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Abstract 
Our thesis is that computing with words needs to account for the uncertainties associated with the 

meanings of words, and that these uncertainties require using type-2 fuzzy sets. Doing this leads to a 

proposed architecture for making judgments by means of computing with words—a perceptual 

computer—the Per-C. The Per-C includes an encoder, a type-2 rule-based fuzzy logic system, and a 

decoder. It lets all human-computer interactions be performed using words. In this paper, a 
quantitative language is established for the Per-C, and many open issues about the perceptual 

computer are described. 

                                                
1 This paper is an expanded version of Mendel (2001b). 
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1. INTRODUCTION 

 
Zadeh (1996, 1999) coined the phrase “computing with words” [see, also, Wang (2001)]; but our 

thesis is that words mean different things to different people and so there is uncertainty associated 
with words, which means that fuzzy logic (FL) must somehow use this uncertainty when it computes 

with words [Mendel (1999, 2001a)]. Type-1 FL handles uncertainties about the meanings of words 

by using precise membership functions (MFs) that the user believes captures the uncertainty of the 
words. Once the type-1 MFs have been chosen, all uncertainty about the words disappears, because a 

type-1 MF is totally precise. Because of that, type-1 MFs cannot handle the uncertainties about 
words. We maintain that computing with words requires using type-2 fuzzy sets2. 

 

Today, computing with words must still be done using numbers, and, therefore, numeric intervals 
must be associated with words. An earlier paper [Mendel (1999)] reported on an empirical study that 

was performed to determine how the scale 0–10 can be covered with words (or phrases). In typical 

engineering applications of FL, we don’t worry about this, because we choose the number of fuzzy 
sets that will cover an interval arbitrarily, and then choose the names for these sets just as arbitrarily 

(e.g., zero, small positive, medium positive, and large positive). This works fine for many 
engineering applications, when rules are extracted from data. However, it is questionable practice 

when rules are extracted from people. Put another way, machines don’t care about words, but people 

do.   
 

In Mendel (1999), we first established a vocabulary of 16 candidate words or phrases —terms—that 
we thought would let us cover this interval. Those terms are: none, very little, a small amount, a 

little bit, a bit, some, a moderate amount, a fair amount, a good amount, a considerable amount, a 

sizeable amount, a large amount, a substantial amount, a lot, an extreme amount, and a maximum 

amount. We then surveyed students and asked them to provide the end-points for intervals on the 

scale of 0–10 that they associated with each term. The 16 terms were randomized in the survey and 
we collected 70 useable surveys. We then computed mean and standard deviation values for the two 

end-points of each of the 16 term’s interval, and plotted the interval for each term. These results are 

depicted in Figure 1. 

                                                
2 A brief introduction to type-2 fuzzy sets is provided in Appendix A. 
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Figure 1: All 16 labels and their intervals and uncertainty bands. Solid lines are drawn between the 

sample means for the interval end-points and dashed lines are for ±1 standard deviation about each 
mean end-point. 

 
One of the most striking conclusions drawn from this processed data is: linguistic uncertainty 

appears to be useful in that it lets us cover the 0–10 range with a much smaller number of terms 

than without it. Figure 2 depicts this for five terms [Figure 2-3 in Mendel (2001a) demonstrates 
coverage of the 0–10 range for three terms]. Put in the context of firing rules, in a rule-based fuzzy 

logic system3 (FLS), uncertainty can fire rules. This cannot occur in the framework of a type-1 FLS; 
but it can occur in the framework of a type-2 FLS. Uncertainty can therefore be used to control the 

rule explosion that is so common in a FLS. If, for example, we ignored uncertainty, and had rules 

with three antecedents, each of which is described by six terms, it could take 216 rules to completely 
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describe the fuzzy rule base. On the other hand, using three terms for each antecedent requires a rule 

base with only 27 rules. This is an 87.5% reduction in the size of the rule base. 
 

0        1          2          3          4          5          6         7         8          9        10   

o
none to very little

oo
some

a moderate amount
o o

o o
a large amount

a maximum amount
oo

 
Figure 2: Although five labels cover 0–10, there is not much overlap between some of them. It is 
when the standard deviation information is used that sufficient overlap is achieved. 
 

Finally, as conjectured in Mendel (2001a) uncertainty is good in that it lets people make decisions 
(albeit conservative ones) rapidly. Perhaps this is why some people can make decisions very quickly 

and others cannot. The latter may have partitioned their variables into so many fine sets that they get 
hung up among the resulting enormous number of possibilities. They are the eternal procrastinators. 

This conjecture is supported by Klir and Wierman (1998) who state: “Uncertainty has a pivotal role 

in any efforts to maximize the usefulness of systems models.” 
 

Based on these preliminary ideas, in the rest of this paper a specific architecture is proposed for 
making judgments by computing with words (by judgment we mean an assessment of the level of a 

variable of interest). Such a computer will be called a Perceptual Computer—Per-C for short. We 

believe that a generic all-purpose methodology can be found for making judgments by computing 
with words, but that the specific details will be context dependent. So, for example, making 

judgments by computing with words for diagnostic medicine will have details that are different from 
those for making judgments by computing with words for accounting. There are many interesting 

and open issues associated with computing with words, some of which are posed below. 

                                                                                                                                                       
3 See Appendix B for a high-level description of a FLS. 
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2.  FRAMEWORK FOR A PERCEPTUAL COMPUTER 
 
The architecture for a perceptual computer is depicted in Figure 3. Perceptions (i.e., granulated 

terms, words) activate the Per-C and are also output by the Per-C; so, it is possible for a human to 
interact with the Per-C just using a vocabulary—words. The mapping of words into words occurs 

within the Per-C and is accomplished using the mathematics of type-2 rule-based FLSs. The humans 

that interact with the Per-C do not have to be concerned with the mathematical details, although the 
designer of the Per-C must be.  
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Figure 3: Architecture of a Perceptual Computer (Per-C). 

