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Abstract

In this state-of-the-art paper, important advances that have been made during the past five years for both general and
interval type-2 fuzzy sets and systems are described. Interest in type-2 subjects is worldwide and touches on a broad range
of applications and many interesting theoretical topics. The main focus of this paper is on the theoretical topics, with
descriptions of what they are, what has been accomplished, and what remains to be done.
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1. Introduction

Type-2 fuzzy sets (T2 FS), which were introduced by Zadeh in [98], are now very well established and (as
shall be demonstrated in this paper) are gaining more and more in popularity. In [51] we find answers to the
following:

1. Why did it take so long for the concept of a T2 FS to emerge? It seems that science moves in progressive ways
where one theory is eventually replaced or supplemented by another, and then another. In school we learn
about determinism before randomness. Learning about type-1 (T1) FSs before T2 FSs fits a similar learning
model. So, from this point of view it was very natural for fuzzyites to develop T1 FSs as far as possible.
Only by doing so was it really possible later to see the shortcomings of such FSs when one tries to use them
to model words or to apply them to situations where uncertainties abound.

2. Why didn’t T2 FSs immediately become popular? Although Zadeh introduced T2 FSs in 1975, very little was
published about them until the mid-to late nineties. Until then they were studied by only a relatively small
number of people, including: [13,14,19,20,63,64,66,86]. Recall that in the 1970s people were first learning
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what to do with T1 FSs, e.g. fuzzy logic control. Bypassing those experiences would have been unnatural.
Once it was clear what could be done with T1 FSs, it was only natural for people to then look at more chal-
lenging problems. This is where we are today.

3. Why do we believe that by using T2 FSs we will outperform the use of T1 FSs? T2 FSs are described by mem-
bership functions (MFs) that are characterized by more parameters than are MFs for T1 FSs. Hence, T2
FSs provide us with more design degrees of freedom; so using T2 FSs has the potential to outperform using
T1 FSs, especially when we are in uncertain environments. Note that, at present, there is no theory that

guarantees that a T2 FS will always do this.

One sign of a vibrant field is its applications. Here we categorize the applications that have appeared in the
literature for T2 fuzzy sets and systems since 2001. For applications prior to that year, see [47, pp. 13–14].
Approximation: [61] (TSK/steel strip temperature); Clustering: [26] (C spherical shells algorithm), [72]
(fuzzy C-means); Control: [40] (marine and traction diesel engines), [75] (integrated development plat-
form), [4] (evolutionary computing/NL dynamic plants), [36] (buck DC–DC converters), [17] (tracking
mobile objects/robotic soccer games), [93] (liquid-level), [81] (proportional control), [25] (autonomous
mobile robots), [24] (autonomous mobile robots/hierarchical), [44] (adaptive control of nonlinear
plants); Databases: [67] (summarization); Decision making: [70] (variation in human decision making);
Embedded agents: [10,11] (ambient intelligent environments); Health care: [27] (clinical diagnosis), [9]
(differential diagnosis), [92] (nursing assessment); Hidden Markov models: [103] (phoneme recognition);
Neural networks: [73] (fuzzy perceptron); Noise cancellation: [3] (adaptive noise cancellation); Pattern

classification: [74] (fuzzy k-nearest neighbor); Quality Control: [45] (sound speakers); Spatial query:

[71] (spatial objects); Wireless communications: [35] (wireless sensors/power on-off control), [77] (wireless
sensor network lifetime analysis).
This paper focuses on advances in T2 fuzzy sets and systems since the year 2001, because earlier works are
already well documented, e.g. [47]. The focus is on theoretical and computational issues. While some issues
have been resolved, many new ones have been exposed, so T2 is a very fertile field for research.

Up until 2001, there was a very heavy emphasis on interval T2 FSs (IT2 FSs) and FLSs (IT2 FLSs), pri-
marily because of their computational tractability. This emphasis has continued; however, interests have also
turned towards more general kinds of T2 FSs and systems. Both T2 paths are covered in this paper. Section 2
covers topics about general T2 FSs and FLSs, and Section 3 covers topics about IT2 FSs and IT2 FLSs. Sec-
tion 4 covers the fuzzy weighted average; Section 5 covers computing with words; and, Section 6 provides our
conclusions.

It is assumed that the reader has some familiarity with T2 fuzzy sets and systems. For a relatively simple
introduction to the former, see [54], and for the latter, see [47,55].

2. General T2 FSs and FLSs

In Section 2.1 we begin by presenting a Representation Theorem for a T2 FS. It is one of the most useful
results in T2 FS theory because it can be used to derive many things that are associated with that theory, both
old and new, in a simple and straightforward manner. Unfortunately, is not useful for computation; hence, the
latter needs to be approached from other viewpoints. As for T1 FSs, the fundamental computations for T2
FSs are union, intersection and complement, and how to compute them, as well as attendant difficulties in
such computations, are discussed in Section 2.2. One of the major applications for T2 FSs is a rule-based
FLS, namely a T2 FLS, which is overviewed in Section 2.3. The major new calculation in a T2 FLS is called
type-reduction; it maps a T2 FS into a T1 Fs, after which it is a simple matter to defuzzify the T1 FS in order to
obtain a number at the output of the T2 FLS. Type-reduction, which is a major bottleneck for a T2 FLS, is
overviewed in Section 2.4, and new ways for computing it are mentioned.

Zadeh [99–101] has introduced the computing with words (CWW) paradigm. Because words mean different
things to different people, Mendel [50,51] has argued that words must be modeled using T2 FSs when com-
puters interact with people and the interactions use FSs. In order to map from T2 FS word models back into
a word, one will need the concept of similarity of T2 FSs, which is discussed in Section 2.5.
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2.1. Representation theorem for a T2 FS

Mendel and John [54] have presented the following new representation for a T2 FS.

Theorem 1 (Representation theorem). Assume that primary variable x is sampled at N values,

x1, x2, . . . ,xN, and at each of these values its primary memberships ui are sampled at Mi values,

ui1; ui2; . . . ; uiMi . Let eAj
e denote the jth T2 embedded set1 for T2 FS eA, i.e.,
1 An
2 No
eAj
e � fðxi; ðuj

i ; fxiðu
j
iÞÞÞ; uj

i 2 fuik; k ¼ 1; . . . ;Mig; i ¼ 1; . . . ;Ng ð1Þ

in which fxiðu

j
iÞ is the secondary grade at uj

i . Note that eAj
e can also be expressed as
eAj
e ¼

XN

i¼1

½fxiðu
j
iÞ=uj

i �=xi; uj
i 2 fuik; k ¼ 1; . . . ;Mig ð2Þ
Then eA can be represented as the union of its T2 embedded sets, i.e.,
eA ¼XnA

j¼1

eAj
e ð3Þ

nA ¼
YN
i¼1

Mi ð4Þ
This representation of a T2 FS, in terms of much simpler T2 FSs, the embedded T2 FSs, is very useful for
deriving theoretical results, as we explain later in this paper; however, it is not recommended for computa-
tional purposes, because it would require the explicit enumeration of the nA embedded T2 FSs and nA can
be astronomical.
2.2. Operations on general T2 FSs

Consider two T2 FSs sets2 eA and eB, i.e.,
eA ¼ Z
X

l~AðxÞ=x ¼
Z

X

Z
Ju

x

fxðuÞ=u

" #
=x; J u

x ¼ fðx; uÞ : u 2 ½l~AðxÞ; �l~AðxÞ�g � ½0; 1� ð5Þ
and
eB ¼ Z
X

l~BðxÞ=x ¼
Z

X

Z
Jw

x

gxðwÞ=w

" #
=x; J w

x ¼ fðx;wÞ : w 2 ½l~BðxÞ; �l~BðxÞ�g � ½0; 1� ð6Þ
It is well-known [63] that the union of eA and eB is another T2 FS whose MF can be computed from:
l~A[~BðxÞ ¼
Z

u2J u
x

Z
w2Jw

x

fxðuÞHgxðwÞ=ðu _ wÞ ¼ l~AðxÞ t l~BðxÞ; x 2 X ð7Þ
where t denotes the join operation. The use of the notation l~AðxÞ t l~BðxÞ to indicate the join between the sec-
ondary MFs l~AðxÞ and l~BðxÞ is, of course, a shorthand notation for the operations in the middle of (7). What (7)
says is that to perform the join between two secondary MFs, l~AðxÞ and l~BðxÞ, v = u _ w must be performed
between every possible pair of primary memberships u and w, such that u 2 J u

x and w 2 J w
x and that the sec-

ondary grade of l~A[~BðxÞ must be computed as the t-norm operation between the corresponding secondary
grades of l~AðxÞ and l~BðxÞ, fx(u) and gx(w), respectively. Note that at each value of x the join involves T1
FSs (i.e., secondary MFs), and that the join must be computed for "x 2 X. If more than one combination
embedded T2 FS is a T2 FS that has only one primary membership at each xi. It is also called a wavy slice [54].
te that (5) means eA : X ! f½a; b� : 0 6 a 6 b 6 1g.
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of u and w gives the same point u _ w, then in the join we keep the one with the largest membership grade.
Usually, the maximum t-conorm is used, as suggested in [98,63].

In general, evaluating the join is difficult to do for arbitrary T2 FSs. Karnik and Mendel [28] have shown
that for n convex and normal T1 FSs, F1, . . . ,Fn, characterized by MFs f1(h), . . . , fn(h), respectively, where
f1(v1) = � � � = fn(vn) = 1, and the fi(h) are re-ordered so that v1 6 v2 6 � � � 6 vn, the MF of tn

i¼1F i, using max-
imum t-conorm and either minimum or product t-norm, can be expressed as
ltn
i¼1

F i
ðhÞ ¼

T n
i¼1fiðhÞ h < v1

T k
i¼1fiðhÞ vk 6 h 6 vkþ1

_n
i¼1fiðhÞ h > vn

8><>: 1 6 k 6 n� 1 ð8Þ
Unfortunately, this formula is not so easy to use. Coupland and John [7] have taken a very new and novel
approach to computing the join. Because their approach is also used for computing the meet, we describe
it later in this section.

It is also well known [63] that the intersection of eA and eB is another T2 FS whose MF can be computed
from:
l~A\~BðxÞ ¼
Z

u2Ju
x

Z
w2Jw

x

fxðuÞHgxðwÞ=u ^ w ¼ l~AðxÞ u l~BðxÞ; x 2 X ð9Þ
where u denotes the meet operation. The use of the notation l~AðxÞ u l~BðxÞ to indicate the meet between the
secondary MFs l~AðxÞ and l~BðxÞ is another shorthand notation, but this time for the operations in the middle
of (9). What (9) says is that to perform the meet between two secondary MFs, l~AðxÞ and l~BðxÞ, v = u ^ w must
be performed between every possible pair of primary memberships u and w, such that u 2 J u

x and w 2 J w
x , and

the secondary grade of l~A\~BðxÞ must be computed as the t-norm operation between the corresponding second-
ary grades of l~AðxÞ and l~BðxÞ, fx(u) and gx(w), respectively. This must be done for "x 2 X. If more than one
combination of u and w gives the same point u ^ w, then in the meet (just as in the join) we keep the one with
the largest membership grade.

Note that in (9) there are two t-norms, w and ^. Although they are usually chosen to be the same, they do
not have to be. See [78] for very interesting discussions about this.

In general, evaluating the meet is also difficult to do for arbitrary T2 FSs, especially when the product t-
norm is used. Karnik and Mendel [28] have also shown that for n convex and normal T1 FSs, F1, . . . ,Fn, char-
acterized by MFs f1(h), . . . , fn(h), respectively, where f1(v1) = � � � = fn(vn) = 1, and the fi(h) are re-ordered so
that v1 6 v2 6 � � � 6 vn, the MF of un

i¼1F i using maximum t-conorm and minimum t-norm can be expressed as
lun
i¼1

F i
ðhÞ ¼

_n
i¼1fiðhÞ h < v1

^k
i¼1fiðhÞ vk 6 h 6 vkþ1 1 6 k 6 n� 1

^n
i¼1fiðhÞ h > vn

8><>: ð10Þ
Unfortunately, it is still difficult to use (10). To-date, no formula that is similar to (10) exits for the product t-
norm, which is unfortunate because many applications use product t-norm. When all MFs are Gaussian, then
Karnik and Mendel [28] have an approximation for computing the meet under product t-norm, one that leads
to another Gausssian MF, so that the approximate meet is ‘‘reproducing’’, and can be expanded in multi-argu-
ment form.

The usual derivations of (7) and (9) utilize Zadeh’s extension principle. Mendel and John [54] show how (7)
and (9) can easily be derived without having to use the extension principle, when eA and eB are represented as in
Theorem 1. These derivations were the first theoretical uses of the new Representation Theorem.

