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Abstract-This paper begins with a delineation of twe
approaches to fuzzy sets, ebstract mathematics and models for
words. It demenstrates, by using Karl Popper’s Falsifica-
tignism, the present approach to fuzzy sets (FSs) for words is
scientifically incorrect. A new theory of fuzzy sets is then
presented for words that is based on collecting data from people
—person MFs—that reflect intra- and inter-levels of uncertain-
ties about a word, and defines a word FS as the union of all such
person fuzzy sets. It also demonstrates that intra-uncertainty
about a word can be modeled using type-2 person fuzzy sets, and
that inter-uncertainty about a word can be modeled by means of
an equally weighted union of each person’s type-2 fuzzy set.
Finally, it proposes a methodology for obtaining a parsimonious
parametric type-2 fuzzy set approximation to the aggregated
type-2 person FSs. This new theory of fuzzy sets for words is
testable and is therefore subject to refutation.

I. INTRODUCTION

Stepping back from all of the work that has been done
since Zadeh’s seminal paper [13] about fuzzy sets, it appears
that there have been two very different approaches to fuzzy
sets—dAbstract Mathematics and Models for Words. These
two approaches are diagrammed in Fig. 1. Both approaches
begin with the definition of a fuzzy set (FS)
A={(x,p.‘(x)]xeX}, where i, (x)€[0,1]. We shall refer

to membership function (MF) p, (x) as the original (Zadeh)
type-1 MF. Referring to the left-hand path of Fig. 1, we are
permitted to only use mathematical nor-word examples to
illustrate A, x or p, (x) (does anyone do this?) which is why
this approach is called abstract mathematics. If we use a
word example at this point to illustrate a fuzzy set, then we
are using a fuzzy set to model words, and we find ourselves
on the right-hand path in the Fig. 1 diagram, even if all we
intended to do with the FS is mathematics. As we explain
below, a FS needs to be redefined when it is used for words,
which is why dashed path 1 on Fig. 1 is illicit. At the abstract
mathematical level we can draw a picture for p, (x) without
having to provide a linguistic tag for what A4 is. Clearly,
within this abstract mathematical framework, no one can
doubt that a fuzzy set has been defined correctly, so that the
mathematics about fuzzy sets can be further developed. In
this approach what we then obtain are lots of mathematics for
both type-1 and type-2 fuzzy sets. At some point though,
when this approach is used to solve real problems, MFs must
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Fig 1: Two approaches to fuzzy sets and the path (heavy) associated
with fuzzy sets for words. Dashed lines 1 and 2 denote illicit paths.

be completely specified, meaning that MF shapes and para-
meters must be completely specified, either a priori or by
tuning.

Much of fuzzy logic controi (FLC) can be presented in
this abstract mathematical framework, the major exception
being the early works on FLC where rules were stated using
words, and human experts provided the rules (e.g., the
famous truck backing up and inverted pendulum controllers).
When rules are not obtained from human experts, we can
interpret the FLC as abstract mathematics; however, if some
or all rules are obtained from hemans then we run into the
models for words approach to fuzzy sets.

Returning to Fig. 1, observe in its right-hand models for
words path that we are now permitted to provide non-abstract
examples of fuzzy sets. All such examples involve words
(terms), e.g., low pressure, sticky chocolate, etc. In fact, after
Zadeh defined a FS [13], his first example used words. Note
that this had nothing to do with computing with words (e.g.,
[15], [16], [4], [5], [12]). a phrase that he coined decades
later, although today computing with words obviously means
that we are taking the models for words approach to fuzzy
sets.

Using fuzzy sets to model words can be interpreted as a
scientific theory, and it is therefore legitimate to ask the
questions: (1) is the use of fuzzy sets to model words
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scientific? And (2) if so, is it a correct scientific theory? The
famous 20" century philosophér Karl Popper ([8]-[10]),
established that:

A theory is scientific only if it is refutable by a conceivable

event. Every genuine test of a scientific theory, then, is

logically an attempt to refute or to falsify it, and one genuine

counter instance falsifies the whole theory.
This is called Falsificationism. For a theory to be called
scientific it must therefore be testable (e.g., astrology is not
testable, hence it is not scientific theory). A scientific theory
can be correct or incorrect. An incorrect scientific theory is
still a scientific theory, but is one that must be replaced by
another scientific theory that is argued to be correct, but is
itself always subject to refutaticn at a later date.