 
We let W

i
 denote the ith word from a vocabulary, V, of N

V
 words (terms), i.e., 

 

                                                                     V = W
i{ }

i =1

N
V  (1) 

 

This vocabulary is context-dependent, and may contain some terms that are common across contexts 
or that are used as adjectives (e.g. some, a lot of, a maximum amount of). V is the vocabulary that a 

human uses to interface with the Per-C and which the Per-C uses to communicate its findings back 
to a human (e.g., the 16 terms in Figure 1). Each word in V must have a type-2 MF associated with 

it, which suggests that interval survey information must be obtained for it. New words can be added 

to V, just as a child continues to add words to his or her vocabulary, and interval information about 
each word in V may also change over time. 
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The encoder transforms linguistic perceptions into type-2 fuzzy sets that activate a rule-based type-2 

FLS, denoted ˜ 
R . We denote the type-2 fuzzy set output of the encoder as ˜ W 

i
. Note that the encoder 

is the same as a fuzzifier; however, it always outputs a type-2 fuzzy set, whereas a general-purpose 

fuzzifier could output singleton, type-1 or type-2 fuzzy sets [e.g., Mendel (2001a)]. This is why we 

distinguish between an encoder and a fuzzifier. 
 

A type-2 FLS is rule-based, and its rules are context dependent. The rules are IF-THEN rules (which 

can include a rich variety of rules, e.g., incomplete IF rules, mixed rules, fuzzy statement rules, 
comparative rules, unless rules, and quantifier rules [Wang (1997)]) whose antecedents and 
consequent are words that are from antecedent and consequent vocabularies, V

A
 and V

C
, where 

 

                                                            V
A
= W

Ai
{ }

i =1

N A

! V  (2) 

 

and 

 

                                                             V
C
= W

Ci
{ }

i= 1

NC

! V  (3) 

 
In this paper, we assume that the words used in V

A
 and V

C
 are subsets of the words in V, and, that 

N
A
<< N

V
 and N

C
<< N

V
 (e.g., V might be the 16 terms in Figure 1, whereas V

A
 and V

C
 might be 

the five terms in Figure 2). The latter assumptions mean that there is a coarser granulation 
associated with the antecedents and consequent than in the overall vocabulary.  This is one way to 

control rule explosion. It is important, however, to allow the human to interact with the Per-C using 
the larger vocabulary so that this interaction is as natural as possible. Because the words in V

A
 and 

V
C

 are subsets of the words in V, they will each have a type-2 MF associated with them. We denote 

the totality of antecedent word type-2 MFs as ˜ V 
A
, and the totality of consequent word type-2 MFs as 

˜ V 
C

.  

 
The output of the type-2 FLS is a number, O, which is a result of a sequence of internal operations—

inference, type-reduction, and defuzzification—which we shall describe in Section 3.  At a very high 
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level, we can describe this output as O = f [ ˜ W 
i
, ˜ V 

A
, ˜ V 

C
] , where the exact nature of the non-linear 

function f [!]  depends on many specific choices that have to be made within the type-2 FLS (e.g., 

kind of inference, type-reduction, and defuzzification). 
 

The decoder, D, maps O = f [ ˜ W 
i
, ˜ V 

A
, ˜ V 

C
]  into a word W

d
, i.e., 

 
                                                               W

d
= D(O) ! V  (4) 

 

How to actually do this is also briefly discussed in Section 3. 

 
 

3. SOME DETAILS OF THE PERCEPTUAL COMPUTER 
 

The main goal of this section is to arrive at an input-output formula for the Figure 3 Per-C. To do 

this we must provide some details for the elements of the Per-C. 
 

A. Vocabulary 
Content experts need to be part of the process of establishing a meaningful vocabulary for specific 

judgments. This vocabulary should be as large as possible in order to provide a human with as much 

flexibility as possible. After a behavior of interest is identified for which judgments will be made 
(e.g., flirtation), the indicators of that behavior must be established (e.g., eye contact, touching, 

acting witty, smiling, complementing, primping). A small subset of the indicators needs to be 
established, because rules will be established for that small subset. This can be done by means of an 

associated survey in which indicators are rank-ordered. Scales then need to be established for each 

indicator and the behavior of interest4. Names and interval information need to be established for 
each of the indicator’s fuzzy sets and behavior of interest’s fuzzy sets. Doing this leads to the 
vocabulary V, and the antecedent and consequent vocabularies V

A
 and V

C
. It also leads to the type-2 

MFs that are used for the words in all vocabularies. Although the interval surveys described in 
Section 1 contain uncertainty information about each term, how to use that information to derive an 



Mendel, J. M., "An Architecture for Making Judgments Using Computing With Words," Int. J. Appl. Math. Comput. 
Sci., vol. 12, No. 3, pp. 325-335, 2002. 

 8 

associated type-2 MF is an open issue. Mendel (2001a) advocates transforming the interval 

uncertainties into a footprint of uncertainty (FOU) for each term, but this requires making an a priori 
choice for the shape of the primary MF (e.g., a Gaussian primary MF whose mean and/or standard 

deviation are uncertain). Choosing a FOU to model linguistic uncertainty is analogous to choosing a 
probability density function to model random uncertainty. There is no unique choice for a FOU, just 

as there is no unique choice for a type-1 MF. Hopefully a Per-C will be robust to the choice of MF 

shapes, just as, e.g., a type-1 fuzzy logic controller is. Recent results (Mendel, 2001d) about FOUs 
have demonstrated that a similar looking FOU can be obtained for a triangular primary MF (where 

there can be uncertainties about all three vertices), a trapezoidal primary MF (where there can be 
uncertainties about all four vertices), and a Gaussian primary MF (where both the mean and standard 

deviation are uncertain). It appears, therefore, that granulation of a type-1 fuzzy set to a type-2 fuzzy 

set reduces the problem of determining the type-1 MFs. 
 