Coupland and John [6,7] have shown how to compute the join and meet of eA and eB using methods from
computational geometry (e.g., a modified Weiler–Atherton clipping algorithm, and a Bentley–Ottman plane
sweep algorithm). Their approach is based on modeling a secondary MF geometrically as a [7] ‘‘set of con-
nected straight line segments that need not be equally-spaced across the domain’’, and is limited so far to
the minimum t-norm and the maximum t-conorm. They distinguish between a partially discrete T2 FS and
a discrete T2 FS. A partially discrete T2 FS is one whose primary variable is discrete (sampled) but whose sec-
ondary MFs are continuous, whereas a discrete T2 FS is one whose primary variable and secondary MFs are
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discrete (sampled). Based on extensive simulations of a two-rule FLS in which each rule has two-antecedents,
and the secondary MFs are discretized into 10 points, and are also described by two line segments, Coupland
and John obtain over a ‘‘four and a half fold increase in inferencing speed’’. They also state ‘‘. . . that for any
T2 FLS with secondary MFs with five or more discretizations, using a partially discrete model would give a
faster and more accurate system’’. This approach to computing operations for general T2 FSs looks very
promising and is continuing.

When secondary MFs are triangular (an interesting compromise between interval secondary MFs and gen-
eral secondary MFs, and one that is also considered by Coupland and John [7]) then Starczewski [78,79] has
shown that ‘‘extended t-norms3 of triangular fuzzy truth values may be approximated by triangular fuzzy
truth values as well’’. One of the most interesting aspects of Starczewski’s [79] approach is it ‘‘. . . reduces cal-
culations of extended t-norms (a similar approach can be rearranged for s-norms) to computing only the three
characteristic functions: principal, upper and lower. Arbitrary traditional t-norms (or s-norms) can be used to
calculate these functions. A tremendously useful feature of this approach is that the resultant MF preserves
triangular shapes of the two arguments, and this way the approximate t-norms can be expanded to multi-argu-
ment form. Moreover, for each triangular fuzzy membership grade only three parameters have to be stored
and processed by [a] FLS, instead of tabularized functions as in the general approach’’. Another very useful
feature of this approach is that formulas are given for the operations, so that explicit derivative formulas can
be obtained if a triangular T2 FLS is designed (optimized) using a method that requires such derivatives (e.g.,
steepest descent). Starczewski’s results also seem very promising and are continuing. Some additional work by
him for Gaussian T2 FSs is in [80].

In a (singleton) T2 FLS the meet may only have to be computed at a single value of x, namely x = x 0.

Definition. In general,
3 An
Tanak

4 Th
eA ¼ fððx; uÞ; l~Aðx; uÞÞj8x 2 X ; 8u 2 J x � ½0; 1�g ð11Þ

in which l~Aðx; uÞ is the T2 MF of eA. By a type-2 fuzzy singleton, we mean a T2 FS for which
l~Aðx; uÞ ¼
1=1 x ¼ x0

1=0 8x 6¼ x0

�
ð12Þ
In (12), 1/1 (1/0) means that at x = x 0, when its primary variable u = 1 (u = 0), the associated secondary grade
equals 1. At all other values of u the secondary grade equals 0; hence, by convention, such secondary grades
are not shown.

Example. The meet between a T2 singleton, eA, and a normal4 T2 FS, eB, under minimum and product t-norms
is a widely used operation in a T2 FLS (Section 2.3), and is (for a derivation, see [47, p. 222]):
l~AðxÞ u l~BðxÞ ¼
l~Bðx0Þ x ¼ x0

1=0 8x 6¼ x0

�
ð13Þ
Observe that the meet between a type-2 singleton, eA, and a T2 FS, eB, sifts out a specific vertical slice of
l~Bðx; uÞ, namely l~Bðx0Þ, the secondary MF at x = x 0.

Because it is very easy to compute the complement of eA, we do not discuss it here.
Finally, Walker and Walker [87–89] have many interesting and important mathematical results about join

and meet within the framework of the algebra of truth values of T2 FSs. How these results can be applied is
worth exploring.
extended t-norm is a t-norm obtained by applying the Extension Principle to a T1 t-norm. It was the basis for Mizumoto and
a’s [63] works.
is means the secondary MFs of eB reach the value 1.
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2.3. Type-2 FLS

A general T2 FLS is depicted in Fig. 1. It is very similar to a T1 FLS, the major structural difference being
that the defuzzifier block of a T1 FLS is replaced by the output processing block in a T2 FLS. That block con-
sists of type-reduction (TR) followed by defuzzification. We will have a lot to say about TR in Sections 2.4 and
3.5.

Consider a T2 FLS having p inputs x1 2 X1, . . . ,xp 2 Xp, one output y 2 Y, and M rules, where the lth rule
has the form
5 De
Rl : IF x1is eF l
1 and � � � and xp is eF l

p; THEN y is eGl l ¼ 1; . . . ;M ð14Þ
This rule represents a T2 relation between the input space X1 · � � � · Xp, and the output space, Y, of the T2
FLS. Each rule in (14) is interpreted as a T2 fuzzy implication. With reference to (14), leteF l

1 � � � � � eF l
p ¼ eAl; then, as is well known, (14) can be re-expressed as
Rl : eF l
1 � � � � � eF l

p ! eGl ¼ eAl ! eGl; l ¼ 1; . . . ;M ð15Þ
Rl is described by the MF lRlðx; yÞ ¼ lRlðx1; . . . ; xp; yÞ, where5
lRlðx; yÞ ¼ l~Al!~Glðx; yÞ ¼ ½up
i¼1l~F l

i
ðxiÞ� u l~GlðyÞ ð16Þ
Most generally, the p-dimensional input to Rl is given by the T2 FS eAx whose MF is
l~Ax
ðxÞ ¼ up

i¼1l~X i
ðxiÞ ð17Þ
where ~X i ði ¼ 1; . . . ; pÞ are the labels of the FSs describing the inputs. Each rule Rl determines a T2 FSeBl ¼ eAx � Rl such that
l~BlðyÞ ¼ l~Ax�RlðyÞ ¼ tx2X½l~Ax
ðxÞ u lRlðx; yÞ�; 8y 2 Y l ¼ 1; . . . ;M ð18Þ
This equation is the input–output relation in Fig. 1 between the T2 FS that excites one rule in the inference
engine and the T2 FS at the output of that engine. Substituting (16) and (17) into (18), it is straightforward to
show (l = 1, . . . ,M):
l~BlðyÞ ¼ l~GlðyÞ u ½tx12X 1
l~X 1
ðx1Þ u l~F l

1
ðx1Þ� u � � � u ½txp2X pl~X p

ðxpÞ u l~F l
p
ðxpÞ�

n o
; 8y 2 Y ð19Þ
To-date, only the product or minimum t-norms have been used for the meet, and as we have discussed in Sec-
tion 2.2, it is very difficult to compute the meet for general T2 FSs.

As in the T1 case, fired rule sets are combined either before or as part of output processing, in the latter case
during type-reduction. We return to this later in Section 2.4.

Referring to Fig. 1, in general, the fuzzifier maps a crisp point x = (x1, . . . ,xp)T 2 X1 · X2 · � � � · Xp � X

into a T2 FS eAx in X. Here we focus on a major simplification of (19) as a result of singleton fuzzification,
rivations of (16)–(20) can be found, e.g. in [47, Chapter 10].
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which is the only case described in this paper, because non-singleton fuzzification may be at present too com-
plicated for general T2 FLSs.

For singleton fuzzification, the join operations in (19) are very easy to evaluate because each l~X i
ðxiÞ is non-

zero only at one point, xi ¼ x0i; hence (for minimum and product t-norms), applying (13) to (19), we find:
6 An
l~BlðyÞ ¼ l~GlðyÞ u ½up
i¼1l~F l

i
ðx0iÞ�; 8y 2 Y ð20Þ
The term in the bracket on the last line of (20) is referred to as the firing set, i.e.
Firing Set ¼ up
i¼1l~F l

i
ðx0iÞ ð21Þ
Because l~F l
i
ðx0iÞ is a T1 FS, the firing set is the meet of p T1 FSs.

Note that l~BlðyÞ depends upon x = x 0, although this dependence is not shown explicitly in the notation
l~BlðyÞ; however, when x 0 changes l~BlðyÞ changes as well. In general, computing l~BlðyÞ is very difficult because,
as we have discussed in Section 2.2, it is still very difficult to compute the meet of general T2 FSs. Hopefully,
the new approaches for computing the meet, that were discussed in Section 2.2, will lead to a practical com-
putation of l~BlðyÞ.

2.4. Type-reduction for general T2 FSs

Referring to Fig. 1, we see that the outputs of the inference engine are type-reduced and then defuzzified. A
type-reducer combines all fired-rule output sets in some way (just like a T1 defuzzifier combines the T1 rule
output sets), which leads to a T1 FS that is called a type-reduced (TR) set. Karnik and Mendel [29] have pro-
posed five kinds of TR. Here we briefly review two of them (each of these methods is quite different) because
how to compute the TR set for general T2 FSs is in general quite difficult. We need to understand why that is
so and what new options have recently become available for making these computations more practical.

Centroid TR: To begin, all the fired rule-output T2 FSs, eBl, are combined by finding their union, i.e.
[M
l¼1

eBl � eB ð22Þ
where
l~BðyÞ ¼ tM
l¼1l~BlðyÞ 8y 2 Y ð23Þ
in which l~BlðyÞ is the secondary MF for the lth rule, and l~BlðyÞ is given by (20). Centroid TR calculates the
centroid of eB.

As another application of the Representation Theorem, the centroid TR set, Yc(x), is simply the union of
the centroids of all the embedded T2 FSs of eB. Until very recently, the only way to compute Yc(x) was to use
the following procedure. For each x = x 0:

1. Compute l~BðyÞ using (23). This is possible because l~BlðyÞ (l = 1, . . . ,M) will already have been computed for
all y 2 Y, as in (20).

2. Discretize the y-domain into N points y1, . . . ,yN.
3. Discretize each J yi

ðx0Þ (the primary memberships of l~BðyÞ at yi) into a suitable number of points, say Mi

(i = 1, . . . ,N). Let hiðx0Þ 2 J yi
ðx0Þ.

4. Enumerate all the embedded T1 sets6 of eB; there will be
QN

i¼1Mi of them.
5. Compute the centroid of each enumerated embedded T1 set and assign it a membership grade equal to the

t-norm of the secondary grades corresponding to that enumerated embedded T1 set.
embedded T1 set is the domain for an embedded T2 FS (see e.g., (34)).
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Mathematically, this means
7 A G
Y cðx0Þ ¼ fðfk; ðT N
i¼1fyi

ðhiðx0ÞÞÞkÞg
QN

i¼1
Mi

k¼1 ð24aÞ

fk ¼
PN

i¼1yihiðx0ÞPN
i¼1hiðx0Þ

 !
k

ð24bÞ
Note that if two or more embedded T1 sets have the same centroid, we keep the one with the largest value of
T N

i¼1fyi
ðhiðx0ÞÞ. Note, also, that in (24a) we must use the minimum t-norm, due to technical reasons that are

explained in [20,47].
This procedure is not very practical because it requires

QN
i¼1Mi centroid calculations, and this number will

in general be astronomical.
A recently-developed much more practical method for computing Yc(x), that is based on the fuzzy weighted

average (FWA), is described in Section 4. This method uses a-cuts, an a-cut decomposition theorem [30] and
the KM algorithms (see Section 3.3.3) that were originally developed for computing the centroid of an interval
T2 FS.

Another recent approach for computing Yc(x), based on randomly sampling embedded T2 FSs and com-
puting their centroids [21] gives rise to a significant reduction in the time or resources needed to perform type-
reduction. Greenwood et al. have examples (for four different primary MFs and different discretizations) that
demonstrate the number of embedded sets [randomly] selected only marginally affects the defuzzified value.
Excellent results have been obtained for as few as 10 randomly selected embedded T2 FSs. That such a small
number of randomly chosen embedded T2 FSs can lead to such good results is a surprising result that awaits a
theoretical explanation. Such an explanation is under study.

Center-of-sets TR: Each consequent T2 set, eGl, is first replaced by its centroid, C ~Gl (which itself is a T1 set)
and then a weighted average of these centroids is computed. The weight associated with the lth centroid is the
(T1) firing set corresponding to the lth rule namely [see (21)] up

i¼1l~F l
i
ðx0iÞ � Elðx0Þ. Until very recently, the only

way to compute the center-of-sets TR set, Ycos(x
0), was to use the following procedure. For each x = x 0:

1. Discretize the output space Y into a suitable number of points, and compute the centroid C ~Gl of each con-
sequent set on the discretized output space using the brute-force methodology that has just been described
above. These consequent centroid sets can be computed ahead of time and stored for future use.

2. Compute the T1 firing set Elðx0Þ ¼ up
i¼1l~F l

i
ðx0iÞ associated with the lth fired-rule consequent set.