Let us now return to the important questions raised above.
First, is the use of fuzzy sets to model words scientific? No
body of data collected from people who use a word seems to
be avatlable in the FS literature to test (validate) a MF for a
word FS. Since the MF for a word is a representation for
something for which no data are available, it cannot be
subject to scientific scrutiny—testing. So, af the testing level,
using fuzzy sefs to model words is not yet a scientific theory.
It behooves us, therefore, to make the use of fuzzy sets that
model words scientific. To do this, we shall assume that type-
I MF data can be collected from people (more about this in
Section II). We can then turn to the second important
question, “Is this scientific theory correct?” That this theory
is an incorrect one follows from the following line of
reasoning: (1) A fuzzy set A for a term (word, phrase) is a
well-defined type-1 FS . (x) (x €X) that is totally certain
once all of its parameters are specified, (2) words mean
different things to different people, and so are uncertain, and
therefore, (3) it is a contradiction to say that something
certain can model something that is uncertain'. In the words
of Popper, associating the original type-1 FS with a word is a
“conceivable event” that has provided a “counter-instance”
that falsifies this approach to fuzzy sets as models for words.

Note that the abstract mathematical approach to fuzzy sets
cannot be falsified, because it is mathematics and is not a
scientific theory.

Referring again to the right-hand path in Fig 1, we see that
two situations are possible: (1) We revert to type-2 FS models
(reverting to a type-1 FS—dashed path 2—is illicit, as we
explain below) that are associated with the abstract mathe-
matical approach to fuzzy sets, or (2) we collect data from
people—person-MFs—that reflect intra and inter-levels of
uncertainties about a word and then define a FS in a new way
as the collection of all such person MFs. In this paper we
adopt the second approach, because it lets us directly include
the uncertainties about words.

! Random uncertainty modeled using a probability model that is charac-
terized by a probability density function can also have certain parametets.
However, the results obtained from a prebability model—realizations—are
never certain. On the other hand, once the parameters of the MF of a type-1
fuzzy set are fixed, the activation of that set by a fixed value of x always
gives the same result for that value of x.
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In the past when we have applied type-1 (or type-2)} fuzzy
sets to specific applications we have also had access to
“data,” but such data has been application-dependent daia,
and ‘is not person-MF data associated with the underlying
word fuzzy sets. In these applications, we have used the
archifecture, e.g., of a rule-based fuzzy system, to solve a
specific problem, and we almost always have begun by
specifying the shapes of the MFs. Frequently, the parameters
of the MFs are tuned using the application-dependent data.
Application-dependent data, while very important, is quite
different from person-MF data,

For a long time people (e.g., [1], [2]) have noted that
when a FS is completely determined by specifying its shape
and parameters, there is nothing uncertain about the FS, and
that this is paradoxical with the word “fuzzy,” which has the
connotation of uncertainty, Anytime a FS is associated with
a word this paradox will occur. As early as 1975, this
paradox was recognized and Zadeh [14] proposed a type-2
FS as a way to model the uncertainties about a type-1 FS. In
Section I we will demonstrate that type-2 FSs are essential
to our new theory of fuzzy sets for words.

IT. A NEw BEGINNING

This section presents a collection of premises and explora-
tions into what they mean for the definition of a fuzzy set that
describes a word (i.e., single word, phrase, term),

Premise 1: Words mean different things to different
people, and are therefore uncertain. Uncertainty about a word
is of two kinds: (1) intra-uncertainty, which is the uncertainty
a person has about the word, and (2) inter-uncertainty which

is the uncertainty that a group of people have about the word.
1]

Premise 2: Intra-uncertainty about a word can be
modeled using a type-2 person fuzzy set, Af(p},), where
Jj=ten, . A

The notation 4 denotes a type-2 FS. Recall, (e.g., [5],
[6]) that a type-2 FS is described by a 3-D MF. The first
dimension is that of the primary variable, x, the second
dimension is that of the primary membership, u, and the third
dimension is that of the secondary grade. In a type-2 FS the
primary membership is a finite range of values
(1 € [a,b] c10,1]), each element of which may be weighted
differently by means of an assigned secondary grade. The
secondary grades sit atop a region of the x —u plane that, for
continuous variables, is called the footprint of uncertainty
(FOU). The FOU is very useful because it lets us visualize
the 3-D type-2 FS MF in two-dimensions.

