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Abstract

Computing the centroid of a type-2 fuzzy set (T2 FS) is an important operation for

such sets. For an interval T2 FS, the centroid can be computed by using two iterative

procedures that were developed by Karnik and Mendel [2]. In this paper, we prove that

if the footprint of uncertainty for an interval T2 FS is symmetrical about the primary

variable y at y=m, then the centroid is also symmetrical about y=m and its defuzzified

value equals m. As a consequence of this, computation of the centroid for such a T2 FS

is reduced by 50%, and the importance of obtaining a non-symmetrical interval T2 FS

prior to defuzzification is demonstrated.
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1. Introduction

Recently, Mendel [6] proposed a fuzzy set (FS) model for words that is

based on collecting data from people––person membership functions (MFs)––

that reflect intra- and inter-levels of uncertainties about a word, in which a word

FS is the union of all such person FSs. The intra-uncertainty about a word is
modeled using interval type-2 (T2) person FSs, and the inter-uncertainty about

a word is modeled using an equally weighted union of each person�s interval T2
FS. Because an interval T2 FS plays such an important role in this model as

well as in engineering applications of T2 FSs (e.g., [5]), we need to understand

as much as possible about such sets and how they model uncertainties.

Definition 1. A T2 FS, denoted ~A, is characterized by a (3D) T2 MF l~Aðy; uÞ,
where y2Y and u2Jy˝ [0,1], i.e.,

~A ¼ fððy; uÞ; l~Aðy; uÞÞj8y 2 Y ; 8u 2 Jy � ½0; 1
g ð1Þ
in which 06 l~Aðy; uÞ6 1. ~A is also expressed as

~A ¼
Z
y2Y

Z
u2Jy

f yðuÞ=u
" #,

y; Jy � ½0; 1
 ð2Þ

where � � denotes union over all admissible y and u. For discrete universes of

discourse � is replaced by
P

. In (2) fy(u) is called a secondary grade, and for

an interval T2 FS all fy(u)=1. In (1) and (2) Jy is called the primary membership
of y, and in (2)

R
u2Jy f yðuÞ=u is called the secondary MF. Uncertainty about ~A is

conveyed by the union of all of its primary memberships, which is called the

footprint of uncertainty (FOU) of ~A, i.e., FOUð~AÞ ¼ [y2Y J y .

When T2 FSs are used in a rule-based fuzzy logic system (FLS) (e.g., [3,5]),

combined T2 fired rule consequent FSs are first mapped into a T1 FS by com-

puting the centroid of the combined sets, and then this centroid is defuzzified

into a number by computing its center of gravity. Note that the centroid of a
T2 FS [2] is a 2D function––a T1 FS.

The most widely used T2 FS set to-date is the interval T2 FS. Here we shall

examine the calculations of the centroid 1 and its defuzzified value for the spe-

cial but very important case of an interval T2 FS whose FOU is symmetrical––a

so-called symmetrical interval T2 FS. This case occurs very frequently because

the FOU for a rule antecedent or consequent T2 FS (in a T2 FLS) is often pre-

specified to be symmetrical (e.g., the FOU for a Gaussian primary MF with

variable mean m2 [m1,m2] and standard deviation r2 [r1,r2] is symmetrical
1 The centroid of an interval T2 FS is mathematically defined in Section 3.



Table 1

Centroid of a Gaussian primary MF with uncertain mean and interval set secondary MFs

[m1,m2] m2m1 [cl,cr] crcl
[5,5] 0 [5,5] 0

[4.87,5.12] 0.25 [4.87,5.12] 0.25

[4.75,5.25] 0.5 [4.74,5.25] 0.51

[4.62,5.37] 0.75 [4.62,5.37] 0.75

[4.5,5.5] 1 [4.49,5.50] 1.01

[4.25,5.75] 1.5 [4.21,5.78] 1.57

[4,6] 2 [3.90,6.09] 2.19

[3.75,6.25] 2.5 [3.55,6.44] 2.89

[3.5,6.5] 3 [3.15,6.84] 3.69
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about (m1+m2)/2). Symmetry also occurs when addition is performed on

symmetrical interval T2 fuzzy numbers [1] (e.g., About 3+About 10).

In [5] we presented two examples in which we calculated the centroid for two

symmetrical interval T2 FSs. For those people who have not seen these exam-

ples we repeat them here, since they are very illuminating and will motivate the

rest of this paper.