Because the type-2 FLS operates on numbers, scales must be established for each indicator and the 

behavior of interest5. Commonly used scales are 1 through 5, 0 through 5, 0 through 10, etc. The 
survey described in Section 1 for the 16 terms was performed in a context-free situation. An open 

issue is whether or not such context-independent results can be applied when the terms are used 
within a specific context, e.g. if some, in a context-independent situation, is located (on a scale 0–10) 

in the interval [0.5, 6], then are some touching and some primping located over that same interval? 

There may also be situations where a natural scale already exists for an indicator (e.g., pressure, 
temperature). Is the interval associated with, e.g. low pressure proportionately the same as the 

interval associated with low temperature? If not, then is there a way to achieve a scale-invariance for 
words so that context-independent-intervals can be used in context-dependent situations? Humans 

seem to understand certain terms in a context-free situation, and are able to apply them in context-

dependent ones, and also understand terms in a context and are able to adapt them to other contexts; 
so, we conjecture that it ought to be possible for computers to do likewise.  

 
The FOUs for the words in V are pre-computed using the word surveys described above. Another 
open issue is how much uncertainty one should associate with the interval end-points. Let !

L
 and 

                                                                                                                                                       
4 For some judgments (e.g., wealth), the indicators and judgments will have natural scales, whereas for others (e.g., flirtation) no natural scales 
exist. Instead of using scales, it may be possible to use a line of arbitrary length and percentages that are associated with that length. 
5 See footnote 4 for an alternative approach. 
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!
R

 denote the standard deviation for the left and right end-points of a word’s interval, respectively, 

and !  denote a fraction of uncertainty, i.e. 0 ! " !1 ; then, when we use !"
L

 or !"
R

 for interval 

end-point uncertainties, what is !? If !  is chosen too large then all MFs will overlap too much. A 

theory is needed to guide us in how much uncertainty should be used to characterize the uncertainty 

of words. 

 
B. Encoder 
The encoder transforms a word into a type-2 MF µ

˜ W 
i

. A type-2 MF is three-dimensional. Each 

element of a FOU has a possibility value—a secondary MF—assigned to it. The union of all 

possibility values defined over the FOU constitutes the type-2 MF. The FOU for each of the words 
in V is pre-computed, as described in Section 3.A. The remaining issue is what to choose for the 

secondary MFs. Mendel (2001a, 2001b) advocates using interval sets because then all remaining 

operations within the type-2 FLS are manageable. Additionally, even for a type-1 FLS there is no 
one best choice for the shape for a MF, so why should we compound this by trying to choose 

secondary MFs as arbitrary shapes?  
 

Another very important reason for using interval type-2 fuzzy sets is that all set-theoretic laws (e.g., 

DeMorgan’s, distributive, associative, etc.) are satisfied regardless of which t-norm or t-conorm are 
used. This is not the case when arbitrary type-2 fuzzy sets are used [see Appendix B in Mendel 

(2001a)], which could cause serious problems in a rule-based system. 

 
C. Type-2 FLS 
As described in Appendix B, a type-2 FLS consists of a fuzzifier and an inference engine followed 
by type-reduction and defuzzification. The fact that all words are encoded using type-2 fuzzy sets 

means that the encoder already accomplishes fuzzification.  

 
Rules, which establish the detailed architecture of the FLS, are the heart of any FLS. They remain 

the same regardless of whether we use type-2 or type-1 fuzzy sets in the inference engine. What 
changes is the way in which we model the antecedent and consequent fuzzy sets. To begin, a 

specific architecture must be chosen for the FLS. This will depend in part on how many indicators of 

a judgment are considered to be significant. More than two indicators cause a problem, because 
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people do not like to answer many questions and have great difficulty in correlating more than two 

things at a time (e.g., a two-antecedent rule can be interpreted as providing the correlation between 
the two antecedents). So, if more than two indicators are required, then some new architecture(s) 

will be needed for the type-2 FLS, e.g. a parallel interconnection of sub-advisors, or a hierarchical 
architecture. To-date, no such architectures have been published for type-2 FLSs, so this is another 

open issue.  

 
Choices must be made to implement the (compositional) inference engine, namely the implication 

(!) and t-norm (  ! ) to be used. Although Mamdani implications and product or minimum t-norms 
are widely used in many engineering applications of a FLS, for the Per-C the kind of implication and 

t-norm to use are open issues. In fact, any choices for implication or t-norm different from those just 

mentioned will require new results be developed for the extended sup-star composition of a type-2 
FLS, which is yet another open issue. Yager and Filev (1994), for example, propose that Mamdani 
implication and logic implication (~ p ! q ) are the lower and upper bound for the inference engine, 

and establish a procedure—compromise fuzzy reasoning—in which a linear combination (i.e., a 
parametric model) of these two extremes is used. Further discussions about the many choices that 

have to be made for the inference engine as compared to rule-related uncertainties are given in 

Mendel and Wu (2002). 
 

Rules are type-2 compositions, and in Figure 3 are denoted as ˜ 
R , i.e. 

 

                                                      ˜ R = ˜ R ( ˜ V 
A
, ˜ V 

C
) = ˜ R ( ˜ V 

A
, ˜ V 

C
!)  (5) 

 

Inferencing in a type-2 FLS is done using the extended sup-star composition [Mendel (2001a)] 

which transforms ˜ W 
i
 and ˜ 

R  into another type-2 fuzzy set, ˜ 
I , and involves a t-norm operation, i.e., 

 

                                           
  
˜ I = ˜ I ( ˜ W 

i
, ˜ R ) = ˜ I ( ˜ W 

i
, ˜ V 

A
, ˜ V 

C
) = ˜ I ( ˜ W 

i
, ˜ V 

A
, ˜ V 

C
!,!)  (6) 
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Inferencing is very straightforward for an interval type-2 FLS6.  