3. Discretize the domain of each T1 FS C ~Gl into a suitable number of points, say Nl (l = 1, . . . ,M).
4. Discretize the domain of each T1 FS El(x

0) into a suitable number of points, say Ml (l = 1, . . . ,M).
5. Enumerate all the possible combinations (d1, . . . ,dM, e1(x 0), . . . ,eM(x 0)) such that dl 2 C ~Gl and

el(x
0) 2 El(x

0). The total number of combinations will be
QM

l¼1MlNl.
6. Compute the centroid

PM
l¼1dlelðx0Þ=

PM
l¼1elðx0Þ of each of the enumerated combinations and assign it a

membership grade equal to the t-norm T M
l¼1lC ~Gl

ðdlÞHT M
l¼1lElðx0Þðelðx0ÞÞ.

Mathematically, this means
Y cosðx0Þ ¼ fðnk; ðT M
l¼1lC ~Gl

ðdlÞHT M
l¼1lElðx0Þðelðx0ÞÞÞkÞg

QM

i¼1
MiNi

k¼1 ð25aÞ

nk ¼
PM

l¼1dlelðx0ÞPM
l¼1elðx0Þ

 !
k

ð25bÞ
Because there are exactly MC ~Gl and El(x
0), where M is the number of rules, we can use product or minimum t-

norm in (25a). If two or more combinations of (d1, . . . ,dM, e1(x 0), . . . ,eM(x 0)) have the same centroid, we keep
the one with the largest value of T M

l¼1lC ~Gl
ðdlÞHT M

l¼1lElðx0Þðelðx0ÞÞ. The expression for the center-of-sets TR set is

also called a generalized centroid7 (GC).
C is a weighted average in which all numbers are T1 FSs. For discussions, see [29] or [47].
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In Step 6 the weighted sum and t-norm operations in (25a) and (25b) have to be repeated
QM

l¼1MlN l times.
Although this number is much less than that required for centroid TR, because usually M	 N,

QM
l¼1MlNl can

also be astronomical. Consequently, this procedure also is not very practical.
How to compute Ycos(x) using the FWA is described in Section 4.
How the random sampling method [21] can be used for center-of-sets (and other kinds of) TR also remains

to be explored. Note that a big difference between centroid TR and e.g., center-of-sets TR is that for the for-
mer the primary variable x can be discretized as finely as desired [i.e., N in (24) can be made as large as
desired], whereas for the latter we do not have control over the number of rules M during the TR process.
Whether or not this affects the random sampling method is an open question.

A recent unpublished work [79] that focuses on triangular secondary MFs includes an approximate KM-
like procedure for TR. This is very important if such T2 FSs are to find practical use in applications of T2
FLSs.

2.5. Similarity of T2 FSs

The literature on similarity of T1 FSs is quite extensive, e.g. [5,8,91]. Mitchell [62] was the first to define a
similarity measure for general T2 FSs. Here we summarize his similarity measure, but using the symbols of this
paper.

Given two T2 FSs eA and eB, for which (using the Representation Theorem ) eA is given by (3) and (2), and
8 Ou
choosi
eB ¼XnB

k¼1

eBk
e ð26Þ

eBk
e ¼

XN

q¼1

½gxq
ðwk

qÞ=wk
q�=xq; wk

q 2 fwqn; n ¼ 1; . . . ;Mqg ð27Þ
Mitchell’s T2 similarity measure, eSðeA; eBÞ, is a weighted average of a T1 similarity measure Sjk that is com-
puted for all of the nAnB combinations of eA and eB’s embedded T2 FSs (again, using the Representation The-
orem), i.e.8
eSðeA; eBÞ ¼XnA

j¼1

XnB

k¼1

SjkKjk ð28Þ
where Sjk can be any of the known T1 similarity measures, the summations are arithmetic, and
Kjk ¼
T N

i¼1fxiðu
j
iÞ � T N

q¼1gxq
ðwk

qÞPnA
j¼1

PnB
k¼1T N

i¼1fxiðu
j
iÞ � T N

q¼1gxq
ðwk

qÞ
ð29Þ
How to calculate (28) and (29) other than by direct enumeration of all embedded T2 FSs is an open question.
For IT2 FSs, since all secondary MFs equal one, it is easy to show that Kjk = 1/nAnB, so that
eSðeA; eBÞ ¼ 1

nAnB

XnA

j¼1

XnB

k¼1

Sjk ð30Þ
Unfortunately, (30) still requires direct enumeration of all embedded T1 FSs so that each Sjk can be computed.eSðeA; eBÞ in (28) and (30) is a number. An alternative is to treat the summations in these equations as the
union, in which case eSðeA; eBÞ in (28) becomes a T1 FS, namely
eSðeA; eBÞ ¼[nA

j¼1

[nB

k¼1

ðKjk=SjkÞ ð31Þ
r statement of his eSðeA; eBÞ is based on choosing the embedded T2 FSs as in Theorem 1, whereas his statement of eSðeA; eBÞ is based on
ng the embedded T2 FSs randomly.
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For an IT2 FS, eSðeA; eBÞin (30) becomes an interval set, namely
eSðeA; eBÞ ¼[nA

j¼1

[nB

k¼1

ð1=SjkÞ ¼ min
8j;k

Sjk;max
8j;k

Sjk

� �
� ½sl; sr� ð32Þ
To obtain a single similarity number from either (31) or (32) is simple; just find their centroid. What is still very
challenging is enumerating all of the embedded T2 FSs in order to obtain eSðeA; eBÞ in (31), or computing sl and
sr in order to obtain eSðeA; eBÞ in (32).

As mentioned in Section 2.1, in the past, we have found the use of the Representation Theorem very good
for theoretical developments but very poor for computation. The centroid (Section 3.3) is a good example of
this situation. Just as a totally different approach was needed to compute the centroid of an IT2 FS, we con-
jecture that a totally different approach will be needed to compute eSðeA; eBÞ.
3. Interval T2 FSs and FLs

In Section 3.1 we begin by specializing the Representation Theorem to IT2 FSs, because it has been and
continues to be widely used for such FSs. Connections between IT2 FSs and interval-valued fuzzy sets and
non-stationary T1 FSs are described in Section 3.2. The centroid of an IT2 FS is very widely used. Advances
about the centroid, including many of its properties, how to compute it using the KM algorithms (including its
properties), and its bounds (which are in terms of geometric properties of an IT2 FS), are summarized in
Section 3.3. IT2 FLSs are reviewed in Section 3.4, as a prelude to discussions about TR, and how it can be
avoided, which are given in Section 3.5. For IT2 FLSs to become widely used in commercial products, hard-
ware realizations of them must be developed. This is discussed in Section 3.6.

3.1. Representation for an IT2 FS

An IT2 FS eA is completely described by its lower and upper MFs, l~AðxÞ and �l~AðxÞ, respectively. The foot-
print of uncertainty (FOU) of an IT2 FS is described in terms of these MFs, as
FOUðeAÞ ¼ [
x2X

½l~AðxÞ; �l~AðxÞ� ð33Þ
If X is discrete, then (33) is modified to
FOUðeAÞ ¼ [
x2X

fl~AðxÞ; . . . ; �l~AðxÞg ð34Þ
In (34) the . . . notation means all of the embedded T1 FSs between the lower and upper MFs. Frequently, (33)
and (34) are used interchangeably without any confusion. The specialization of Representation Theorem 1 to
an IT2 FS is contained in the following:

Corollary 1 (Representation for an IT2 FS [55]). For an IT2 FS, for which X and U are discrete, the domain ofeA is equal to the union of all of its embedded T1 FSs, so that eA can be expressed as
eA ¼ 1=FOUðeAÞ ¼ 1
[nA

j¼1

Aj
e

,
ð35Þ
where Aj
e is an embedded T1 FS (that acts as the domain for eAj

e; j ¼ 1; . . . ; nA), nA is given by (4), and
Aj
e ¼

[N
i¼1

ðuj
i=xiÞ uj

i 2 fl~AðxiÞ; . . . ; �l~AðxiÞg ð36Þ
In (33) it is understood that the notation 1=FOUðeAÞ means putting a secondary grade of 1 at all elements in
the FOUðeAÞ.

This representation of an IT2 FS, in terms of embedded T1 FSs, is very useful for deriving theoretical
results, as we explain below; however, it is not recommended for computational purposes, because it would
require the enumeration of the nA embedded T1 FSs and nA can be astronomical.
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3.2. Interpretations of an IT2 FS

It turns out that an IT2 FS is the same as an interval-valued FS (IVFS) for which there is a very extensive
literature (e.g., [98], [2, see the many references in this article]). These two seemingly different kinds of FSs were
historically approached from very different starting points, which as we shall explain next has turned out to be
a very good thing.

The IT2 FS has always been considered to be a special case of a general T2 FS; consequently, things that
were developed for the latter were then specialized to the former. Embedded T2 FSs, the Representation The-
orem, type-reduction and centroid all originated for a general T2 FS and were then specialized to an IT2 FS.
They do not appear at all in the IVFS literature.

For a general T2 FS the new third dimension of its secondary-grades is very important, because it provides
additional knowledge about the FS. When all of these grades are the same, as in an IT2 FS, then they convey
no new information, and so for such a T2 FS the third dimension is superfluous. This is why an IT2 FS can be
completely described by its two-dimensional FOU, as in (35). It is this recognition that lets one immediately
connect an IT2 FS with an IVFS. The latter was always approached as two-dimensional.

Gorzalczany (e.g., [19,20]) must be acknowledged as a pioneer in the development of IVFSs. Some of his
diagrams for these FSs look just like those given for a FOU, although he does not call them ‘‘FOU’’. One of
the most comprehensive treatments of IVFSs is [2]. Some of Bustince’s results about approximate reasoning
are the same as those in [34] which focused on IT2 FLSs; however, Bustince was not constrained by Mamdani
implication, as were Liang and Mendel; hence, there are many more results for a variety of Generalized
Modus Ponen algorithms in his article.

In [2] there is also a section about the similarity of IVFSs. First Bustince defines a normal interval-valued

similarity measure S(A,B) between9 two IVFSs A and B, as one that satisfies the following five properties:
(1) S(A,B) = S(B,A) for all A, B 2 IVFSs(X); (2) S(D, DC) = [0,0] for all D 2 P(X), where DC is the comple-
ment of D and P(X) is the class of all crisp sets of X; (3) S(C, C) = [1, 1] for all C 2 IVFSs(X); (4) for all
A, B, C 2 IVFSs(X), if A 6 B 6 C, then S(A, B) P S(A, C) and S(B, C) P S(A, C); and, (5) if
A, B 2 IVFSs(X), then S(A, B) 2 [0,1]. Bustince then shows that
9 In
SðA;BÞ ¼ ½SLðA;BÞ; SUðA;BÞ�; ð37Þ

in which SL(A, B) is a T1 similarity measure between the lower MFs of A and B, and SU(A, B) is a T1 sim-
ilarity measure between the upper MFs of A and B, satisfies the five properties. There are additional results,
but they are beyond the scope of this paper. What the connection is between the interval similarity measure in
(32) and Bustince’s similarity measure in (37) is an open question.

Garibaldi, et al. [18] have introduced the concept of a non-stationary T1 FS and have proposed that it be
compared with an IT2 FS. According to them: ‘‘A non-stationary FS _A is characterized by a MF l _Aðx; tÞ,
where x 2 X, l _Aðx; tÞ 2 ½0; 1� and t is a free variable, time—the time at which the FS is instantiated, i.e. . . .
_A ¼
Z

x2X
l _Aðx; tÞ=x ð38Þ
. . . The three main alternative kinds of non-stationary [for a T1 MF] are variation in location, variation in
slope and noise variation’’. For example, let c denote the center value of a T1 MF, and c(t) = c + kf(t) denote
a time-varying model for its variation, in which f(t) is referred to by them as a ‘‘perturbation function’’, which
may be random, hence the terminology ‘‘non-stationary FS’’.

When f(t) is a known deterministic function, then l _Aðx; tÞ can be lower and upper bounded, in which case
there is a direct connection between _A and an IT2 FS. On the other hand, when f(t) is random (a random pro-
cess), then _A is a random fuzzy set [39]. Such FSs, that are very different from fuzzy random variables (e.g.,
[1,65]), can be treated as nonlinear transformations of random processes. If the distribution function can
be computed for the now random l _Aðx; tÞ, then perhaps lower and upper probability bounds can be established
for each value of a primary variable. These bounds might then be somehow related to the lower and upper
MFs of an IT2 FS. How to carry out such calculations remains to be explored.
this paragraph A and B denote IVFSs.