Example 1. In this example [5], we compute the centroid [cl,cr] for a Gaussian
primary MF 2 with uncertain mean m2 [m1,m2] and certain standard deviation

(r=1), whose secondary MFs are interval sets. Table 1 summarizes the results

for a range of m2m1 values, including the T1 case when m2m1=0. Observe

that as the uncertainty about the mean increases [cl,cr] increases as well, i.e.,

crcl increases. Observe, also, that [cl,cr] is always symmetrical about the T1

mean, m=5, and that the average value of cl and cr is always equal to 5,

regardless of the amount of uncertainty there is in m.

Example 2. In this example, we compute the centroid [cl,cr] for the Gaussian

primary MF with uncertain standard deviation r2 [r1,r2] and certain mean

(m=5), whose secondary MFs are interval sets. Table 2 summarizes the results

for a range of r2r1 values, including the T1 case when r2r1=0. Observe

that as the uncertainty about the standard deviation increases [cl,cr] increases

as well, i.e., crcl increases. Observe, also, that [cl,cr] is again always

symmetrical about the known mean, m=5, and that the average value of cl and

cr is always equal to 5, regardless of how much uncertainty there is about r.

These observations have caused us to wonder whether or not there are gen-

eral theoretical results about the centroid and its average (defuzzified) value for

a symmetrical interval T2 FS. There are, and that�s what the rest of this paper
is about.
2 A primary MF is a parameterized T1 MF whose parameters may vary over intervals.



Table 2

Centroid results for a Gaussian primary MF with uncertain standard deviation, and interval set

secondary MFs

[r1,r2] r2r1 [cl,cr] crcl
[1,1] 0 [5,5] 0

[0.88,1.13] 0.25 [4.80,5.20] 0.40

[0.75,1.25] 0.5 [4.60,5.40] 0.80

[0.63,1.38] 0.75 [4.40,5.60] 1.20

[0.5,1.5] 1 [4.18,5.81] 1.62

[0.38,1.63] 1.25 [3.93,6.07] 2.14

[0.25,1.75] 1.5 [3.59,6.41] 2.82
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2. Statements of main results

Our main result is summarized in the following:

Theorem. Given a FOU for an interval T2 FS, one that is symmetrical about

primary variable y at y =m (e.g., Fig. 1), then the centroid of such a T2 FS is

symmetrical about y=m, and the average value (i.e., the defuzzified value) of all

the elements in the centroid equals m.

Before proving this theorem, the results of which may seem intuitive to some

readers, we explain its importance. If, for example, we begin with interval T2

fuzzy numbers, all characterized by symmetrical FOUs, and perform an oper-

ation (arithmetic, set-theoretic, non-linear function) on them that leads to an-

other interval T2 fuzzy number with a symmetrical FOU, then the result of the

combined centroid+defuzzification procedures, which are performed after

these operations, could just as well have been obtained by treating the T2 fuzzy
numbers as crisp and performing crisp operations on them. In short, for such
m
y

Fig. 1. A symmetrical FOU.



J.M. Mendel / Information Sciences 172 (2005) 417–430 421
T2 fuzzy numbers and operations, if all that is desired is a crisp number after

performing said operations on the T2 fuzzy numbers, then it is a waste of effort

to perform the calculations using T2 mathematics. All knowledge about

the uncertainties of the numbers, as captured by their T2 MFs, is lost at

the end of the centroid+defuzzification procedures. Of course, the centroid

of such T2 FSs still provides a useful measure of the uncertainties that
have propagated through the operations. These observations lead us to the

following:

Corollary 1. If all that is desired is a crisp number after performing operations

on interval T2 FSs, then for the use of such sets to make a difference to not using

them (e.g., to using T1 FSs or just crisp numbers) the operations that are applied

to them must lead to a T2 FS that has a non-symmetrical FOU.

Interestingly enough, non-symmetrical FOUs occur in a Mamdani or TSK

(Takagi–Sugeno–Kang) rule-based FLS. For example, in a Mamdani FLS,

although the FOU for each fired rule is usually symmetrical (e.g., Fig. 2) this

symmetry is (fortunately) lost when the fired rule T2 FSs are combined, e.g.,

by union (e.g., Fig. 3), height defuzzification, etc. Note that in Figs. 2 and 3

light shaded regions are the FOUs of two fired consequent sets, f 1 and �f 1

are the lower and upper firing levels for Rule-1, and f 2 and �f 2 are the compa-

rable quantities for Rule-2. Formulas for these upper and lower firing levels
can be found in [4] or [5].
Fig. 2. Fired output sets (dark shaded regions) for two fired rules in an interval Mamdani T2 FLS

when min t-norm is used.