 
Following the inference engine is type-reduction (TR)7. TR maps a type-2 fuzzy set into a type-1 

fuzzy set. Just as there are many defuzzification methods for a type-1 FLS, there are many TR 
methods for a type-2 FLS. Whether or not one TR method is best for a Per-C is yet another open 

issue. Whether fired output sets should be combined prior to or as part of TR is yet another open 

issue (as it is for defuzzification). Without going into the details of how to perform TR, we can 

simply view it as a non-linear operator on ˜ 
I , i.e., for an interval type-2 FLS, 

 

                                                   
  
TR = f

TR

˜ I ( ˜ W 
i
, ˜ V 

A
, ˜ V 

C
!,!)[ ] = [y

l
, y

r
]  (7) 

 
where [y

l
, y

r
]  is an interval type-1 fuzzy set, and  

 

                                                     
  
y

l
= y

l

˜ I ( ˜ W 
i
, ˜ V 

A
, ˜ V 

C
!,!, f

TR
)[ ]  (8) 

 

and  

 

                                                     
  
y

r
= y

r

˜ I ( ˜ W 
i
, ˜ V 

A
, ˜ V 

C
!,!, f

TR
)[ ]  (9) 

 

The final operation within the type-2 FLS is defuzzification, which is the mapping of the type-1 
fuzzy set TR into a number, O, a type-0 fuzzy set. The obvious choice for defuzzification is the 

center of gravity (COG) of type-1 set TR, i.e. 
 

                           

  

O = COG(TR) = COG f
TR

˜ I ( ˜ W 
i
, ˜ V 

A
, ˜ V 

C
!,!)[ ]{ }

   =
1

2
y

l
˜ I ( ˜ W 

i
, ˜ V 

A
, ˜ V 

C
!,!, f

TR
)[ ] +

1

2
y

r
˜ I ( ˜ W 

i
, ˜ V 

A
, ˜ V 

C
!,!, f

TR
)[ ]

 (10) 

 

                                                
6 See Appendix D for inferencing results for singleton interval type-2 FLSs. More general results for non-singleton interval type-2 FLSs (in which 
measurements that activate the FLS are modeled either as type-1 or type-2 fuzzy sets) can be found in Mendel (2001a, Chapters 11 and 12). 
7 See Appendix C for a brief discussion about type-reduction methods. 
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Equation (10) is the input-output formula for the type-2 FLS within the Per-C. 

 
D. Decoder 
The decoder, D, operates on O to provide a word W

d
 as in (4), i.e.,  

 

                                  

  

W
d

= D(O) = D COG(TR)[ ]

     = D COG f
TR

˜ I ( ˜ W 
i
, ˜ V 

A
, ˜ V 

C
!,!)[ ]{ }" 

# $ 
% 

& ' 
( V

 (11) 

 

Observe that the output of the decoder is a word from the vocabulary V.  
 

How to go from MF numerical values for a variable to a linguistic description of that variable for 

type-1 fuzzy sets is well known; however, how to do this for type-2 fuzzy sets is not so well known.  
 
Consider, for example, the type-1 situation depicted in Figure 4 at x = ! x . This value of x only 
generates a non-zero membership value in the fuzzy set F

4
= Medium Positive; hence, x = ! x  can be 

described linguistically, without any ambiguity, as “Medium Positive.” The situation at x = ! ! x  is 
different, because this value of x generates a non-zero membership value in two fuzzy sets F

4
 = 

Medium Positive and F
5
 = Very Positive. It would be very awkward to speak of ! ! x  as “being 

Medium Positive to degree µ
F4
( ! ! x )  and Very Positive to degree µ

F5
( ! ! x ) .” People just don’t 

communicate this way. Instead, we usually compare µ
F4
( ! ! x )  and µ

F5
( ! ! x )  to see which is larger8, 

and then assign ! ! x  to the set associated with the larger value; hence, in this example, we would 

speak of ! ! x  as “being Medium Positive.”  
  
We can formally describe what we have just explained, as follows. Given P fuzzy sets F

i
 with MFs 

µ
Fi

(x) , i = 1, …, P.  When x = ! x , evaluate all P MFs at this point, and then compute 

  
max µ

F1
( ! x ),µ

F2
( ! x ),…,µ

FP

( ! x )[ ] " µ
Fm

( ! x ) . Let L( ! x )  denote the linguistic label associated with ! x . 

Then, L( ! x ) " F
m

, i.e.,  

 

                                                
8 There is a literature that deals with other ways for doing this; however, all other ways are more complicated than the present way, and usually 
rely on the availability of “truth” data. Such data is usually not available when computing with words. 
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L( ! x ) = arg  max

"Fi

µ
F1

( ! x ),µ
F2

( ! x ),…, µ
FP

( ! x )[ ]   (12) 

 
 
Consider the type-2 situation depicted in Figure 5 at x = ! x . This value of x only generates a non-

zero membership in the type-2 fuzzy set ˜ W 
4
= Medium Positive; hence, x = ! x  can be described 

linguistically, without any ambiguity, as “Medium Positive.” The situation at x = ! ! x  is quite 

different, because this value of x generates a range of non-zero secondary MF values in the two type-

2 fuzzy sets ˜ W 
4
 = Medium Positive and ˜ W 

5
 = Very Positive. It would be extraordinarily difficult to 

communicate this linguistically. An approach (not necessarily an optimal one, but one that 

generalizes its type-1 counterpart to type-2 fuzzy sets), which we describe next, is to first convert the 
intersection of the vertical line at x = ! ! x  with the FOUs into a collection of numbers, after which we 

can choose the linguistic label at x = ! ! x  using the algorithm described below. 

 
 

F4 F5

µFi
( x)

x
! x ! ! x 

Very  PositiveMedium Positive

 
Figure 4: Returning to a linguistic label for type-1 fuzzy sets. 