J.M. Mendel / Information Sciences 177 (2007) 84–110 95
3.3. Centroid of an IT2 FS

The centroid of an IT2 FS, developed by Karnik and Mendel [29], has turned out to be a fundamental con-
cept not only for an IT2 FS and IT2 FLSs but also for general T2 FSs. It provides a measure of uncertainty for
an IT2 FS. In this section, we review the definition of the centroid, summarize its properties, provide the KM
algorithms for its computation, summarize properties of the KM algorithms, show how the KM algorithms
can be used to compute the generalized centroid (a computation that is needed when center-of-sets TR is used,
and also for the FWA), and provide bounds for the centroid that are explicit functions of the geometry of a
FOU.

3.3.1. Definition

Using the Representation Theorem for an IT2 FS eA, we define its centroid, C~A, as the collection of the cent-
roids of all of its embedded IT2 FSs. From (35) we see that this means we need to compute the centroids of all
of the nA embedded T1 FSs contained within FOUðeAÞ. The results of doing this will be a collection of nA num-

bers, and these numbers will have both a smallest and largest element, clðeAÞ � cl and crðeAÞ � cr, respectively.
That such numbers exist is because the centroid of each of the embedded T1 FSs is a finite number. Associated
with each of these numbers will be a membership grade of 1, because the secondary grades of an IT2 FS are all
equal to 1. This means
10 Wh
literatu
11 If G

numbe
12 Dm
C~A ¼ 1=fcl; . . . ; crg ð39Þ

where10
cl ¼ min
8hi2½l~AðxiÞ;�l~AðxiÞ�

XN

i¼1

xihi

,XN

i¼1

hi

 !
ð40Þ

cr ¼ max
8hi2½l~AðxiÞ;�l~AðxiÞ�

XN

i¼1

xihi

,XN

i¼1

hi

 !
ð41Þ
and
x1 < x2 < � � � < xN ð42Þ

The latter is true because xi are sampled values of the primary variable; x1 denotes the left-hand (smallest)
sampled value and xN denotes the right-hand (largest) sampled value.11

How to compute cl and cr will be explained below in Section 3.3.3.

3.3.2. Properties of the centroid

Since the introduction of the centroid its properties have been studied by Mendel and Wu [60], Liu and
Mendel [38] and Mendel [52]. Here we state the properties without proof, since they provide insights about
the centroid and can also greatly simplify the computation of the centroid.

Property 1 [60]. Let eA be an IT2 FS defined on X, and eA0 be eA shifted by12 Dm along X, i.e. l~A0 ðxÞ ¼ l~Aðx� DmÞ
and �l~A0 ðxÞ ¼ �l~A0 ðx� DmÞ. Then the centroid of eA0, ½clðeA0Þ; crðeA0Þ�, is the same as the centroid of eA, ½clðeAÞ; crðeAÞ�,
shifted by Dm, i.e. clðeA0Þ ¼ clðeAÞ þ Dm and crðeA0Þ ¼ crðeAÞ þ Dm.

This property lets us relocate FOUðeAÞ to a more convenient place for the actual computations of cl and cr,
and demonstrates that it is only the shape of FOUðeAÞ that effects the centroid and not where that shape resides
on the axis of the primary variable.
en discretizations of the primary variable and primary membership approach zero, {cl, . . . ,cr}! [cl,cr], an interval set. In the
re about the centroid, it is customary to see (39) written as C~A ¼ ½cl; cr�.
aussian MFs are used, then in theory x1!�1 and xN!1; but, in practice when truncations are used x1 and xN are again finite

rs.
may be positive or negative.
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Property 2 [60]

(a) If FOUðeAÞ is amplitude scaled by k, where 0 < k < 1, meaning that FOUðeAÞ ! kFOUðeAÞ [i.e.,
�l~A0 ðxÞ ¼ k�l~AðxÞ and l~A0 ðxÞ ¼ kl~AðxÞ] then the centroid is FOU scale-invariant.

(b) If FOUðeAÞ is shifted vertically by a constant amount [i.e., �l~A0 ðxÞ ¼ �l~AðxÞ þ d and l~A0 ðxÞ ¼ l~AðxÞ þ d] then

the centroid is not vertically shift-invariant.

(c) If the primary variable x is uniformly scaled to x/c, where c > 0 [i.e., �l~A0 ðxÞ ¼ �l~Aðx=kÞ and

l~A0 ðxÞ ¼ l~Aðx=kÞ] then the centroid scales by c to c½clðeAÞ; crðeAÞ�.
When compared with Property 1 , Property 2 alerts us to the fact that the centroid is not always invariant.

Property 3 [60]. If the primary variable (x) is bounded, i.e. x 2 [x1, xN], then clðeAÞP x1 and crðeAÞ 6 xN .

Although we cannot compute the centroid in closed form, this property provides bounds for the centroid
that are available from a priori knowledge of the domain of the primary variable.

Property 4 [60]. If LMFðeAÞ is entirely on the primary-variable (x) axis, and x 2 [x1, xN], then the centroid does

not depend upon the shape of FOUðeAÞ and, as the sampling approaches zero, it equals [x1, xN].

Any FOU whose LMF is entirely on the primary-variable axis is said to be completely filled-in. This prop-
erty demonstrates that for such a FOU its UMF plays no role in determining the centroid.

Property 5 [52]. If eA is symmetrical about primary variable x at x = m, then the centroid of such an IT2 FS is
symmetrical about x = m, and the average value (i.e., the defuzzified value) of all the elements in the centroid

equals m.

Note that by using Property 5, we only have to compute cl, because crðeAÞ ¼ 2m� clðeAÞ. This represents a
50% savings in computation. Note, also, that if one is planning only to use the defuzzified value of a symmet-
rical IT2 FS, then to carry out T2 computations is a wasted effort, because the same results could have been
obtained by using T1 calculations. Fortunately (see [52] for a complete discussion), in an IT2 FLS in which
two or more rules are fired this sort of symmetry is not encountered. It is encountered only when one rule
is fired.

Property 6 [60]. If eA is symmetrical about m 2 X, then clðeAÞ 6 m and crðeAÞP m.

This property can be combined with Property 3 to provide lower and upper bounds for clðeAÞ and crðeAÞ.
Tighter bounds will be presented below in Section 3.3.5.

Property 7 [29]. It is true that
clðeAÞ � cl ¼
PkL

i¼1xi�l~AðxiÞ þ
PN

i¼kLþ1xil~AðxiÞPkL
i¼1�l~AðxiÞ þ

PN
i¼kLþ1l~AðxiÞ

ð43Þ

crðeAÞ � cr ¼
PkR

i¼1xil~AðxiÞ þ
Pn

i¼kRþ1xi�l~AðxiÞPkR
i¼1l~AðxiÞ þ

Pn
i¼kRþ1�l~AðxiÞ

ð44Þ
where kL and kR are switch points that are computed using the KM algorithms, which are described in Section

3.3.3.

This property provides us with formulas to express clðeAÞ and crðeAÞ, even when kL and kR are not known a
priori.

For our next three properties, we let
clðkÞ �
Pk

i¼1xi�l~AðxiÞ þ
PN

i¼kþ1xil~AðxiÞPk
i¼1�l~AðxiÞ þ

PN
i¼kþ1l~AðxiÞ

ð45Þ
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Property 8 (Location of cl [38]). When k = kL, then cl(kL) = cl and xkL 6 cl < xkLþ1.

The continuous version of this property [60] is rather amazing, and is xkL ¼ cl, which means that the left-end
switch point equals the left end-point of the centroid.

Property 9 (Location of cl(k) in relation to the line y = xk [38]). It is true that cl(k) > xk when xk < cl, and
cl(k) < xk when xk > cl.

This property does not imply cl(k) is monotonic on either side of cl; but, it does demonstrate that cl(k) can-
not be above the line y = xk to the right of cl.

Property 10 (Monotonicity of cl(k) [38]). It is true that cl(k � 1) P cl(k) when xk < cl, and cl(k + 1) P cl(k)

when xk > cl.

This property shows that cl(k) is a monotonic function (but not a strictly-monotonic function) on both sides
of the minimum cl.

Properties very similar to Properties 8–10 also exist for cr. Simply replace cl(k), cl and kL by cr(k), cr and kU,
respectively.

3.3.3. Computing the centroid using the KM algorithms

The centroid of an IT2 FS cannot be computed in closed form.13 Instead iterative algorithms developed by
Karnik and Mendel [29], now known as the KM algorithms, are used. We provide statements of these algo-
rithms next.

KM Algorithm for clðeAÞ: The five steps of this algorithm are (1) In (40), initialize hi by setting
hi ¼ ½l~AðxiÞ þ �l~AðxiÞ�=2, i = 1, . . . ,N, and then compute c0 ¼ cðh1; . . . ; hN Þ ¼

PN
i¼1xihi=

PN
i¼1hi. (2) Find k

(1 6 k 6 N � 1) such that xk 6 c 0 6 xk+1. (3) Set hi ¼ �l~AðxiÞ when i 6 k, and hi ¼ l~AðxiÞ when i P k + 1,
and then compute cl(k) in (45). (4) Check if cl(k) = c 0. If yes, stop and set cl(k) = cl and call k kL. If no, go
to Step 5. (5) Set c 0 = cl(k) and go to Step 2.

KM Algorithm for crðeAÞ: Steps 1 and 2 are the same as in the previous algorithm, but they are for (41); (3)
Set hi ¼ l~AðxiÞ when i 6 k, and hi ¼ �l~AðxiÞ when i P k + 1, and then compute
13 On
crðkÞ ¼
Pk

i¼1xil~AðxiÞ þ
PN

i¼kþ1xi�l~AðxiÞPk
i¼1l~AðxiÞ þ

PN
i¼kþ1�l~AðxiÞ

ð46Þ
(4) Check if cr(k) = c 0. If yes, stop and set cr(k) = cr and call k kR. If no, go to Step 5. (5) Set c 0 = cr(k) and go
to Step 2.

Mendel and Liu [56] have proven that the KM algorithms are monotonically convergent and that they con-
verge super-exponentially fast. Both properties are highly desirable for iterative algorithms and explain why in
practice the KM algorithms have been observed to converge very fast, thereby making them very practical to
use. Prior to these results, the only available convergence statement for them was very pessimistic [29] namely
convergence occurs in at most N iterations where N equals the number of sampled values of the primary var-
iable; as N increases this bound becomes very uninformative.

3.3.4. Generalized centroid

In the following weighted average
yðz1; . . . ; zN ;w1; . . . ;wN Þ ¼
PN

l¼1zlwlPN
l¼1wl

ð47Þ
if each zl is replaced by an interval set zi 2 [ai, bi] and each wl is also replaced by an interval set wi 2 [ci, di], then
(47) is called a generalized centroid (GC) and GC is the interval set GC = [yl, yr]. The GC is used to perform
center-of-sets TR, and is also used to compute the FWA. Because zi only appears in the numerator of (47), it is
easy to show that
e exception to this is the centroid of a fuzzy granule, for which it is possible to compute formulas for both cl and cr [60].
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yl ¼ min
8wi2½ci ;di�

XN

i¼1

aiwi

,XN

i¼1

wi

 !
ð48Þ

yr ¼ max
8wi2½ci ;di �

XN

i¼1

biwi

,XN

i¼1

wi

 !
ð49Þ
Comparing (48) with (40), we see that yl can be computed using the KM algorithm stated above for cl in which
xi is replaced by ai, and l~AðxiÞ and �l~AðxiÞ are replaced by ci and di, respectively. Similarly, comparing (49) with
(41), we see that yr can be computed using the KM algorithm stated above for cr in which xi is replaced by bi,
and again l~AðxiÞ and �l~AðxiÞ are replaced by ci and di, respectively.

3.3.5. Centroid bounds

We have seen that an IT2 FS is characterized by its FOU, which in turn is characterized by its upper and
lower MFs. Wu and Mendel [95] showed that the centroid provides a measure of the uncertainty for an IT2
FS. Intuitively, we anticipate that geometric properties about the FOU, such as its area and the center of grav-
ities (centroids) of its upper and lower MFs, will be associated with the amount of uncertainty in such a T2 FS.
Recently, Mendel and Wu [57] demonstrated that this intuition is correct. They quantified uncertainty bounds
for the centroid of both symmetric and non-symmetric IT2 FSs with respect to such geometric properties.
Using these results, it is possible to formulate and solve forward problems, i.e. to go from parametric IT2
FS models to data with associated uncertainty bounds. Here we only state results for a symmetrical FOU.