Premise 3: For person MF data collected from people we
assume that all secondary grades equal 1. As a result, it is not
necessary to explicitly carry around the third dimension of
the secondary grades. We therefore use the terms MF and
FOU interchangeably, with the implicit understanding that
the actual person MF has a third dimension that sits atop of
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the person FOU where the height of the third dimension is
equalto 1. W

It will be very challenging to extract FOU information
about a word from a person. To ask them to assign anything
other than a uniform weighting to their entire FOU would, in
the opinion of this author, be too difficult. We categorize the
uncertainty that exists about the person FOU as [7] a first-
order kind of uncertainty, and the uncertainty that exists
about the weight that might be assigned to each element of
the person FOU as a second-order kind of uncertainty. When
a person provides their FOU for a word the firsi-order
uncertainty is across their entire FOU. Clearly, weight
information is itself uncertain leading to even higher (and
never-ending) kinds of uncertainty. It will be difficult to
impossible to fest the validity of second-order uncertainty by
coliecting data; hence, in this paper, we focus exclusively on
the first-order uncertainty of a person FOU.

Example 1: Let us assume that it is possible to collect
person FOUs from individuals for the word some, Fig, 2
depicts three typical person FOUs. The constraints that each
person must adhere to when sketching their FOU is that the
upper bound cannot exceed 1 and the lower bound must not
be less than 0. There may be a region for the primary vanable
x for which there is no uncertainty about the word, as is
indicated by a flat spot in each person’s FOU at which ¢ =1.
|

We use the notation . (x{p, ) to denote a fype-2 person

MF (FOU) of word A for person-j, where ;= | PR, S it is

associated with the person fuzzy set fi(p ) le

A= [ w(xlp)x (1
W (x| p)=la,(x1p )b, (I p)]clod] @)
a.{x|p,) and b, (x | 7,3 denote lower and upper bounds,

respectively of the person MF and [, ] denotes an inferval set,
i.e. the set of all real numbers from a . (x [ p,) t0 b, (x p,).

Comment 1. For people who are familiar with type-2
fuzzy sets (e.g., ;I(pj )), we are calling the union of primary
membership (J (p;)) of that set the type-2 person MF
(FOU). 1

Premise d4: [nter-uncerfainty about a word can be
modeled by means of equally weighted aggregation of each

person’s word FS /}(pj), Jj="1,..,n,. This weight can be

normalized out of the aggregation, 50 we choose ittobe 1.l

Space limitations do not let us describe two other
aggregation possibilities: (1) people are treated differently, in
which case we can assign a different weight to each person,
and {2) the same as Case 1, except now we can assign a
different weight function to each person. It is only equally
weighted aggregation that lets us focus on first-order
uncertainties. '

Premise 5: The natural way to aggregate people’s equally
weighted word fuzzy sets is by the mathematical operation of

39

0

1o

Fig. 2: FOUs from three people for the word some. Uniform shading
indicates that all of the secondary grades cqua] 1.

the union, because it preserves the commonalities as well as
the differences across person FSs. B

The journa! version of this paper will explain why the
intersection and addition operations are unacceptable ways to
agpregate person MFs.

Person-MF Representations of a Fuzzy Set: From
Premise 5, (1) and (2), we obtain the following new
representations for a fuzzy set of a word:

i=Ude)=U [t ppte=U [ [a, 1) b, 1))

= [ [Upd(xfpj)]/ = | [U[az(xjpj),bj(ﬂpj)]:[/x 3)

From the second Jine of (3), which is called the vertical-slice

representation of 4 (it focuses on the primary memberships
at each value of primary variable x), it is clear

w=Un,(x1p) VreX @

This new description of a fuzzy set for a word permits us to
include both the intra- and inter-uncertainties that people
have about the word. It also lets us easily add or remove
person fuzzy sets, as desired.
Examining the three person FOUs in Fig. 2, it is clear that
they are each upper and lower bounded. Let ( x € X')
px)= min a.(x|p)

&)
()
We refer to p (x) and I;(x) as the fower (bound) and

Hi(r) = max b.(x|p,)

upper (bound) MF values of A4 at any x.c X, respectively.