 
 

The type-2 MFs µ
˜ W 

4

(x,u)  and µ
˜ W 

5

(x,u)  are characterized by their (shaded) FOUs, FOU( ˜ W 
4
)  and 

FOU( ˜ W 
5
) , respectively. The upper and lower MFs for ˜ W 

4
 are µ ˜ W 4

(x)  and µ
˜ W 4

(x) , whereas the 

comparable quantities for ˜ W 
5
 areµ ˜ W 

5

(x)  and µ
˜ W 

5

(x) . Consider, for example, the vertical line at 

x = ! ! x , and its intersections with the FOU for ˜ W 
4
 (see Figure 5). Associated with the interval 

µ
˜ W 4

( ! ! x ),µ ˜ W 4
( ! ! x )[ ]  is the secondary MF f

! ! x 
(u),  u" µ

˜ W 4
( ! ! x ), µ ˜ W 4

( ! ! x )[ ]. Let the center of gravity of 
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f
! ! x 
(u) , !u" µ

˜ W 4

( ! ! x ),µ ˜ W 4
( ! ! x )[ ]  be denoted f

! ! x 

cg
( ˜ W 

4
) . In a similar manner, we can compute 

f
! ! x 

cg
( ˜ W 

5
) . We can then compare f

! ! x 

cg
( ˜ W 

4
)  and f

! ! x 

cg
( ˜ W 

5
) . If f

! ! x 

cg
( ˜ W 

4
) > f

! ! x 

cg
( ˜ W 

5
) , then we would speak of 

! ! x  as “being Medium Positive”; otherwise we would speak of ! ! x  as “being Very Positive.” 

 

We can formally describe what we have just explained as follows. Given N
V

 type-2 fuzzy sets ˜ W 
i
 

with MFs µ
˜ W 

i

(x,u) , i = 1, …, N
V

. These MFs are characterized by their FOUs, FOU( ˜ W 
i
) , whose 

upper and lower MFs are µ ˜ W i
(x)  and µ

˜ W i

(x)  (i = 1, …, N
V

), respectively. Consider an arbitrary 

value of x, say x = ! x , and compute 
  
max f

! x 

cg
( ˜ W 

1
), f

! x 

cg
( ˜ W 

2
),…, f

! x 

cg
( ˜ W 

N v
)[ ] ! f

" x 

cg
( ˜ W 

m
)  where f

! x 

cg
( ˜ W 

i
)  is 

the center of gravity of the secondary MF f
! x 
(u),"u# µ

˜ W i
( ! x ), µ ˜ W i

( ! x )[ ] . Let L( ! x )  denote the 

linguistic label associated with ! x . Then, L( ! x ) " ˜ W 
m

, i.e.,  

 

                                     
  
L( ! x ) = arg  max

" ˜ W 
i

 f
! x 

cg
( ˜ W 

1
), f

! x 

cg
( ˜ W 

2
),…, f

! x 

cg
( ˜ W 

N v
)[ ]   (13) 

 

For interval secondary MFs, it is easy to compute f
! x 

cg
( ˜ W 

i
) , as 

 

                                                    f
! x 

cg
( ˜ W 

i
) = 1

2 µ ˜ W i
( ! x ) + µ

˜ W i
( ! x )[ ]  (13) 

 

 

x

Very  PositiveMedium Positive

! x ! ! x 

µ ˜ W 
4
( ! ! x )

µ
˜ W 

4

( ! ! x )

µ ˜ W 
5
( ! ! x )

µ
˜ W 

5

( ! ! x )

˜ W 4
˜ W 5

u

 
Figure 5: Returning to a linguistic label for type-2 fuzzy sets. The shaded regions are the FOUs for 

the two type-2 fuzzy sets. 
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5. CONCLUSIONS 
 
We have presented a specific architecture for making judgments by computing with words—the 

perceptual computer (Per-C)—and have argued that type-2 fuzzy sets must be used for computing 
with words. The following issues (including others) must be resolved before the Per-C can be 

implemented: 

 
1. How should survey interval information about words be used to derive an associated type-2 

MF?  
2. Can context-independent results be applied when terms are used within a specific context? Is 

there a way to achieve scale-invariance for words so context-independent intervals can be 

used in context-dependent situations? Or, is there a way to map from context-independent 
intervals to context-dependent intervals? 

3. How much uncertainty should be associated with the interval end-points. A methodology for 

choosing or designing the uncertainty factor needs to be developed. 
4. What are new architectures for type-2 FLSs that can be used in a Per-C? Can a specific 

architecture be validated? 
5. Which implications and t-norms are most appropriate for a Per-C? What are the associated 

extended sup-star composition results for them? It seems that, at the very least, we must 

account for the uncertainties present in all rule-words, including connector words. This can be 
accomplished by using type-2 fuzzy sets for antecedent and consequent words and parametric 

operators for connector words. It may then be necessary to account for the uncertainties 
associated with implication and combining of rules. Whether or not it is necessary to 

parameterize the enormous numbers of choices that are available for the operator models of 

implication, union, intersection, complement, t-norm and t-conorm, as in Yager and Filev 
(1994) remains to be explored. See Wu and Mendel (2001) for more discussions about this. 

6. How are fired rule outputs combined by people? The engineering literature on FLSs has no 
adequate answer to this question. Yager and Filev (1994) introduce the notion of soft rule 

aggregation in which rules are combined using either the SOWA-OR or the SOWA-AND. 

This approach remains to be examined in the context of type-2 fuzzy sets. 
7. Which type-reduction method is best for a Per-C? 
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8. Is there a best way to return to a linguistic label for a type-2 fuzzy set, i.e., an optimal 

decoder? 
 

In the future, a computer-architecture may come into being that will let us actually compute with 
words. In the meantime, if we are to “compute with words,” it must be done within the framework of 

existing computer architectures, all of which compute with numbers. The Per-C lets us make 

judgments9 by computing with words using existing computer architectures. 
 

 
APPENDIX A: Background Knowledge about Type-2 Fuzzy Sets 

 
In this appendix we collect some important definitions about type-2 fuzzy sets. For more details 
about such fuzzy sets, as well as many examples that illustrate the definitions, see Mendel (2001a). 