The geometric properties that we shall make use of, for a FOU that is symmetric about m, are AUMF, the
area under the upper MF; ALMF, the area under the lower MF; AFOU, the area of the FOU, where
AFOU ¼ AUMF � ALMF ¼ 2

Z 1

m
½�lðxÞ � lðxÞ�dx; ð50Þ
and, cHFOUðeAÞ, the centroid of half of FOUðeAÞ, where
cHFOUðeAÞ ¼ R1m x½�lðxÞ � lðxÞ�dxR1
m ½�lðxÞ � lðxÞ�dx

¼
R1

m x½�lðxÞ � lðxÞ�dx

AFOU=2
: ð51Þ
Theorem 2 [57]. Let [x1, xN] be the primary domain of eA. Then the end-points, cl and cr, for the centroid of a

symmetric IT2 FS, eA, are bounded from below and above by (Fig. 2).14
maxðx1; clðeAÞÞ 6 clðeAÞ 6 �clðeAÞ ð52Þ
crðeAÞ 6 crðeAÞ 6 minð�crðeAÞ; xNÞ ð53Þ
where
crðeAÞ ¼ mþ ½cHFOUðeAÞ � m� AFOU

AUMF þ ALMF

ð54Þ

�crðeAÞ ¼ mþ ½cHFOUðeAÞ � m� AFOU

2ALMF

ð55Þ

�clðeAÞ ¼ 2m� crðeAÞ ð56Þ
clðeAÞ ¼ 2m� �crðeAÞ ð57Þ
We return to the use of these bounds in Section 5 where they will be used to solve inverse problems, i.e.
going from interval data about a word to a FOU for that word.
general, �1 < x1 < xN <1, e.g. if the primary MF is Gaussian, then its associated FOU extends to ±1, in which case,

1; clðeAÞÞ ¼ clðeAÞ and minð�crðeAÞ; xN Þ ¼ �crðeAÞ. For most other FOUs, x1 and xN are finite numbers, and we need to use the more
ete bounds in (52) and (53).
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Fig. 2. End-points (X) of the centroid [cl, cr] of eA for a FOU that is symmetrical about m, and the lower and upper bounds (j) for the two
end-points.
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3.4. Interval T2 FLSs

To-date, because of the computational complexity of using a general T2 FS in a T2 FLS, most people only
use an IT2 FS, the result being an IT2 FLS. Unfortunately, there is a heavy educational burden on the prac-
titioner even to using an IT2 FLS. This burden has to do with first learning general T2 FS mathematics, and
then specializing it to an IT2 FS. In retrospect, requiring a person to use T2 FS mathematics represents a bar-
rier to the use of an IT2 FLS. Mendel et al. [55] demonstrate that it is unnecessary to take the route from gen-
eral T2 FS to IT2 FS, and that all of the results that are needed to implement an IT2 FLS can be obtained
using T1 FS mathematics. Their paper is a very simple way for someone who is new to the field of an IT2
FLS to get into it very quickly.

When all T2 FSs are IT2 FSs, then the firing set (21) and fired-rule output sets (20) are IT2 FSs, and this
simplifies all computations enormously. More specifically, for an interval singleton T2 FLS [34]: (a) the firing
set becomes a firing interval, i.e.
up
i¼1l~F l

i
ðx0iÞ � F lðx0Þ ¼ ½f lðx0Þ; �f lðx0Þ� � ½f l; �f l� ð58Þ
where
f lðx0Þ ¼ l~F l
1
ðx01ÞH � � �Hl~F l

p
ðx0pÞ ð59Þ

�f lðx0Þ ¼ �l~F l
1
ðx01ÞH � � �H�l~F l

p
ðx0pÞ ð60Þ
(b) The rule Rl fired output consequent set, l~BlðyÞ in (20), is the IT2 FS
l~BlðyÞ ¼
Z

bl2½f lHl~Gl ðyÞ;�f lH�l~Gl ðyÞ�
1=bl; y 2 Y ð61Þ
where l~GlðyÞ and �l~GlðyÞ are the lower and upper membership grades of l~GlðyÞ.
These results have been very widely used in all applications of IT2 FLSs; however, there still may be a prob-

lem to use an IT2 FLS for real-time applications, because of the computational bottleneck of TR. Various
approaches have been reported on for bypassing TR, some of which are summarized next.

3.5. Type-reduction and bypassing it for IT2 FLSs

When Karnik and Mendel [29] introduced TR they required adherence to the following:
Design requirement: If all sources of uncertainty disappear then a T2 FLS must reduce to a T1 FLS.
This seems like a very reasonable requirement; however, because TR may be a computational bottleneck
even for an IT2 FLS, we need to question whether or not TR is really needed.

While it is true that when all sources of uncertainty disappear, Karnik and Mendel’s TR methods reduce to
their T1 defuzzification counterparts, thereby ensuring that their IT2 FLS reduces to a T1 FLS, this does not
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necessarily mean that TR is the only way for this design requirement to be met. For example, suppose that we
have computed the union of fired rule output sets, to obtain15 l~BðyÞ in (23), i.e. [34,47] (N 6M)
15 An
16 We
l~BðyÞ ¼
Z

b2½½f 1Hl~G1 ðyÞ�_���_½f N Hl~GN ðyÞ�;½�f 1H�l~G1 ðyÞ�_���_½�f N H�l~GN ðyÞ��
1=b; y 2 Y
Let COGðl~BðyÞÞ and COGð�l~BðyÞÞ denote the centroids of the LMF and UMF, respectively, of l~BðyÞ. Then, we
can define the output of an IT2 FLS, y(x), as
yðxÞ � wCOGðl~BðyÞÞ þ ð1� wÞCOGð�l~BðyÞÞ ð62Þ
where weight w 2 [0,1] and can be tuned during a design procedure. Observe that, when all sources of uncer-
tainty disappear, so that l~BðyÞ ¼ �l~BðyÞ ¼ lBðyÞ, (62) reduces to
yðxÞ ¼ COGðlBðyÞÞ ð63Þ

as required by the above Design Requirement. Similar results can be obtained for other kinds of defuzzifiers
(e.g., center-of-sets defuzzification), and we leave them to the reader.

Niewiadomski et al. [67] have defined four other kinds of TR, TRoptðeBÞ, TRpesðeBÞ, TRreðeBÞ and TRrewðeBÞ,
where the lower indices mean: opt—optimistic, pes—pessimistic, re—realistic, and rew—realistic-weighted, and:
TRoptðeBÞ ¼ �l~BðyÞ 8y 2 Y ð64Þ
TRpesðeBÞ ¼ l~BðyÞ 8y 2 Y ð65Þ

TRreðeBÞ ¼ 1

2
½l~BðyÞ þ �l~BðyÞ� 8y 2 Y ð66Þ

TRrewðeBÞ ¼ wl~BðyÞ þ ð1� wÞ�l~BðyÞ 8y 2 Y ð67Þ
Each of the functions in (64)–(67) is a T1 FS. Observe that when all sources of uncertainty disappear, so that
l~BðyÞ ¼ �l~BðyÞ ¼ lBðyÞ, then
TRoptðeBÞ ¼ TRpesðeBÞ ¼ TRreðeBÞ ¼ TRrewðeBÞ ¼ lBðyÞ 8y 2 Y ð68Þ

also as required by the above Design Requirement.

Observe also that (62) and (67) look similar, in that they both involve lower and upper MFs of l~BðyÞ, but
they are conceptually quite different, i.e. (62) by-passes TR completely, whereas (67) does not. Using (67), we
could of course compute y(x) as, e.g. yðxÞ ¼ COGðTRrewðeBÞÞ.

Gorzalczany [19,20] introduced the following interesting function of16 l~BðyÞ and �l~BðyÞ:
f ðyÞ � 1

2
½l~BðyÞ þ �l~BðyÞ� � f1� ½�l~BðyÞ � l~BðyÞ�g 8y 2 Y ð69Þ
in which he calls ½�l~BðyÞ � l~BðyÞ� the ‘‘bandwidth’’ of l~BðyÞ. He then suggests two ways to compute y(x) from
f(y):
y1ðxÞ ¼ arg max
8y2Y

f ðyÞ ð70Þ

y2ðxÞ ¼ median ðf ðyÞÞ ð71Þ
Observe that when all sources of uncertainty disappear, so that l~BðyÞ ¼ �l~BðyÞ ¼ lBðyÞ, then
f ðyÞ ¼ lBðyÞ 8y 2 Y ; ð72Þ

again, as required.

So now it seems that we have numerous ways to bypass TR and obtain a defuzzified output, all of which
satisfy the basic requirement stated above. Which of these ways is best in some sense is an open question.
explicit formula for l~BðyÞ can be found in [34] and [47, Eq. (10-30)].
are explaining his function using our notation, which is quite different from his notation.
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There is still a problem. For random systems, we usually require both the mean and standard deviation.
The latter is extremely important because it provides a measure of dispersion about the mean, and the larger
(smaller) the random uncertainty, the larger (smaller) the dispersion. Mendel [47, pp. 8–9] argues that we
should not expect less of a FLS, i.e. if we view the defuzzified output of a T2 FLS as analogous to the mean,
we also need a measure of dispersion about the defuzzified output, something that is analogous to standard
deviation. The Karnik-Mendel TR set provides such an uncertainty measure, but all of the above approaches
do not (yet) lead to such a measure. How to obtain a measure (or measures) of uncertainty for TRoptðeBÞ,
TRpesðeBÞ, TRreðeBÞ, TRrewðeBÞ, and f(y) is an open question. If such a measure will require numerical integra-
tion (e.g., like an integrated-squared error), then the computational cost for doing this should be compared
against the computational cost for TR performed using the KM algorithms.

An interesting alternative to inventing new kinds of TR has been provided by Wu and Mendel [95]. In their
approach, they replace TR with lower and upper bounds—uncertainty bounds—for the end-points of the TR
set, and those bounds, which are optimal in a minimax sense, can be computed without having to perform
TR.17 Because these uncertainty bounds have been used in some other approaches to bypassing TR (described
below after (87)), we state them next.

To begin, four centroids (also called boundary T1 FLSs) are defined, all of which can be computed once fl

and �f l (l = 1, . . . ,M) have been computed. In these centroids, yi
l and yi

r are the left- and right-end points of the
centroid of the ith consequent IT2 FS. These consequent centroids only have to be computed (and stored) one
time after the IT2 FLS has been designed, since they do not depend upon the input to the FLS. Note, e.g. that
in (73) {LMF, left} refers to the fact that this centroid only uses lower MFs of the firing interval and left-end
point values of the consequent set centroid.
17 In
MFs b
fLMFs; leftg : yð0Þl ðxÞ ¼
XM

i¼1

f iyi
l

,XM

i¼1

f i ð73Þ

fLMFs; rightg : yðMÞr ðxÞ ¼
XM

i¼1

f iyi
r

,XM

i¼1

f i ð74Þ

fUMFs; leftg : yðMÞl ðxÞ ¼
XM

i¼1

�f iyi
l

,XM

i¼1

�f i ð75Þ

fUMFs; rightg : yð0Þr ðxÞ ¼
XM

i¼1

�f iyi
r

,XM

i¼1

�f i ð76Þ
Uncertainty bounds are provided in the following:

Theorem 3 (Minimax uncertainty bounds [95]). The end-points yl(x) and yr(x) of the TR set of an IT2 FLS for

the input x, are bounded from below and above by ylðxÞ 6 ylðxÞ 6 �ylðxÞ and yrðxÞ 6 yrðxÞ 6 �yrðxÞ, where:
�ylðxÞ ¼ min yð0Þl ðxÞ; y
ðMÞ
l ðxÞ

n o
ð77Þ

yrðxÞ ¼ max yð0Þr ðxÞ; yðMÞr ðxÞ
� �

ð78Þ

ylðxÞ ¼ �ylðxÞ �
PM

i¼1ð�f i � f iÞPM
i¼1

�f i
PM

i¼1f i
�

PM
i¼1f iðyi

l � y1
l Þ
PM

i¼1
�f iðyM

l � yi
lÞPM

i¼1f iðyi
l � y1

l Þ þ
PM

i¼1
�f iðyM

l � yi
lÞ

" #
ð79Þ

�yrðxÞ ¼ yrðxÞ þ
PM

i¼1ð�f i � f iÞPM
i¼1

�f i
PM

i¼1f i
�

PM
i¼1

�f iðyi
r � y1

r Þ
PM

i¼1f iðyM
r � yi

rÞPM
i¼1

�f iðyi
r � y1

r Þ þ
PM

i¼1f iðyM
r � yi

rÞ

" #
ð80Þ
Observe that the four bounds in (77)–(80) can be computed without having to perform TR. Wu and Mendel
then approximate the TR set, as
[95] there are detailed derivations of the uncertainty bounds for center-of-sets TR (because it handles non-symmetrical shoulder
etter than do other kinds of TR); however, these results are also applicable to other kinds of TR, as explained in [95, Table V].
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½ylðxÞ; yrðxÞ� 
 ½ðylðxÞ þ �ylðxÞÞ=2; ðyrðxÞ þ �yrðxÞÞ=2� ð81Þ
and compute the output of the IT2 FLS as
yðxÞ ¼ 1