Fig. 3. Union combined output set for the two fired output sets in Fig. 2.
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3. Preliminaries

The proof of theorem assumes continuous universes of discourse and only

considers the FOU in Fig. 1 since that FOU is a quite general symmetrical
FOU. In addition, we assume that: (1) the FOU is shifted to the origin, by

means of the linear transformation of variables yfiym (this is justified in

Lemma 1) where m is the value of y about which the FOU is symmetrical;

(2) the primary variable for the symmetric FOU is discretized into N+1 sample

points where N is an even integer; and (3) each primary membership (see Def-

inition 1) is discretized into the same number of levels, M. As a result of these

assumptions, we direct our attention at the situation depicted in Fig. 4.

Before proceeding to a proof of the theorem, we provide some preliminaries.
An interval T2 FS whose primary membership at y=yi contains only one

element u=ui (i.e., Jyi=ui) is denoted (1/ui)/yi. In this case, the secondary MF

is the unit spike 1/ui.
y

1

I II

y1 y2 yN / 2y1y2  y N /2 0

M levels

_ _ _ . . .. . .

Fig. 4. Translated and discretized FOU. I and II denote the two symmetrical halves of the FOU.



y

1

I II

y1 y2 yN/2Ly1y2Ly N /2 0
_ _ _

Fig. 5. Embedded (unsymmetrical) T2 FS. The dashed curve is the associated embedded T1 FS. At

each of its values, the secondary grade equals 1. Although the embedded set is shown as a

continuous curve, it only has values at N+1 discrete values of y.
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Definition 2. For discrete universes of discourse Y and U, the jth embedded

interval T2 FS ~A
j
e has N+1 elements, 3 where ~A

j
e contains exactly one element

from JyN/2
,. . .,J0,. . .,JyN/2

, namely ujN=2; . . . ; u
j
0; . . . ; u

j
N=2, each with its associ-

ated unity secondary grade, i.e.,

~A
j

e ¼
XN=2

i¼N=2

1=uji
� 	


yi; uji 2 Jyi � U ¼ ½0; 1
 ð3Þ

Note that yi”yi (see Fig. 4).

An example of an embedded interval T2 FS is depicted in Fig. 5. Because all
secondary grades equal 1, we only show the domain [i.e., {(yi,ui), i=N/

2,. . .,0,. . .,N/2}] of the embedded T2 FS, which is also called an embedded T1

FS. When it is unnecessary to distinguish between an embedded T2 or T1 FS,

then we just refer to such a set as an embedded set.

Fact 1. There are at most MN + 1 embedded sets.

Proof. Consider the situation depicted in Fig. 4. Using the well-known
Multiplication Rule in combinatorics, we obtain the result that there are

exactly MN+1 embedded sets. Note that this number may be smaller if one or

more points are common to all embedded sets (e.g., if the upper and lower MFs

merge over a range of sample points). Hence, there are at most MN+1

embedded sets. h
3 In earlier publications (e.g., [5,7]) we assumed that ~A
j
e contained N elements. For a symmetrical

FOU it is more convenient to assume that ~A
j
e contains N+1 elements, where N is even, so that N/2

elements can be associated with each of the mirror images of the FOU (Regions I and II in Fig. 4),

and one element is shared by the mirror images.
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Fact 2. Let ~A
j
e denote the jth T2 embedded set for an interval T2 FS ~A. Then ~A

can be represented as the union of all of its T2 embedded sets, i.e.,

~A ¼
XMNþ1

j¼1

~A
j

e ð4Þ

A proof of this useful representation for a T2 FS is given in [7] where it is called

a Representation Theorem. It is valid for all kinds of T2 FSs, and not just for

interval T2 FSs. While Mendel and John do not advocate using (4) for comput-

ing (because of the huge number of embedded T2 FSs), this representation is
very useful for developing theoretical results about T2 FSs. We shall make

use of it in our proof of the theorem.
Definition 3. The centroid of the jth embedded T2 FS is located at y=ce
j

(j=1,. . .,MN+1) and its amplitude equals one; it is denoted 1/ce
j, where

cje ¼

PN=2

i¼N=2

yiu
j
i

PN=2

i¼N=2

uji

; uji 2 Jyi � ½0; 1
 ð5Þ

Note that ce
j is the centroid of the embedded T1 FS that is associated with

~A
j

e.