 

Definition A-1: A type-2 fuzzy set, denoted ˜ A , is characterized by a (three-dimensional) type-2 

membership function µ
˜ A 
(x,u) , i.e.,  

 

                                             ˜ A = µ
˜ A 
(x,u) / (x,u)

u!J
x

"x !X"      J
x
# [0,1]  (A-1)  

 

where !! denotes union over all admissible x and u, and 0 ! µ
˜ A 
(x,u) ! 1. At each fixed value of 

x !X , J
x
 is the primary membership of x and x is called the primary variable. ■ 

 
Definition A-2: At each value of x, say x = ! x , the 2D plane whose axes are u and µ

˜ A 
( ! x ,u)  is 

called a vertical slice of µ
˜ A 
(x,u) . A secondary membership function is a vertical slice of µ

˜ A 
(x,u) . It 

is µ
˜ A 
(x = ! x ,u)  for ! x "X  and !u "J

# x 
$ [0,1] , i.e., 

 

                                  µ
˜ A 
(x = ! x ,u) " µ

˜ A 
( ! x ) = f ! x 

(u) u
u#J ! x 
$        J ! x 

% [0,1]  (A-2) 
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in which 0 ! f
" x 
(u) !1 . Because ! " x # X , we drop the prime notation on µ

˜ A 
( ! x ) , and refer to µ

˜ A 
(x)  

as a secondary membership function; it is a type-1 fuzzy set, which we also refer to as a secondary 

set. ■ 

 

Based on the concept of secondary sets, we can reinterpret a type-2 fuzzy set as the union of all 

secondary sets, i.e., using (A-2), we can re-express ˜ A  in a vertical-slice manner, as: 
                                        

                                                   ˜ A = {(x ,µ
˜ A 
(x)) | !x "X} (A-3)  

 
or as 

                                           
                                   ˜ A = µ

˜ A 
(x) x =

x !X" [ f
x
(u) / u

u!J
x

" ] x
x !X"       J

x
# [0,1]  (A-4)  

 
 
Definition A-3: The domain of a secondary membership function is called the primary membership 
of x. In (A-4), J

x
 is the primary membership of x, where J

x
! [0,1]  for !x "X . ■ 

 

Definition A-4: The amplitude of a secondary membership function is called a secondary grade. In 
(A-2) and (A-4), f

x
(u)  is a secondary grade. ■ 

 

Definition A-5: An interval type-2 fuzzy set is a type-2 fuzzy set all of whose secondary 
membership functions are type-1 interval sets, i.e., f

x
(u) = 1,!u"J

x
# [0,1] , !x "X . ■ 

 

Interval secondary membership functions reflect a uniform uncertainty at the primary memberships 
of x , and are the ones most commonly used in type-2 FLSs. Note that an interval set can be 

represented just by its domain interval, which can be expressed in terms of its left and right end-
points as [l, r], or by its center and spread as [c - s, c +s], where c = (l + r ) / 2  and s = (r ! l) / 2 .  

 

                                                                                                                                                       
9 We claim nothing else for the Per-C, although it’s architecture may also be useful for other kinds of computing with words. 



Mendel, J. M., "An Architecture for Making Judgments Using Computing With Words," Int. J. Appl. Math. Comput. 
Sci., vol. 12, No. 3, pp. 325-335, 2002. 

 18 

Definition A-6: Assume that each of the secondary membership functions of a type-2 fuzzy set has 

only one secondary grade that equals 1. A principal membership function is the union of all such 
points at which this occurs, i.e.,  

 

                                              µprincipal (x ) = u x
x!X"  where f x (u) = 1 (A-5) 

 
and is associated with a type-1 fuzzy set. ■ 

 

For interval secondary membership functions, we define the principal membership function as 
occurring at the union of all primary membership midpoints. Note that when all membership 

function uncertainties disappear, a type-2 membership function reduces to its principal membership 
function. 

 

Definition A-7: Uncertainty in the primary memberships of a type-2 fuzzy set, ˜ A , consists of a 
bounded region that we call the footprint of uncertainty (FOU). It is the union of all primary 

memberships, i.e.,  
                                  

                                                          
  
FOU( ˜ A ) = J

xx !X
!       ■ (A-6)  

 

The term FOU is very useful, because it not only focuses our attention on the uncertainties inherent 
in a specific type-2 membership function, whose shape is a direct consequence of the nature of these 

uncertainties, but it also provides a very convenient verbal description of the entire domain of 

support for all the secondary grades of a type-2 membership function. 
 
Definition A-8: Consider a family of type-1 membership functions µ

A
(x | p

1
, p

2
, ..., p

v
)  where 

p
1
, p

2
,..., p

v
 are parameters, some or all of which vary over some range of values, i.e., p

i
!P

i
 (i = 1, 

…, v). A primary membership function (MF) is any one of these type-1 membership functions, e.g., 
µ

A
(x | p

1
= p

! 1 
, p

2
= p

! 2 
,..., p

v
= p

! v 
) . For short, we use µ

A
(x)  to denote a primary membership 

function. It will be subject to some restrictions on its parameters. The family of all primary 

membership functions creates a FOU. ■  
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Two examples of very useful primary MFs are: Gaussian MF with uncertain mean and certain 
standard deviation, and Gaussian MF with certain mean and uncertain standard deviation. 

 
Definition A-9: An upper membership function and a lower membership function are two type-1 

membership functions that are bounds for the FOU of a type-2 fuzzy set ˜ A . The upper membership 

function is associated with the upper bound of FOU( ˜ A ) , and is denoted µ ˜ A 
(x) , !x "X . The lower 

membership function is associated with the lower bound of FOU( ˜ A ) , and is denoted µ
˜ A 
(x) , 

!x "X , i.e., 
 

                                                         µ ˜ A 
(x) ! FOU( ˜ A )     "x #X  (A-7) 

 

and 
 

                                                         µ
˜ A 
(x) ! FOU( ˜ A )     "x #X  (A-8) 

 

Because the domain of a secondary membership function has been constrained in Definition A-1 to 
be contained in [0, 1], lower and upper membership functions always exist. ■ 

 

 
APPENDIX B. Rule-Based Fuzzy Logic Systems 

 
A rule-based FLS contains four components—rules, fuzzifier, inference engine, and output 

processor—that are inter-connected, as shown in Figure B-1. Once the rules have been established, a 

FLS can be viewed as a mapping from inputs to outputs (the solid path in Figure B-1, from “Crisp 
inputs” to “Crisp outputs”), and this mapping can be expressed quantitatively as y = f (x) . This kind 

of FLS is very widely used in many engineering applications of FL, such as in FL controllers and 

signal processors, and is also known as a fuzzy controller, fuzzy system, fuzzy expert system, or fuzzy 

model. 
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Rules

Output

Processor

Crisp

inputs

Fuzzy

input sets
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output sets

Crisp
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FLS

y= f( x)

yx

 Fuzzifier

Inference

 
Figure B-1: Fuzzy logic system. 