2
½ðylðxÞ þ �ylðxÞÞ=2þ ðyrðxÞ þ �yrðxÞÞ=2� ð82Þ
(instead of as (yl(x) + yr(x))/2). So, by using the uncertainty bounds, they obtain both an approximate TR set as

well as a defuzzified output. They show that

Corollary 2 [95]. The difference d(x) between the defuzzified outputs of the TR set and its approximation set for

the input x, which is defined as
dðxÞ ¼ ylðxÞ þ yrðxÞ
2

� 1

2

ylðxÞ þ �ylðxÞ
2

þ
yrðxÞ þ �yrðxÞ

2

� ����� ���� ð83Þ
is bounded from above as
dðxÞ 6 1

4
½ð�ylðxÞ � ylðxÞÞ þ ð�yrðxÞ � yrðxÞÞ� ð84Þ
The next theorem helps to justify bypassing TR during the operational stage of an IT2 FLS:

Theorem 4 [95]. For a group of input–output data fxi; yig
N
i¼1 and an IT2 FLS, let the risk function (i.e., the

sample mean of the squared error), RTR, associated with the TR set [yl(x), yr(x)] be given as
RTR ¼
1

N

XN

i¼1

yi �
ylðxiÞ þ yrðxiÞ

2

� �2

ð85Þ
and the risk function, RAPP, associated with its approximation set ½ðylðxÞ þ �ylðxÞÞ=2; ðyrðxÞ þ �yrðxÞÞ=2�, be given

as
RAPP ¼
1

N

XN

i¼1

yi �
1

2

ylðxiÞ þ �ylðxiÞ
2

þ
yrðxiÞ þ �yrðxiÞ

2

� �� �2

ð86Þ
Then
ffiffiffiffiffiffiffiffi
RTR

p
�

ffiffiffiffiffiffiffiffiffiffi
RAPP

p�� �� 6 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

½ð�ylðxiÞ � ylðxiÞÞ þ ð�yrðxiÞ � yrðxiÞÞ�2
vuut ð87Þ
Beginning with Theorem 3 and Corollary 2, three approaches for eliminating TR have been proposed:

1. Wu and Mendel [95] use TR during the design of the IT2 FLS but then run the IT2 FLS using (77)–(82).
During the design, instead of only using RTR, they use a weighted average between RTR and the Nd2(xi),
i = 1, . . . ,N. In this way, they trade off some RMSE with not having to perform TR. The drawback to this
approach is that TR is still performed during the design step.

2. Lynch et al. [40] abandon TR completely. They replace all of the IT2 FLS computations with those in (77)–
(82), i.e. (77)–(82) are their IT2 FLS. Their design of this IT2 FLS is then based on minimizing RAPP. They
found that the errors incurred by doing this are extremely small. This is a very clever approach.

3. Melgerejo et al. [42,43] and Melgerejo and Penha-Reyes [41] have designed a VLSI IT2 FLS chip (see Sec-
tion 3.6). It is also based on (77)–(82), and the Wu–Mendel design and implementation approach; however,
it could also be based on the Lynch et al. approach. Because (77)–(82) are hard-wired, the design stage can
be done very quickly.

Wu and Tan [94] have approached the elimination of TR from a very different point of view. To begin, they
define equivalent type-1 sets (ET1S) as ‘‘the collection of type-1 sets that can be used in place of the FOUs in
a type 2 FLS’’. They state: ‘‘The key idea behind the proposed type-reducer is to view a T2 set as being
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equivalent to a collection of ET1Ss. TR is then simplified to finding the ET1S corresponding to a particular
input. More specifically, the type-reducer needs to identify the equivalent T1 membership grade (feq) for each
interval firing-strength. Once the equivalent T1 membership grade has been deduced, the firing set of a T2 FS
reduces to a crisp value and a traditional fuzzy inference engine and defuzzifier can be employed to find the
output of the T2 FLS. In summary, the proposed TR procedure is applied before the inference engine . . .’’.
Even though they refer to this as a ‘‘proposed type-reducer’’, it is not actually TR (as they have noted) because
it does not lead to a TR interval; hence, ‘‘it does not allow the uncertainties to flow to the inference engine
. . .’’. It is, in effect, a new kind of defuzzification strategy that is able to bypass TR. They claim that this
approach is very fast and the ‘‘. . . computational load is reduced because the inference engine behaves like
the one in a T1 FLS’’. So far, they have demonstrated this ET1S methodology for a two-input PI controller.
Whether or not this methodology generalizes to more complicated systems is an open question.

3.6. Hardware realization of an IT2 FLS

One of the reasons that T1 FLSs became so widely used is that in the 1980s Takagi developed the so-called
fuzzy chip. This made it possible to implement T1 FL in hardware, which in turn led to commercialization of
FL products. Recently, Melgarejo et al. [42,43] and Melgarejo and Penha-Reyes [41] have proposed a hard-
ware architecture for an already-designed IT2 FLS, one that uses the Wu–Mendel uncertainty bounds as
TR [(77)–(82)] instead of the KM algorithm for TR, and also the minimum t-norm. According to [41], ‘‘ Dis-
tributed arithmetic is proposed for efficiently computing on hardware the type-reduction stage . . . [and there is
a] reconfigurable rule base, which is implemented in FPGA (Field Programmable Gate Array) technology.
Results show that the processor performs more than 30 million of type-2 fuzzy inferences per second’’.

4. The fuzzy weighted average (FWA) and TR

The FWA is a weighted average involving T1 FSs. It has been studied in multiple criteria decision making
[12,15,22,23,33,37] and is useful as an aggregation (fusion) method in situations where [see (88)] decisions (xi)
and expert weights (wi) are modeled as T1 FSs, or where the decisions are modeled as either crisp numbers or
interval sets, and the expert weights are still modeled as T1 FSs.

Sometimes the same or similar problem is solved in different settings. This is the case for computing the
FWA and the GC of IT2 FSs, which is why we are discussing it in this paper. Consider the following weighted

average:
y ¼
Xn

i¼1

wixi

,Xn

i¼1

wi ¼ f ðw1; . . . ;wn; x1; . . . ; xnÞ ð88Þ
In (88), wi are weights that act upon attributes (indicators, features, decisions, etc.), xi. In the FWA, "xi are T1
fuzzy numbers, i.e. each xi is described by the MF of a T1 FS, lX i

ðxiÞ, that must be pre-specified, and "wi are
also T1 fuzzy numbers, i.e. each wi is described by the MF of a T1 FS, lW i

ðwiÞ, that must also be pre-specified.
In (88), y is a T1 FS, with MF lY(y), but there is no known closed-form formula for computing lY(y). Instead,
a-cuts, an a-cut Decomposition Theorem [30] of a T1 FS, and a variety of algorithms can be used to compute
lY(y) (e.g., [23,37,33]).

When a-cuts are used to compute the FWA, the complete range of the membership [0,1] of the fuzzy num-
bers is discretized into the following finite number of m a-cuts, a1, . . . ,am, where the degree of accuracy
depends on the number of a-cuts, i.e. m. For each aj, the corresponding intervals for Xi in xi and Wi in wi

are found. The end-points of the intervals of xi and wi (i = 1, . . . ,n) are denoted by [ai(aj), bi(aj)] and [ci(aj),
di(aj)], respectively. Using these a-cuts, one computes the corresponding a-cut of y, namely y(aj), i.e.
yðajÞ ¼ ½f �L ðajÞ; f �R ðajÞ� ð89Þ
lY(y) is then computed using y(a1), . . . ,y(am) as follows. Following [30], let IajY
ðyÞ denote the indicator

function:
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IajY
ðyÞ ¼

1 8y 2 ½f �L ðajÞ; f �R ðajÞ�
0 8y 62 ½f �L ðajÞ; f �R ðajÞ�

�
ð90Þ
Then
lY ðyÞ ¼ sup
8aj2½0;1�ðj¼1;...;mÞ

ajIajY
ðyÞ ð91Þ
Liou and Wang [37] were the first to observe that since the xi appear only in the numerator of (88), only the
smallest values of the xi are used to find the smallest value of (88), and only the largest values of the xi are used
to find the largest value of (88); hence,
f �L ðajÞ ¼ min
8xi2½aiðajÞ;biðajÞ�
8wi2½ciðajÞ;diðajÞ�

f ðw1; . . . ;wn; x1; . . . ; xnjajÞ ¼ min
8wi2½ciðajÞ;diðajÞ�

f ðw1; . . . ;wn; a1; . . . ; anjajÞ ð92Þ
where
f ðw1; . . . ;wn; a1; . . . ; anjajÞ ¼
Xn

i¼1

wiðajÞaiðajÞ
,Xn

i¼1

wiðajÞ ð93Þ
and
f �R ðajÞ ¼ max
8xi2½aiðajÞ;biðajÞ�
8wi2½ciðajÞ;diðajÞ�

f ðw1; . . . ;wn; x1; . . . ; xnjajÞ ¼ max
8wi2½ciðajÞ;diðajÞ�

f ðw1; . . . ;wn; b1; . . . ; bnjajÞ ð94Þ
where
f ðw1; . . . ;wn; b1; . . . ; bnjajÞ ¼
Xn

i¼1

wiðajÞbiðajÞ
,Xn

i¼1

wiðajÞ ð95Þ
Comparing (93) and (95) with the weighted averages in (40) and (41), respectively, we see that they are exactly
the same, provided we set hi = wi(aj) and xi = ai(aj) in (40), and hi = wi(aj) and xi = bi(aj) in (41). Consequently,
the KM algorithms can be used to compute f �L ðajÞ and f �R ðajÞ. Recently, Liu and Mendel [38] have compared
this approach to computing the FWA with Lee and Park’s Efficient FWA (EFWA) Algorithm [33] because
prior to their work the EFWA was the fastest way to compute the FWA. Their simulations, in which ai(aj),
bi(aj), ci(aj), and di(aj) were chosen randomly, all according to the same probability distribution (e.g., uniform,
exponential, normal, etc.), and n was varied from 2 to 200, demonstrated that for each a-cut, convergence oc-
curred (to within a 97.5% confidence interval) in three iterations, regardless of how many terms were in the
FWA (i.e., n), or how ai(aj), bi(aj), ci(aj), and di(aj) were distributed, whereas the EFWA algorithm converged
yiy1 y2 yN N1 y−

μB (y)~

Hypothetical combined rule output set for a general T2 FLS. At each yi there is a different secondary MF (blackened figures) that
ut of the page in the third dimension.
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in ln n + c iterations, where c depended on the way in which ai(aj), bi(aj), ci(aj), and di(aj) were distributed. So,
a by-product of T2 works, the KM algorithms, can now be used to compute the solution to a non-T2 problem,
the FWA.

The FWA can also be used to compute the TR set for general T2 FSs. Consider the general T2 FS depicted
in Fig. 3, in which the filled-in figures along the primary-variable axis denote secondary MFs, which can all be
different. Here we are not concerned with how this T2 FS was obtained; we are only interested in how to com-
pute its TR set. Instead of using, e.g. Yc(x) as expressed in (24), we define the TR set as the weighted average of
all of the sampled secondary MFs. This is a FWA in which xi are crisp (they equal yi) and wi in (88) are the
secondary MFs, which are T1 FSs. y(aj) in (89) is the jth a-cut for the TR set, but now in (93) and (95),
ai(aj) = bi(aj) = yi. How to extend this discussion to other kinds of TR is straightforward and is left to the
reader.

5. Computing with words

In 1996, Zadeh published his first seminal work on computing with words. Since that time entire books
and other articles have been devoted to this important subject. A small sampling of these are
[31,32,46,48,49,84,90,100–102]. Mendel [50] has proposed IT2 FSs as models for words, because words mean
different things to different people, and so a fuzzy set model for words is needed that can capture a measure
of their uncertainty.

In order to establish IT2 FS models for words, we need to collect data about words from a group of sub-
jects. Next, two very different approaches for doing this are described. Both approaches map data collected
from subjects into a parsimonious parametric model of a FOU, and illustrate the combining of fuzzy sets
and statistics—type-2 fuzzistics.18

In one approach, called the person MF approach [53], we:

1. Collect person MF data (a person-MF is a FOU that a person provides on a prescribed scale for a primary-
variable) that reflects both the intra- and inter-levels of uncertainties about a word, from a group of people;

2. Define an IT2 FS model for a word as a specific aggregation of all such person MFs; and
3. Mathematically model and approximate this aggregation.

This approach is based on six premises:

P1. Uncertainty about a word is of two kinds: (a) intra-uncertainty, which is the uncertainty a person has
about the word, and (b) inter-uncertainty which is the uncertainty that a group of people have about
the word.

P2. Intra-uncertainty about a word, A, can be modeled using an19 IT2 person FS, eAðpjÞ, where j = 1, . . . ,nA.
Such an IT2 FS is completely described by its person-FOU.

P3. Inter-uncertainty about a word can be modeled by means of an equally weighted aggregation19 of each
person’s word FS, eAðpjÞ ðj ¼ 1; 2; . . . ; nAÞ.