Fact 3. The centroid, C, of an interval T2 FS can be thought of as being

computed as follows: (1) compute the centroid of all embedded T1 FSs, ce
j

(j=1,. . .,MN + 1), (2) assign a unity MF to each of the resulting centroids, thereby

obtaining the single-element T1 FS 1/ce
j (j=1,. . .,MN + 1), and (3) union all of

these sets to obtain C, i.e.,

C ¼
XMNþ1

j¼1

1=cje ð6Þ

This follows directly from (4). By this fact, we can focus our attention at com-

puting the centroids, ce
j, of the embedded T1 FSs.

Next, we provide some preliminary lemmas that are used in our proof of the

theorem.

Lemma 1. Let f(y) be a function (e.g., an embedded T1 FS) with center of

gravity �f , and g(y) be an m-translated version of f(y), with center of gravity �g, i.e.,

g(y)=f(y+m). Then,

�f ¼ �g þ m ð7Þ
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Proof. This follows directly from the fact that

�g ¼
R1
1 ygðyÞdyR1
1 gðyÞdy

¼
R1
1 yf ðy þ mÞdyR1
1 f ðy þ mÞdy

¼
R1
1ðz mÞf ðzÞdzR1

1 f ðzÞdz
¼ �f  m ð8Þ

so that �f ¼ �g þ m. h

Lemma 2. For an origin-shifted symmetrical FOU, all of its embedded T2 FSs

are either symmetrical about y=0 or are unsymmetrical about y=0.

Proof. This is trivial to prove, since all embedded T2 FSs (see Figs. 5 and 6)

can only be symmetrical or unsymmetrical about y=0. h

Lemma 3. For an origin-shifted symmetrical FOU, there are exactly MN/2 + 1

symmetrical embedded T2 FSs, each with a centroid equal to 1/0.

Proof. Let r(yj) and r(yj) denote the amplitudes of the embedded T1 FS at the

sample points yj and yj, respectively, and r(0) denotes the amplitude of the

embedded T1 FS at y=0. Recall, also, that yj”yj. Then, we can express

the centroid of any embedded T1 FS (see Figs. 5 and 6) as

cje ¼

PN=2

j¼1

yjrðyjÞ þ
PN=2

j¼1

yjrðyjÞ þ 0� rð0Þ

PN=2

j¼1

rðyjÞ þ
PN=2

j¼1

rðyjÞ þ rð0Þ
ð9Þ

Invoking symmetry (r(yj)= r(yj)), we can re-express (9) as:

cjeðsymmetricalÞ ¼ aþ b
cþ d

¼ 0 ð10Þ
y

1

y1 y2 yN / 2y1y2y N /2 0

I II

_ _ _ . . .. . .

Fig. 6. Embedded (symmetrical) T2 FS.
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where

a ¼
XN=2

j¼1

yjrðyjÞ þ 0� rð0Þ=2 ð11Þ

b ¼ 
XN=2

j¼1

yjrðyjÞ þ 0� rð0Þ=2 ð12Þ

c ¼
XN=2

j¼1

rðyjÞ þ rð0Þ=2 ð13Þ

d ¼
XN=2

j¼1

rðyjÞ þ rð0Þ=2 ð14Þ

Eq. (10) demonstrates that the centroid of each symmetrical embedded T2 FS

can be expressed as 1/0.

That there are exactly MN/2 + 1 such sets follows by observing that each of

the symmetrical regions (I and II in Fig. 6) contains N/2 sampled values of the

primary variable y, and shares the element at y=0. The latter element can be

distributed equally in the two regions, as shown in each of the terms in (10).

Doing this preserves the symmetry of the entire embedded set and allows us to

talk about two symmetrical segments for that set, one in Region I and the other
in Region II. Applying the previously used multiplication rule N/2+1 times, we

obtain the value MN/2 + 1. h

Lemma 4. For a symmetrical FOU, there are exactly MN/2 + 1(MN/21)

unsymmetrical embedded T2 FSs, but they occur as pairs of mirror images

(e.g., see Fig. 7).
Proof. From Lemmas 2 and 3, the number of unsymmetrical embedded T2
FSs equals