For Vxe X, we let 4 [or LMF(4)] and 4 [or UMF())
denote the lower and upper MFs for 4,ie.

d= j W, (x)f x= LMF() (N

®

Note that the lower and upper MFs are fype-I (bounding)
FSs.

Example 1 (Continued): Beginning with the three person
MFs for the word some, we can easily establish the lower and
upper MFs. They are depicted in Fig. 3.l

i= [ 0z = UMF( )
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Fig. 3; Lower and upper (bound) MFs for the three person-MFs
depicted in Fig, 2.

QOur model in (3) contains all of the information in the
constituent person-MFs.” Although it is possible to develop
formulas for performing set theoretic operations for fuzzy
sets modeled by (3) we shall not do that, because this model
is not a parsimonious one. It can result in huge numbers of
computations and enormecus memory requirements. Instead,
we shall develop parametric models for word fuzzy sets.

ITf. PARAMETRIC MODELS

In the theory of modeling, e.g., system identification (e.g.,
[31, [11]) a tradeoff is always made between preserving all of
the data (information) and achieving a wuseful and
parsimonious model. We have now reached that same fork in
the road for the fuzzy set of a word. We shall follow the
widely used approach taken in modeling theory of
approximating the data by means of parametric models.
Parsimony is achieved by choosing a model with the smallest

number of parameters that best approximates the data (in
some sense).

Fig. 2 already suggests that by including more and more
person MFs a region will become filled in within which all

person MFs may lay. Let 4  denote the filled-in word fuzzy
set. Its associated FOU—the filled-in FOU—is denoted
FOU(&F,). A filled-in FOU for the example in Fig. 3—
FQU(some,, )—is depicted in Fig. 4. Observe the filled-in
FOU is bounded by some and gome , as in Fig. 3.

Let Jx(fi,_,) denote the primary membership of x for
filled-in word fuzzy set A,,. Because of fill-in, J (4,,) is
now the continuous interval

L=l emw] wex @
Using (9), we can express FOU(A,,) mathematically as

FOUA,) = [ J.(4. )/ (10)

Using (10) and (9), we postulate the following representation
for a filled-in word fuzzy set.

Ao= [ 0. x= [ [p@L@])/x an

It is important to understand that the upper and lower MF
values used in (11) are obtained directly from the person MFs
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u=4,(x}

UMF(some)

Fig. 4: Filled-in FOU for some (5 )

through a bounding procedure. It should be clear, by
comparing (11) with (7} and (8), that IMF(A,, )= LMF(4)
and UMF(4,,) =UMF(4).

Premise 6: A filled-in parametric model, 4 (4& for
short), for .ZF, in (11} is one that is described by two
functions, p.(x) and 1;(x). These functions have shapes
chosen ahead of time (e.g., triangle, Gaussian, trapezoidal,
etc.) that are characterized by a small number of parameters,
some or all of which may be shared by both L .(x) and
I;(x). These parameters are fixed during some sort of
design procedure. Bl

i ;(x) is an approximation to LMF(A,,), and i;(x) is
an approximation to UMF(A,,). If no parameters are shared
by p;x) and IL i(x), then two independent least-squares
approximation problems can easily be established for
determining the parameters of .(x) and W;(x). The
approximation problem for y.(x) would only use the data in

LMF(A4,,) and is unconstrained, whereas the approximation
problem for 1 ;(x) would only use the data in UMF(A,,) but
is constrained so that [1;(x) =1 at least at one value of x
where Iij {x)=1, so that the resulting type-1 upper-bound FS
is a normal FS. This constraint can automatically be satisfied
by an appropriate choice for the shape of [1 ;(x), and so one
does not have to solve a consirained optimization problem.