P4. A natural way to aggregate a group of subject’s equally weighted word FSs is by the mathematical oper-
ation of the union.19

P5. When person-MFs have been collected from a sufficient number of subjects, their union will be a filled-in
word FS eAFI with associated FOU—the filled-in FOU—FOUðeAFIÞ. It is assumed that fill-in has
occurred.
18 This term was first coined in [50].
19 Mendel [53] explains why an IT2 FS leads to a first-order uncertainty model and how difficult it would be to do otherwise; it explains

equal versus non-equal weighting, and why equal weighting again leads to a first-order uncertainty model and how difficult it would be to
do otherwise; and, it also explains other kinds of aggregation and why the union operation seems best.
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P6. A filled-in parametric model, bA, for eAFI is one that is described by two functions, a lower MF lÂðxÞ and
an upper MF �lÂðxÞ. These functions have shapes that are chosen ahead of time (e.g., triangle, Gaussian,
piecewise-linear, trapezoidal, etc.) and each shape is characterized by a small number of parameters,
some or all of which may be shared by both lÂðxÞ and �lÂðxÞ. These parameters are fixed during some
sort of design procedure.

Observe that mathematical IT2 FS models are only used at the very end of this approach.
Person MFs can only be collected from people who are already very knowledgeable about a FS, and there-

fore other techniques must be established for collecting word data from the vast majority.
In a second approach, called the interval end-points approach [53], we:

1. Collect interval end-point data about a word from a group of subjects;
2. Establish end-point statistics for the data; and
3. Map those statistics into a pre-specified parametric FOU.

This method is analogous in statistical modeling to first choosing the underlying probability distribution
(i.e., data-generating model) and then fitting the parameters of that model using data and a meaningful design
method, e.g. the method of maximum-likelihood. This method is based on the centroid bounds that were
described in Theorem 2 (Section 3.3.5). The details of how to perform Step 3 are in [58] for symmetric FOUs
and are under study for non-symmetrical FOUs [59].

We have mentioned all of this because we believe that IT2 FSs will play a very important role in Zadeh’s
paradigm of CWW, and because much more remains to be done to turn it into an operational reality.

We also wish to mention that Türksen and his students, beginning with [68,69], have written on the impor-
tant problem of how to elicit information from a subject and how that information can then be mapped into
the MF of a T1 FS.20 In [84] there are some plots to show that the T1 MFs are lower and upper bounded.
Although Türksen does not refer to these plots as ‘‘FOUs’’ for words, nor does he try to directly model this
uncertainty using a T2 FS, the plots are good demonstrations (confirmations) that when MF data are collected
from people, they lead to a FOU.

In a FL rule-based system, not only are there antecedent and consequent words, whose uncertainties have
been modeled using T2 FSs, especially IT2 FSs, but there are also the connector words, AND/OR. Türksen
and Yao [85] and Türksen (e.g., [82–84]) have argued that it is very important to model the uncertainties of
these two connector words. His approach is based on21 Shannon’s [76] introduction of the disjunctive and con-
junctive normal forms, the DNF and CNF. These forms are used in classical logic for facilitating proofs of
some theorems, or as a tool to simplify complicated logical statements,22 e.g., we could begin with a compli-
cated statement that involves many AND’s and OR’s. Such complicated expressions can actually be simplified
by replacing the AND’s and OR’s by their normal forms, since this leads to an expansion of the original com-
plicated statement and the separate terms in the expansion are simpler than in the original statement.

Türksen et al. have fuzzified the CNF and DNF to fuzzy CNF (FCNF) and FDNF. Based on the FCNF
and the FDNF each AND (intersection)/OR (union) operation leads to an interval set whose computation
depends on the specific choices one makes for a t-norm or a t-conorm. So, even if antecedent and consequents
are modeled as T1 FSs, when the AND/OR operations are modeled using the FDNF and FCNF operations,
the result will be an IT2 FS. Things seem to get very complicated when there is a chain of AND/OR opera-
tions, as frequently occurs in many FL rules, and no results seem to have been published on how to propagate
such a chain of normal forms.

Using FCNF and FDNF models for the AND/OR operations transforms a T1 FLS into a T2 FLS, and
using them along with interval T2 FS models for rule-words transforms an IT2 FLS into an IT3 FLS [84].
How one actually computes a T3 FS and then goes from it to a number are un-researched questions.
20 See [30] for references authored by other researchers on mapping data into T1 MF models.
21 The author would like to thank Prof. George Klir for providing him with historical information about the DNF and CNF.
22 The author would also like to thank Prof. Gandhi Puvadda, Dept. of Electrical Engineering, University of Southern California, who

has been teaching logic design for decades, for sharing this knowledge with him.
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Other approaches for modeling the uncertainties about the AND/OR connector words, such as23 paramet-
ric t-norms (t-conorms), compensatory AND, and S-OWA operators, preserve all of the mathematics in the
T1 domain. Additionally, when antecedents and consequents are modeled as IT2 FSs and compensatory AND
and S-OWA models are used, then all of the mathematics remains in the IT2 FS domain [97]. Although there
may be some performance advantage to modeling the AND/OR operations to account for their uncertainties,
the additional computation required to implement such a system (it is non-trivial) must be justified.

When FSs are used in the CWW paradigm, then we have argued that, because words can mean different
things to different people (and data collected from subjects supports this), we should model the antecedent
and consequent words using IT2 FSs. An interesting question is ‘‘Do the AND/OR connector words also
mean different things to different people?’’ Experimental psychologists (e.g., [16]) have conducted studies into
these issues and they have arrived at some interesting conclusions, namely: (1) most people have no difficulty
in understanding the AND connector, whereas (2) many people have difficulty in understanding the OR con-
nector (because one must decide whether the OR is inclusive or exclusive). In fact, they have as much difficulty
with OR as they do with logical implication. Based on these human-centered studies, it would seem that the
CWW paradigm does not need to include an uncertainty model for the AND connector, but it may need to
include an uncertainty model for the OR connector. Any uncertainty model should agree with a human’s
uncertainty about the basic words AND/OR because those are the words that they hear (read). As yet, there
is no experimental evidence that logically equivalent models such as normal forms bear a relationship to what
a person hears (reads). Which model is appropriate should somehow be tested on human subjects so that it
will be in agreement with their internal uncertainty models for OR. This remains to be done.

6. Conclusions

Much research has been and is continuing to be done on both general and IT2 FSs. Works on these subjects
are now occurring worldwide. Applications are broadening, and control applications, which were the original
bread-and-butter ones for T1 FLSs, are now a major focus of attention for IT2 FLSs. Additionally, IT2 FSs
are being used to implement Zadeh’s [99] CWW paradigm; but, much more work needs to be done on this.

Only time will tell whether or not taking the step from a T1 FS to a T2 FS has made a significant difference.
What is needed is a mathematical theory that establishes testable conditions for when a T2 FLS will outper-
form a T1 FLS. These conditions will, no doubt, depend upon how much uncertainty is present, and remain to
be developed.

Finally, it is this author’s opinion that any problem that has previously lent itself to T1 FSs, in which MFs
are uncertain, is an excellent candidate for re-examination using T2 FSs.

Acknowledgement

The author wishes to thank the reviewers for their excellent suggestions that have been incorporated into
this paper.

References

[1] J.J. Buckley, Fuzzy Probabilities: New Approaches and New Applications, Physica-Verlag, New York, 2003.
[2] H. Bustince, Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-

valued fuzzy sets, Int. J. Approx. Reas. 23 (2000) 137–209.
[3] O. Castillo, P. Melin, Adaptive noise cancellation using type-2 fuzzy logic and neural networks, in: Proceedings of IEEE FUZZ

Conference, Budapest, Hungary, July 2004.
[4] O. Castillo, G. Huesca, F. Valdez, Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear

dynamic plants, in: Proceedings of North American Fuzzy Information Processing Society (NAFIPS), Ann Arbor, MI, June 2005,
pp. 247–251.

[5] S.M. Chen, M.S. Yeh, P.Y. Hsiao, A comparison of similarity measures of fuzzy values, Fuzzy Sets Syst. 72 (1995) 79–89.
23 There are many references about these operators. They can be found, e.g. in [96].



108 J.M. Mendel / Information Sciences 177 (2007) 84–110
[6] S. Coupland, R.I. John, A new and efficient method for the type-2 meet operation, in: Proceedings of IEEE FUZZ Conference,
Budapest, Hungary, July 2004, pp. 959–964.

[7] S. Coupland, R.I. John, Towards more efficient type-2 fuzzy logic systems, in: Proceedings of IEEE FUZZ Conference, Reno, NV,
May 2005, pp. 236–241.

[8] V. Cross, T. Sudkamp, Similarity and compatibility in fuzzy set theory, Studies in Fuzziness and Soft Computing, vol. 93, Physica-
Verlag, Heidelberg, 2002.

[9] L. Di Lascio, A. Gisolfi, A. Nappi, Medical differential diagnosis through type-2 fuzzy sets, in: Proceedings of IEEE FUZZ
Conference, Reno, NV, May 2005, pp. 371–376.

[10] F. Doctor, H. Hagras, V. Callaghan, A type-2 fuzzy embedded agent for ubiquitous computing environment, in: Proceedings of
IEEE FUZZ Conference, Budapest, Hungary, July 2004.

[11] F. Doctor, H. Hagras, V. Callaghan, A type-2 fuzzy embedded agent to realise ambient intelligence in ubiquitous computing
environments, Informat. Sci. 171 (2005) 309–334.

[12] W.M. Dong, F.S. Wong, Fuzzy weighted averages and implementation of the extension principle, Fuzzy Sets Syst. 21 (1987) 183–
199.

[13] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci. 9 (1978) 613–626.
[14] D. Dubois, H. Prade, Operations in a fuzzy-valued logic, Informat. Cont. 43 (1979) 224–240.
[15] D. Dubois, H. Fargier, J. Fortin, A generalized vertex method for computing with fuzzy intervals, in: Proceedings of FUZZ IEEE

2004, Budapest, Hungary, 2004, pp. 541–546.
[16] J. St. B.T. Evans, S.E. Newstead, R.M.J. Byrne, Human Reasoning: The Psychology of Deduction, Lawrence Erlbaum Associates,

Hove, UK, 1993.
[17] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, S. Rojas, A type-2 fuzzy controller for tracking mobile objects in the context of

robotic soccer games, in: Proceedings of IEEE FUZZ Conference, Reno, NV, May 2005, pp. 359–364.
[18] J.M. Garibaldi, S. Musikasuwan, T. Ozen, The association between non-stationary and interval type-2 fuzzy sets: a case study, in:

Proceedings of IEEE FUZZ Conference, Reno, NV, May 2005, pp. 224–229.
[19] M.B. Gorzalczany, Decision making in signal transmission problems with interval-valued fuzzy sets, Fuzzy Sets Syst. 23 (1987) 191–

203.
[20] M.B. Gorzalczany, Interval-valued fuzzy controller based on verbal model of object, Fuzzy Sets Syst. 28 (1988) 45–53.
[21] S. Greenfield, R.I. John, S. Coupland, A novel sampling method for type-2 defuzzification, submitted for publication.
[22] Y.-Y. Guh, C.-C. Hon, E.S. Lee, Fuzzy weighted average: the linear programming approach via Charnes and Cooper’s rule, Fuzzy

Sets Syst. 117 (2001) 157–160.
[23] Y.-Y. Guh, C.-C. Hon, K.-M. Wang, E.S. Lee, Fuzzy weighted average: a max–min paired elimination method, Comput. Math.