MNþ1 MN=2þ1 ¼ MN=2þ1ðMN=2  1Þ:
Because Regions I and II are mirror images of each other about y=0,

any embedded T2 FS in these regions must have a mirror image, e.g., see

Fig. 7. h
Lemma 5. Let g(y) denote an unsymmetrical embedded T2 FS with centroid 1=�g,

and h(y) denote the mirror image of g(y) with centroid 1=�h. Then,

1=�h ¼ 1= �g ð15Þ



y

y

h(y)

g(y)

(a)

(b)

Fig. 7. Embedded type-2 fuzzy sets that are mirror images of each other, i.e., g(y)=h(y).
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Proof. Using the facts that
1=�g ¼ 1

Z 1

1
ygðyÞdy

�Z 1

1
gðyÞdy

� �
ð16Þ

1=�h ¼ 1

Z 1

1
yhðyÞdy

�Z 1

1
hðyÞdy

� �
ð17Þ
setting y=t in (17), and then using the fact that h(t)=g(t), it follows

that

1=�h ¼ 1

Z 1

1
thðtÞdt

�Z 1

1
hðtÞdt

� �

¼ 1 
Z 1

1
thðtÞdt

�Z 1

1
hðtÞdt

� �

¼ 1 
Z 1

1
tgðtÞdt

�Z 1

1
gðtÞdt

� �
¼ 1= �g � ð18Þ
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4. Proof of theorem

The proof is in two parts. First, we prove that the centroid is symmetrical

about y=m, and then we prove that the average (defuzzified) value of all the

elements in the centroid equals m.

4.1. Symmetry of the centroid

We can think of computing the centroid of an interval T2 FS that has a sym-

metric FOU using (6), i.e., we must compute the centroids of itsMN+1 embed-

ded T2 FSs. From Lemma 3, we already know that the centroid of each of the

MN/2 + 1 symmetrical embedded T2 FSs equals 1/0. From Lemmas 4 and 5, we

also know that the remaining MN/2 + 1(MN/21) unsymmetrical embedded T2

FSs occur in pairs, one of which has centroid 1/di and the other of which
has centroid 1/di, where di denotes the centroid of the respective embedded

T1 FS, and

i ¼ 1; 2; . . . ;
1

2
MN=2þ1ðMN=2  1Þ

Clearly, the collection of all of these centroids is symmetrical about y=0;

hence, by (6), Cmust also be symmetrical about y=0. Using Lemma 1, we con-

clude that the centroid of the original unshifted interval T2 FS is symmetrical
about y=m.

4.2. Defuzzified centroid

Next, we compute the average value, AVG, of all MN+1 embedded T2 FS

centroids. AVG contains three m-shifted terms, as described in Section 4.1, i.e.,

AVG ¼
mMN=2þ1 þ 1

2
MN=2þ1ðMN=2  1Þðmþ diÞ

MNþ1

þ
1
2
MN=2þ1ðMN=2  1Þðm diÞ

MNþ1

AVG ¼ mMN=2þ1 þ mMN=2þ1ðMN=2  1Þ
MNþ1

AVG ¼ mMNþ1

MNþ1
¼ m

ð19Þ

This completes the proof of the theorem.
5. Consequence of the theorem

In the Karnik–Mendel method [2] for computing the centroid, [cl,cr], of an
interval T2 FS, two independent iterative computations must be performed,
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one for cl, and one for cr. As a result of our theorem, we can reduce these com-

putations as follows:

Corollary 2. Given a FOU for an interval T2 FS, one that is symmetrical about

y=m, then [cl, cr] can be computed by using the Karnik–Mendel method to

compute cl, after which cr can be computed as

cr ¼ 2m cl ð20Þ
Proof. This follows directly from the theorem in which we established that

m=(cl+cr)/2. h

So, for ‘‘symmetrical’’ interval T2 FSs, our theorem has led to a 50% reduc-
tion in centroid computations.
6. Conclusions

The results in this paper represent another successful use of the Mendel–

John Representation Theorem for a T2 FS (Fact 2).

Our centroid symmetry theorem and Corollary 1 also help to explain and
understand why performance improvements may be expected when using the

defuzzified output of a type-2 FLS as compared to using the defuzzified output

of a comparable type-1 FLS. The defuzzified type-2 outputs will be different

from the defuzzified type-1 outputs due to the non-symmetric nature of the

FOU of the T2 FS (e.g., see Fig. 3) prior to the calculation of its centroid

and subsequent defuzzification. Our results also point up the importance for

ultimately winding up with non-symmetric FOUs prior to defuzzification.
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