 
Rules are the heart of a FLS, and may be provided by experts or can be extracted from numerical 

data. In either case, the rules that we are interested in can be expressed as a collection of IF–THEN 
statements.  

 

Fuzzy sets are associated with terms that appear in the antecedents or consequents of rules, and with 
the inputs to and output of the FLS. Membership functions are used to describe these fuzzy sets. 

Two kinds of fuzzy sets can be used in a FLS, type-1 and type-2. Type-1 fuzzy sets are described by 

membership functions that are totally certain, whereas type-2 fuzzy sets are described by 
membership functions that are themselves fuzzy. The latter let us quantify different kinds of 

uncertainties that can occur in a FLS.  
 

A FLS that is described completely in terms of type-1 fuzzy sets is called a type-1 FLS, whereas a 

FLS that is described using at least one type-2 fuzzy set is called a type-2 FLS. A type-2 FLS whose 
MFs are interval type-2 fuzzy sets is called an interval type-2 FLS. In this paper we assume the use 

of interval type-2 FLSs. 
 

Returning to the Figure B-1 FLS, the fuzzifier maps crisp numbers into fuzzy sets. It is needed to 

activate rules that are in terms of linguistic variables, which have fuzzy sets associated with them. 
The inputs to the FLS prior to fuzzification may be certain (e.g., perfect measurements) or uncertain 
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(e.g., noisy measurements). Type-1 or type-2 fuzzy sets can be used to model the latter 

measurements. 
 

The inference engine of the Figure B-1 FLS maps fuzzy sets into fuzzy sets. It handles the way in 
which rules are activated and combined. Just as we humans use many different types of inferential 

procedures to help us understand things or to make decisions, there are many different FL inferential 

procedures.  
 

In many applications of a FLS, crisp numbers must be obtained at its output. This is accomplished 
by the output processor, and is known as defuzzification. The output processor for a type-1 FLS 

consists only of a defuzzifier; however, the output processor of a type-2 FLS contains two 

components: the first maps a type-2 fuzzy set into a type-1 fuzzy set and is called type-reduction, 
and the second performs defuzzification on the latter set. Type-reduction is overviewed in Appendix 

C. 

 
 

APPENDIX C: Type-Reduction 
 

The type-reduced set provides an interval of uncertainty for the output of a type-2 FLS, in much the 

same way that a confidence interval provides an interval of uncertainty for a probabilistic system. 
The more uncertainties that occur in a type-2 FLS, which translate into more uncertainties about its 

MFs, the larger will be the type-reduced set, and vice-versa.  
 

Five different type-reduction methods are described in Mendel (2001a). Each is inspired by what we 

do in a type-1 FLS [when we defuzzify the (combined) output of the inference engine using a variety 
of defuzzification methods that all do some sort of centroid calculation] and are based on computing 

the centroid of a type-2 fuzzy set. Using the Extension Principle, Karnik and Mendel (2001) defined 
the centroid of a type-2 fuzzy set; it is a type-1 fuzzy set. Computing the centroid of a general type-2 

fuzzy set can be very intensive; however, for an interval type-2 fuzzy set, an exact iterative method 

for computing its centroid has been developed by Karnik and Mendel (2001). This was possible 
because the centroid of an interval type-2 fuzzy set is an interval type-1 fuzzy set, and such sets are 
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completely characterized by their left- and right-end points; hence, computing the centroid of an 

interval type-2 fuzzy set only requires computing those two end-points.  
 

Center-of-sets, centroid, center-of-sums, and height type-reduction can all be expressed as 
 

              
  

Y
TR
(x) = y

l
, y

r[ ] = ! ! 1
f
i
y
i

i= 1

M

!
f i

i =1

M

!f
M " f

M
, f

M[ ]#f
1 " f

1
, f

1[ ]#y
M " y

l

M
, y

r

M

[ ]#y
1" y

l

1
, y

r

1

[ ]#  (C-1) 

 

For the different type-reduction methods y
l

i , y
r

i , f i , f i  and M have different meanings, as 

summarized in Table C-1.  
 
The Karnik-Mendel iterative procedure for computing y

r
 is:  

1. Without loss of generality, assume that the pre-computed y
r

i  are arranged in ascending order; 

i.e., 
  
y
r

1

! y
r

2

!! ! y
r

M .  

2. Compute y
r
 as y

r
= f

r

i
y
r

i

i =1

M

! f
r

i

i =1

M

!  by initially setting f
r

i
= ( f

i
+ f

i

) 2  for i = 1, …, M, 

where f i  and f i  have been previously computed using the equations given in Appendix D, 

respectively, and let ! y 
r
" y

r
. 

 

3. Find R (1 ! R ! M "1) such that y
r

R
! " y 

r
! y

r

R +1 . 

 

4. Compute y
r
= f

r

i
y
r

i

i =1

M

! f
r

i

i =1

M

!  with f
r

i
= f

i  for  i ! R  and f
r

i
= f

i  for  i > R , and let 

! ! y 
r
" y

r
. 

 
5. If ! ! y 

r
" ! y 

r
, then go to Step 6. If ! ! y 

r
= ! y 

r
, then stop and set ! ! y 

r
" y

r
. 