Example 2: Examining Fig. 4, we could use a trapezoidal
function (not necessarily symmetrical, and characterized by
four parameters) to approximate UMF(A ), and a triangular
function (characterized by three parameters)} to approximate
LMF(A,, ). Because of its built-in flat top, the parameters of
this upper MF approximation can be obtained by seolving an
unconstrained optimization problem. Seven parameters are
needed in this parametric model. I

If even one parameter is shared by B, and ;_1 ;(x) then
one least-squares approximation problem can be established
for simultaneously determining the parameters of B, x) and
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1i(x), one that uses the data in both LMF(4,,) and
UMF(4,,).

Example 3: Examining Fig. 4 again, we could also
approximate its FOU using a Gausstan primary MF having an
uncertain mean with values in [m, on,] and an uncertain

standard deviation with values in [G,,0,], i.e.

u;(x)=exp[~t("

——m) ] me[m,m,]ando ef6,,6,]

(12
Equations for p.(x) and ;(x) can be found in [5, pp. 94-

95). Note that p.(x) and J1;(x) share all four of the param-

eters in (12). It is easy to show that p;(x) has a built-in flat
top between m, to m,, so that all four of the parameters in
p.(x) and I;{x) can be obtained by solving an uncon-
strained optimization problem. Observe, also, that this
parametric model is characterized by four parameters,
whereas the one in Example 2 is characterized by seven
parameters; hence, the present parametric model is a more
parsimonious one. B

Just as the filled-in word fuzzy set ,EH has a FOU

associated with it, namely FOU(A,,) [see (10) and {(11)], A
also has a FOU associated with it, namely FOU(4), i.e.

Foud)= [ [u,00.Li@l/x (13)

The closer that i (x) and p;(x) approximate W (x) and

W,(x) over Vxe X, the closer FOU(A) approximates
FOU(A,,).

Adding or removing person MFs (i.e., increasing or
decreasing n,) will very likely cause p (x) and p,(x) to

change, so if this is done FOU(/i) would have to be
recomputed.

In summary, what we have done is to go from /}, the
union of person FSs, to A,,, the fill-in of all points between

Fi?
the lower and upper bounds of the FOU of 4, and finally to

A a parsimonious approximation to the word fuzzy set. This
approximation uses data that are obtained from people.

1V. CONCLUSIONS

We began this paper with a careful delineation of two
approaches to fuzzy sets, abstract mathematics and models
Jor words. We then demonstrated, by using Karl Popper’s
Falsificationism, that the present approach to fuzzy sets for
words (e.g., as in computing with words) is not scientific
because its type-1 FSs are not testable, since word MF data is
not available from people. In order to make fuzzy sets for
words scientific {testable} we assumed that Type-1 MF data
could be collected from people. We then demonstrated that
such testable word MFs are scientifically incorrect, because
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words are uncertain whereas type-1 FSs are certain.

Our new theory of fuzzy sets for words is based on
collecting data from people—person MFs—that reflect intra-
and inter-levels of uncertainties about a word, and then
defining a FS in a new way, as the unicn of all such person
FSs. Cur new theory is built on six premises the most
important ones of which are: /ntra-uncertainty about a word
can be modeled using an interval type-2 person fuzzy sel,
j(p ; ), where j=1,..n.,and infer-uncertainty about a word
can be modeled by means of an equally weighted aggregation
of each person’s FS§, j(p},) J=h, n;.

We then argued why aggregation by the union operator is
most appropriate. This then led to the new person MF
representation of a word FS, given in (3).

Because the new person MF representation of a word FS
preserves all of the MF data that is collected from people it is
not a parsimonious mode! for word fuzzy sets. This led us to

go from A, the union of person FSs, to ,;f,,, the fill-in of all

points between the lower and upper bounds of the FOU of A,

and finally to A, a parsimonious parametric approximation
for the word fuzzy set. It is the upper and lower bounds of the
FOU of A4, which are determined by the upper and lower
bounds of person MF FOUs, that play the central role in
obtaining A .
Returning to Fig.1, let us consider three additional points:
1. What if it is not possible to collect person MFs, or doing so
is considered to be too large an effort, can we still perform
computing with words? Fig. | indicates that we could
move from its right-hand path to the left-hand abstract
mathematical path but only by using type-2 fuzzy sets,
because they will let us model uncertainties about a word,
whereas type-1 fuzzy sets will not. So, even if person MFs
are unavailable we can conceptually think about perform-
ing computing with words but we must use type-2 fuzzy
sets. However, according to Popper, to do so without data
is not scientific. So, if person MF data is unavailable some
other kind of data must be available or else this approach
to computing with words is not testable, and is therefore
ot scientific.