Appl. 32 (1996) 115–123.
[24] H. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Trans. Fuzzy Syst. 12 (4)

(2004) 524–539.
[25] H. Hagras, A type-2 fuzzy logic controller for autonomous mobile robots, in: Proceedings of IEEE FUZZ Conference, Budapest,

Hungary, July 2004.
[26] C. Hwang, F.C.-H. Rhee, An interval type-2 fuzzy spherical shells algorithm, in: Proceedings of IEEE FUZZ Conference, Budapest,

Hungary, July 2004.
[27] R.I. John, P.R. Innocent, Modeling uncertainty in clinical diagnosis using fuzzy logic, IEEE Trans. Syst., Man, Cybernet. Part B:

Cybernet. 35 (2005) 1340–1350.
[28] N.N. Karnik, J.M. Mendel, Operations on type-2 fuzzy sets, Fuzzy Sets Syst. 122 (2001) 327–348.
[29] N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set, Informat. Sci. 132 (2001) 195–220.
[30] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, Upper Saddle River, NJ, 1995.
[31] J. Lawry, An alternative to computing with words, Int. J. Uncert. Fuzz. Know. Syst. 9 (Suppl.) (2001) 3–16.
[32] J. Lawry, J. Shanahan, A. Ralescu (Eds.), Modeling With Words, Lecture Notes in Artificial Intelligence 2873, Springer, New York,

2003.
[33] D.H. Lee, D. Park, An efficient algorithm for fuzzy weighted average, Fuzzy Sets Syst. 87 (1997) 39–45.
[34] Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design, IEEE Trans. Fuzzy Syst. 8 (2000) 535–550.
[35] Q. Liang, L. Wang, Sensed signal strength forecasting for wireless sensors using interval type-2 fuzzy logic system, in: Proceedings of

IEEE FUZZ Conference, Reno, NV, May 2005, pp. 25–30.
[36] P.-Z. Lin, C.-F. Hsu, T.-T. Lee, Type-2 fuzzy logic controller design for buck DC–DC converters, in: Proceedings of IEEE FUZZ

Conference, Reno, NV, May 2005, pp. 365–370.
[37] T.-S. Liou, M.-J.J. Wang, Fuzzy weighted average: an improved algorithm, Fuzzy Sets Syst. 49 (1992) 307–315.
[38] F. Liu, J.M. Mendel, Aggregation using the fuzzy weighted average, as computed by the KM algorithms, submitted for publication.
[39] L. Lushu, Random fuzzy sets and fuzzy martingales, Fuzzy Sets Syst. 69 (1995) 181–192.
[40] C. Lynch, H. Hagras, V. Callaghan, Embedded type-2 FLC for real-time speed control of marine and traction diesel engines, in:

Proceedings of IEEE FUZZ Conference, Reno, NV, May 2005, pp. 347–352.
[41] M.C.A. Melgarejo, C.A. Penha-Reyes, Hardware realization of an interval type-2 fuzzy inference system, IEEE Trans. Fuzzy Syst.,

in press.
[42] M.C.A. Melgarejo, A. Garcia, C.A. Penha-Reyes, Pro-two: a hardware based platform for real time type-2 fuzzy inference, in:

Proceedings of IEEE FUZZ Conference, Budapest, Hungary, July 2004.



J.M. Mendel / Information Sciences 177 (2007) 84–110 109
[43] M.C.A. Melgarejo, C.A. Penha-Reyes, A. Garcia, Computational model and architectural proposal for a hardware type-2 fuzzy
system, in: Proceedings of 2nd IASTED Conference Neural Network and Computational Intelligence, Grindewald, 2004, pp. 279–
284.

[44] P. Melin, O. Castillo, A new method for adaptive model-based control of non-linear plants using type-2 fuzzy logic and neural
networks, in: Proceedings of IEEE FUZZ Conference, St. Louis, MO, May 2003, pp. 420–425.

[45] P. Melin, O. Castillo, A new approach for quality control of sound speakers combining type-2 fuzzy logic and the fractal dimension,
in: Proceedings of International Conference NAFIPS 2003, Chicago, USA, July 2003, pp. 20–25.

[46] J.M. Mendel, Computing with words, when words can mean different things to different people, in: Proceedings of Third
International ICSC Symposium on Fuzzy Logic and Applications, Rochester Univ., Rochester, NY, June 1999.

[47] J.M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, Upper-Saddle River,
NJ, 2001.

[48] J.M. Mendel, The perceptual computer: an architecture for computing with words, in: Proceedings of Modeling With Words
Workshop in the Proceedings of FUZZ-IEEE, Melbourne, Australia, December 2001, pp. 35–38.

[49] J.M. Mendel, An architecture for making judgments using computing with words, Int. J. Appl. Math. Comput. Sci. 12 (3) (2002)
325–335.

[50] J.M. Mendel, Fuzzy sets for words: a new beginning, in: Proceedings of IEEE International Conference on Fuzzy Systems, St. Louis,
MO, 2003, pp. 37–42.

[51] J.M. Mendel, Type-2 fuzzy sets: some questions and answers, IEEE Connect., Newslett. IEEE Neural Networks Soc. 1 (2003) 10–13.
[52] J.M. Mendel, On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set, Informat. Sci. 172

(2005) 417–430.
[53] J.M. Mendel, Computing with words and its relationships with fuzzistics, Informat. Sci., in press, doi:10.1016/j.ins.2006.06.008.
[54] J.M. Mendel, R.I. John, Type-2 fuzzy sets made simple, IEEE Trans. Fuzzy Syst. 10 (2002) 117–127. April 2002.
[55] J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE Trans. Fuzzy Syst., in press.
[56] J.M. Mendel, F. Liu, Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval

type-2 fuzzy set, IEEE Trans. Fuzzy Syst., in press.
[57] J.M. Mendel, H. Wu, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems, IEEE Trans. Fuzzy Syst.,

in press.
[58] J.M. Mendel, H. Wu, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 2, inverse problems, IEEE Trans. Fuzzy Syst., in

press.
[59] J.M. Mendel, H. Wu, Type-2 fuzzistics for non-symmetric interval type-2 fuzzy sets: forward problems, IEEE Trans. Fuzzy Syst., in

press.
[60] J.M. Mendel, H. Wu, New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule,

Informat. Sci., in press, doi:10.1016/j.ins.2006.03.003.
[61] G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in: Proceedings of IEEE FUZZ

Conference, Reno, NV, May 2005, pp. 230–235.
[62] H.B. Mitchell, Pattern recognition using type-II fuzzy sets, Informat. Sci. 170 (2005) 409–418.
[63] M. Mizumoto, K. Tanaka, Some properties of fuzzy sets of type-2, Informat. Cont. 31 (1976) 312–340.
[64] M. Mizumoto, K. Tanaka, Fuzzy sets of type-2 under algebraic product and algebraic sum, Fuzzy Sets Syst. 5 (1981) 277–290.
[65] B. Moller, M. Beere, Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics, Springer, New York,

2004.
[66] J. Nieminen, J. On the algebraic structure of fuzzy sets of type-2, Kybernetica 13 (4) (1977).
[67] A. Niewiadomski, J. Kacprzyk, J. Ochelska, P.S. Szczepaniak, Interval-valued linguistic summaries of databases, Control &

Cybernetics, Systems Research Institute, Polish Academy of Science, Warsaw, Poland, in press.
[68] A.M. Norwich, I.B. Türks�en, The fundamental measurement of fuzziness, in: R.R. Yager (Ed.), Fuzzy Sets and Possibility Theory,

Pergamon Press, NY, 1982, pp. 49–60.
[69] A.M. Norwich, I.B. Türks�en, A model for the measurement of membership and the consequences of its empirical implementation,

Fuzzy Sets Syst. 12 (1984) 1–25.
[70] T. Ozen, J, M. Garibaldi, S. Musikasuwan, Preliminary investigations into modeling the variation in human decision making, in:

Proceedings of 10th Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU 2004), Perugia,
Italy, July 2004, pp. 641–648.

[71] S. Rahimi, M. Cobb, A. Zhou, D. Ali, H. Yang, F.E. Petry, An inexact inferencing strategy for spatial objects with determined and
indeterminate boundaries, in: Proceedings of IEEE FUZZ Conference, St. Louis, MO, 2003, pp. 778–783.

[72] F.C.-H. Rhee, C. Hwang, A type-2 fuzzy c-means clustering algorithm, in: Proceedings of IEEE FUZZ Conference, Melbourne,
Australia, December 2001, pp. 1926–1929.

[73] F.C.-H. Rhee, C. Hwang, An interval type-2 fuzzy perceptron, in: Proceedings of IEEE FUZZ Conference, Honolulu, HI, May
2002.

[74] F.C.-H. Rhee, C. Hwang, An interval type-2 fuzzy K-nearest neighbor, in: Proceedings of IEEE FUZZ Conference, Honolulu, HI,
May 2002, pp. 802–807.

[75] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz, O. Montiel, Integrated development platform for intelligent control based
on type-2 fuzzy logic, in: Proceedings of North American Fuzzy Information Processing Society (NAFIPS), Ann Arbor, MI, June,
2005, pp. 607–610.

[76] C. Shannon, A symbolic analysis of relay and switching circuits, Am. Inst. Elect. Engrs. 57 (1938).

http://dx.doi.org/10.1016/j.ins.2006.06.008
http://dx.doi.org/10.1016/j.ins.2006.03.003


110 J.M. Mendel / Information Sciences 177 (2007) 84–110
[77] H. Shu, Q. Liang, Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems, in: Proceedings of IEEE FUZZ
Conference, Reno, NV, May 2005, pp. 19–24.

[78] J.T. Starczewski, Extended triangular norms, submitted for publication.
[79] J.T. Starczewski, A triangular type-2 fuzzy logic system, submitted for publication.
[80] J.T. Starczewski, Extended triangular norms on Gaussian fuzzy sets, in: Proceedings of EUSFLAT-LFA, Barcelona, Spain,

September 2005, pp. 872–877.
[81] W.W. Tan, J. Lai, Development of a type-2 fuzzy proportional controller, in: Proceedings of IEEE FUZZ Conference, Budapest,

Hungary, July 2004.
[82] I.B. Türksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets Syst. 20 (1986) 191–210.
[83] I.B. Türksen, Interval valued fuzzy sets and fuzzy connectives, J. Interval Comput. 4 (1993) 125–142.
[84] I.B. Türksen, Type-2 representation and reasoning for CWW, Fuzzy Sets Syst. 127 (2002) 17–36.
[85] I.B. Türksen, D.D.W. Yao, Representation of connectives in fuzzy reasoning: the view through normal forms, IEEE Trans. Syst.

Man Cybernet. 14 (1984) 146–150.
[86] M. Wagenknecht, K. Hartmann, Application of fuzzy sets of type-2 to the solution of fuzzy equation systems, Fuzzy Sets Syst. 25

(1988) 183–190.
[87] C. Walker, E. Walker, The algebra of fuzzy truth values, Fuzzy Sets Syst., in press.
[88] C. Walker, E. Walker, Some general comments on fuzzy sets of type-2, presented at BISCSE 2005 Forging New Frontiers, 40th of

Fuzzy Pioneers, BISC Special Event in Honor of Prof. Lotfi A. Zadeh, Univ. of California, Berkeley, CA, November 2–5, 2005.
[89] C. Walker, E. Walker, Automorphisms of the algebra of fuzzy truth values, in preparation.
[90] P.P. Wang (Ed.), Computing With Words, John Wiley & Sons Inc, New York, 2001.
[91] X. Wang, B. De Baets, E. Kerre, A comparative study of similarity measures, Fuzzy Sets Syst. 73 (1995) 259–268.
[92] K. Wills, R.I. John, S. Lake, Combining categories in nursing assessment using interval valued fuzzy sets, in: Proceedings of 10th

Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU 2004), Perugia, Italy, July 2004.
[93] D. Wu, W.W. Tan, A type-2 fuzzy logic controller for the liquid-level process, in: Proceedings of IEEE FUZZ Conference, Budapest,

Hungary, July 2004, pp. 953–958.
[94] D. Wu, W.W. Tan, Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller, in: Proceedings of IEEE

FUZZ Conference, Reno, NV, May 2005, pp. 353–358.
[95] H. Wu, J.M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst.

10 (2002) 622–639.
[96] H. Wu, J.M. Mendel, On choosing models for linguistic connector words for Mamdani fuzzy logic systems, IEEE Trans. Fuzzy Syst.

12 (2004) 29–44.
[97] H. Wu, J.M. Mendel, Antecedent connector word models for Interval type-2 fuzzy logic system, in: Proceedings of IEEE FUZZ

Conference, Budapest, Hungary, July 2004.
[98] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning–1, Informat. Sci. 8 (1975) 199–249.
[99] L.A. Zadeh, Fuzzy logic = computing with words, IEEE Trans. Fuzzy Syst. 4 (1996) 103–111.

[100] L.A. Zadeh, From computing with numbers to computing with words—from manipulation of measurements to manipulation of
perceptions, IEEE Trans. Circ. Syst.—I: Fundam. Theory Appl. 4 (1999) 105–119.

[101] L.A. Zadeh, Towards a generalized theory of uncertainty (GTU)–an outline, Informat. Sci. 172 (2005) 1–40, June 2005.
[102] L.A. Zadeh, J. Kacprzyk (Eds.), Computing With Words in Information/Intelligent Systems 1 & 2, Physica-Verlag, New York,

1999.
[103] J. Zeng, Z.-Q. Liu, Interval type-2 fuzzy hidden markov models, in: Proceedings of IEEE FUZZ Conference, Budapest, Hungary,

July 2004.


	Advances in type-2 fuzzy sets and systems
	Introduction
	General T2 FSs and FLSs
	Representation theorem for a T2 FS
	Operations on general T2 FSs
	Type-2 FLS
	Type-reduction for general T2 FSs
	Similarity of T2 FSs

	Interval T2 FSs and FLs
	Representation for an IT2 FS
	Interpretations of an IT2 FS
	Centroid of an IT2 FS
	Definition
	Properties of the centroid
	Computing the centroid using the KM algorithms
	Generalized centroid
	Centroid bounds

	Interval T2 FLSs
	Type-reduction and bypassing it for IT2 FLSs
	Hardware realization of an IT2 FLS

	The fuzzy weighted average (FWA) and TR
	Computing with words
	Conclusions
	Acknowledgement
	References