 
6. Set ! y 

r
 equal to ! ! y 

r
, and return to Step 3. 

 

The procedure for computing y
l
 is very similar to the one just given for y

r
. Just replace y

r

i  by y
l

i , 

and, in step 3 find L (1 ! L ! M "1) such that y
l

L
! " y 

l
! y

l

L +1 . Additionally, in step 2 we now 
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compute y
l
 as y

l
= f

l

i
y
l

i

i =1

M

! f
l

i

i= 1

M

!  by initially setting f
r

i
= ( f

i
+ f

i

) 2  for i = 1, …, M, and, in 

step 4 we compute y
l
 as y

l
= f

l

i
y
l

i

i =1

M

! f
l

i

i= 1

M

!  with  f
l

i
= f

i  for i ! L  and f
l

i
= f

i  for i > L . 

 
These two four-step iterative-procedures (Steps 1 and 2 are initialization-steps) have been proven by 

Karnik and Mendel (2001) to converge to the exact solutions in no more than M iterations. 
 

Table C-1: Meanings of y
l

i , y
r

i , f i , f i  and M in (C-1) for different type-reduction methodsa. 

Type-reduction 
method 

yl
i   and yri  defined f

i  and f
i

 definedd M defined 

center-of sets left and right end points of the 

centroid of the consequent of  

the ith rule 

lower and upper firing degrees  

of the ith rule 

number of rules 

centroidb yl
i
= yr

i
= y

i , the ith point in the 

sampled universe of discourse of 

the FLS’s output 

lower and upper membership 

grades of the ith sampled  

output of the FLS’s output 

number of sampled points 

center-of-sumsc yl
i
= yr

i
= y

i , the ith point in the 

sampled universe of discourse of 

the FLS’s output 

sums of lower and upper 

membership grades for the ith 

sampled point of all rule  

outputs 

number of sampled points 

height yl
i
= yr

i
= y

i , a single point in the 

consequent domain of the ith  

rule, usually chosen to be the  

point having the highest primary 

membership in the principal  

MF of the output set 

lower and upper firing degrees  

of the ith rule 

number of rules 

a. Comparable results for modified height type-reduction can be found in Mendel (2001a), Section 9.5.4. 

b. Prior to calculating the centroid type-reduced set, the fired type-2 fuzzy sets are unioned. 

c. Prior to calculating the center-of-sums type-reduced set, the membership functions of the fired type-2 fuzzy sets are added (or a 

linear combination of them is formed). 

d. See Appendix D for formulas for f i  and f i , as well as for rule outputs and unioned rule outputs. 
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APPENDIX D: Fuzzy Inference Engine Results for Interval Type-2 Fuzzy Sets 
 
Consider a type-2 FLS having p inputs x

1
! X

1
, ..., x

p
!X

p
 and one output y !Y . We assume there 

are M rules where the lth rule has the form 

 

                           
  
R

l
:  IF x

1
 is ˜ F 

1

l
 and ! and x

p
 is ˜ F 

p

l
,  THEN y is ˜ G 

l
     l = 1,...,M  (D-1) 

 
This rule represents a type-2 relation between the input space 

  
X
1
!! ! X

p
, and the output space, Y, 

of the type-2 FLS. Associated with the p antecedent type-2 fuzzy sets, ˜ F 
i

l , are the type-2 MFs 

µ
˜ F 

i

l (x
i
)  (i = 1, …, p), and associated with the consequent type-2 fuzzy set ˜ G 

l  is its type-2 MF 

µ
˜ G 

l (y) .  

 
The major result for an interval singleton type-2 FLS is summarized in the following: 
 

Theorem D-1: [Liang and Mendel (2000), Mendel (2001a)] In an interval singleton type-2 FLS 
using product or minimum t-norm, for input x = ! x : (a) The result of the input and antecedent 

operations, is an interval type-1 set, called the firing set, i.e., 

  

                                             Fl
( ! x ) = [ f

l
( ! x ), f

l

( ! x )] " [ f
l
, f

l

]  (D-2) 

 

where 
                               

                                             
    
f

l
( ! x ) = µ

˜ F 1
l
( ! x 

1
)!!!µ

˜ F p
l
( ! x 

p
)  (D-3) 

 

and 
                               

                                            
    
f

l

( ! x ) = µ ˜ F 1
l ( ! x 

1
)!!!µ ˜ F p

l ( ! x 
p
) ; (D-4) 

 

(b) The ruleRl  fired output consequent set, µ
˜ B 

l (y) , is the type-1 interval fuzzy set 
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µ
˜ B 

l (y) = 1 b
l

b
l ! f

l
! µ

˜ 
G 

l ( y), f
l
! µ ˜ G 

l ( y)[ ]" ,    y !Y  (D-5) 

 

where µ
˜ G 

l
(y)  and µ ˜ G 

l (y)  are the lower and upper membership grades of µ
˜ G 

l (y) . 

 
(c) Suppose that N of the M rules in the FLS fire, where N ! M , and the combined output type-1 

fuzzy set, µ
˜ B 
(y) , is obtained by combining the fired output consequent sets by taking the union of 

the ruleRl  fired output consequent sets10; then, 
 

                     
    

µ
˜ B 
(y) = 1 b

b! f
1
! µ

˜ 
G 

1 ( y )[ ]"!" f
N
! µ

˜ 
G 

N ( y )[ ], f
1
! µ ˜ G 

1 ( y )[ ]"!" f
N
! µ ˜ G 

N ( y )[ ][ ]# ,    y !Y  ■ (D-6) 

 

 

A complete proof of this theorem can be found in Liang and Mendel (2000) and in Mendel (2001a). 
Generalizations of this theorem to the very important case when the input to the type-2 FLS is a 

type-2 fuzzy set—which would be the case when the words that activate the Per-C are modeled as 
type-2 fuzzy sets—are also given in those references. 

 

 
 

 
 

 

                                                
10 We do not necessarily advocate taking the union of these sets. Part c merely illustrates the calculations if one chooses to do this. 
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