An analogy with adaptive control is appropriate at this
point. One kind of adaptive control relies on an explicit
identification of the plant being controlled. To do this,
data about the plant must be available, which is analogous
to obtaining person MFs. In another kind of adaptive con-
trol—performance adaptive control—no explicit identifi-
cation is necessary. Instead, control parameters are
adjusted so that the system achieves a desirable
measurable output performance. This latter situation is
very much like what we do in the training of a feed-
forward neural network or in the tuning of the MF
parameters of a rule-based FLS, when training and testing
data are available.

So, if person MF data are unavailable then (computing
with words) training and testing data will have to be
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available so that the parameters of the type-2 fuzzy sets
that are used in a system that computes with words can be
optimized in order that such a system performs at an
acceptable level. To the best knowledge of this author
even such data has not been reported on in the literature.

. Clearly, computing with words must be done using the
mathematics of type-2 fuzzy sets. Because we have
argued that a word FS is an interval type-2 FS, the
mathematics of such fuzzy sets (e.g., union, intersection,
complement) are quite simple (e.g., [6]).

3. Type-1 fuzzy sets are conspicuously absent from the right-
hand path of Fig. 1; so, if students are taught about fuzzy
sets by using word examples—in which case they must
traverse this path—where would they learn about type-1
FSs? Mendel and John [6] have recently developed a new
representation of a type-2 FS as the union of its embedded
type-2 fuzzy sets. The domain of an embedded type-2 FS
is a type-1 FS. It is easy to derive formulas for union,
intersection and complement of type-2 fuzzy sets using
this new representation. The derivation is even simpler for
interval type-2 fuzzy sets. But, even for them, we still
need the concept of a type-1 FS. So, perhaps an
appropriate time to focus on type-1 fuzzy sets would be
when deriving set theoretic operations for type-2 FSs.

Another approach would be to consider the very
special case when all intra-uncertainties disappear, for
which each person MF reduces to a function—a type-1 FS

—and the fuzzy set for a word becomes the union of type-

1 fuzzy sets’. Although it is easy to rationalize this

approach, in order to reach the mathematics of type-1

fuzzy sets quickly, it is not an approach that is supported
by the uncertain data, which again explains why type-1
fuzzy sets now only appear in the lefi-hand abstract

mathematical path of Fig. 1.

Our new theory of fuzzy sets for words is testable and is
therefore subject to refutation. The weak point of this new
theory is the assumption of person MFs, but this seems to be
as fundamental an assumption as a molecule is to matter.

Our new definition of a word fuzzy set suggests the
creation of a new field for fuzzy sets—experimental fuzzy
sets>—one in which data are collected about person MFs and
related issues are formulated and tested (e.g., {2, Ch. 10]). For
example, can context-independent results be applied when
words (e.g., some, a large amount, etc.) are used within a
specific context? More specifically, does the uncertainty
captured by collecting person MFs from a large group of
people permit us to use context-independent MFs in different
contexts, because people provide their MFs based on their
own personal contextual interpretation of each word, so that
context is actually implicitly contained across the collection

7 When this paper was originally submitted for review, it did not include
intra-uncertainties, and only focused on inter-uncertainties. Many of its
conclusions have changed as a result of immediately starting with both intra-
and inter-uncertainties.

? Analogizing with probability and its experimental counterpart, statistics, we
might call this fizzisrics.
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of person MFs? Finally, is there a way to map from context-
independent MFs to context-dependent MFs (i.e., when
context is revealed to people, our conjecture is that there is
less uncertainty about a word than if context is not revealed
to them, because context causes people to provide their MF
based on a specific contextual interpretation of a word, so
that their MF becomes more focused, i.e. less uncertain)?

We do not claim that the material in this paper provides a
complete solution to the important problem of computing
with words. We do, however, claim that such a solution needs
to account for the uncertainties about the words that are used
in computing with words, and that our new approach to fuzzy
sets provides a scientific (in the sense of Popper) framework
to do this. Many issues remain to be resolved before
computing with words can become a reality. Hopefully, this
paper will provide a starting point for that work.
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