cali-
fornia at Berkeley, after ten years at Colum-
bia University. He was already a famous
system theorist when in 1965 he published

what has now become the seminal paper on fuzzy sets. This
paper marked the beginning of a new direction; by introduc-
ing the concept of a fuzzy set, that is a class with unsharp
boundaries, he provided a basis for a qualitative approach to
the analysis of complex systems in which linguistic rather

than numerical variables are employed to
describe system behavior and perfor-
mance. In this way, a much better under-
standing of how to deal with uncertainty
may be achieved, and better models of
human reasoning may be constructed.
Although his unorthodox ideas were ini-

tially met with some skepticism, they have gained wide accep-
tance in recent years and have found application in just about
every field imaginable. He is now acknowledged to be the
“Father of Fuzzy Logic.” For very detailed information about
his technical contributions and awards, see [49]. His wife, Fay
Zadeh, has written the 1998 book My Life and Travels with the
Father of Fuzzy Logic, which provides up-close and personal
impressions about Zadeh, his travels, colleagues and friends.

Alan M. Turing was born in London on
June 23, 1912, and educated at King’s Col-
lege, Cambridge and Princeton University.
His photo is © National Portrait Gallery,
London. According to Hodges [5], “He was
a mathematician who in 1937 suggested a
theoretical machine, since called a Turing
Machine that became the basis of modern

computing. In 1950 he suggested what has become known as
a ‘Turing’s test,’ still the criterion for recognizing intelligence
in a machine. During World War II, Turing led the team that
succeeded in breaking German high-level secret codes (Enig-
ma), using the first practical programmed computer, called
Colossus. … the most lucid and far-reaching expression of
Turing’s philosophy of machine and mind, the paper Comput-
ing Machinery and Intelligence [33], appeared in the philosophi-
cal journal Mind in 1950. … The wit and drama of the Turing
Test has proved a lasting stimulus to later thinkers, and the
paper a classic contribution to the philosophy and practice of
Artificial Intelligence research. … Alan Turing appears now as
the founder of computer science, but, [unlike Zadeh who has
been acknowledged to be the Father of Fuzzy Logic during his
lifetime] these words were not spoken in his own lifetime. …
He died June 7, 1954 of cyanide poisoning, a half-eaten apple
beside his bed. The coroner’s verdict was suicide.” The Alan
Turing Web-site, maintained by Andrew Hodges, from which
most of this short biography was taken, is [50]. 

Sir Karl R. Popper was born July 28,
1902, in Vienna, and was schooled at Vien-
na University. He spent his career at the
University of Canterbury in New Zealand
(1937–1946), London School of Economics
(1946–1949) and University of London
(1949–1966), where he became professor of
logic and scientific method. According to

[51], “[Popper] was an Austrian and British philosopher …
counted among the most influential philosophers of science
of the 20th century … perhaps best known for repudiating

Using Occam’s Razor, choices about operators should
be made in the crisp domain where different choices
all lead to the same results.

16 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | NOVEMBER 2007



the classical observationalist-inductivist account of scientific
method by advancing empirical falsifiability as the criterion
for distinguishing scientific theory from non-science … Pop-
per envisioned science as evolving by the successive rejec-
tion of falsified theories, rather than falsified statements.
Falsified theories are to be replaced by theories which can
account for the phenomena which falsified the prior theory,
that is, with greater explanatory power.” Popper’s book The
Logic of Scientific Discovery (1959) is universally recognized
as a classic in the field. He was knighted in 1965 and died
September 17, 1994. For additional information, see [32].

William of Ockham (also Occam or any
of several other spellings) (c. 1288–1348)
was, according to [52], “… an English Fran-
ciscan friar and scholastic philosopher, from
Ockham, a small village in Surrey, near East
Horsley. As a Franciscan, William was
devoted to a life of extreme poverty. One
important contribution that he made to

modern science and modern intellectual culture was through
the principle of parsimony in explanation and theory build-
ing that came to be known as Ockham’s razor. This maxim, as
interpreted by Bertrand Russell, states that if one can explain
a phenomenon without assuming this or that hypothetical
entity, there is no ground for assuming it. That is, one should
always opt for an explanation in terms of the fewest possible
number of causes, factors, or variables. … Ockham was
excommunicated for heresy but his philosophy was never
officially condemned. He died on April 9, 1348 in the Francis-
can convent in Munich, Germany.… He was posthumously
rehabilitated by the official Church in 1359.”
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