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Computing Derivatives in Interval
Type-2 Fuzzy Logic Systems

Jerry M. Mendel, Life Fellow, IEEE

Abstract—This paper makes type-2 fuzzy logic systems much
more accessible to fuzzy logic system designers, because it
provides mathematical formulas and computational flowcharts
for computing the derivatives that are needed to implement
steepest-descent parameter tuning algorithms for such systems. It
explains why computing such derivatives is much more challenging
than it is for a type-1 fuzzy logic system. It provides derivative
calculations that are applicable to any kind of type-2 membership
functions, since the calculations are performed without prespeci-
fying the nature of those membership functions. Some calculations
are then illustrated for specific type-2 membership functions.

Index Terms—Derivations, fuzzy logic system, type-2 fuzzy logic
system.

I. INTRODUCTION

ATYPE-2 fuzzy logic system (FLS) lets us directly model
(and, subsequently, minimize the effects of) a variety of

uncertainties1 that cannot be directly modeled using a type-1
FLS. The price paid for being able to do this is somewhat greater
complexity for a type-2 FLS than for a type-1 FLS; but, if one is
unable to achieve satisfactory performance—in the face of un-
certainties—using a type-1 FLS, then this may be a small price
to pay for the improved performance. Of course, to achieve the
improved performance one must first be able to design a type-2
FLS. Although there are different approaches to doing this, the
most popular one to-date uses steepest descent algorithms (also
referred to as back-propagation algorithms) for adjusting all de-
sign parameters, and such algorithms require the computation of
first-derivatives of an objective function with respect to each and
every design parameter. The purpose of this paper is to provide
such first-derivative formulas since they do not appear in the ex-
isting literature. Doing this will make type-2 FLSs much more
accessible to FLS designers. To begin, we review the essence of
a type-2 FLS.

A type-2 FLS (just as a type-1 FLS) contains four compo-
nents: rules, fuzzifier, inference engine and output-processor
(Fig. 1). During the operation of a type-2 FLS, measurements
activate the fuzzifier, inference engine and output processor
blocks in that order. The output processor contains two com-
ponents: type-reduction and defuzzification. When arbitrary
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1Because these uncertainties have been enumerated many times before, we
refer the reader to [6, p. 68] for a list of them, as well as for discussions about
them.

type-2 fuzzy sets2 are used a type-2 FLS is computationally
prohibitive. On the other hand, when all type-2 fuzzy sets are
modeled as interval sets, then we obtain an interval type-2 FLS,
and such FLSs are very practical.3

Depending upon the way in which input measurements to
the FLS are fuzzified, either as singletons, type-1 fuzzy numbers
or type-2 fuzzy numbers, three kinds of interval type-2 FLSs
are possible: interval singleton type-2 FLS, interval type-1 non-
singleton type-2 FLS, and interval type-2 nonsingleton type-2
FLS. In the main body of this paper, we focus on an interval
singleton type-2 FLS, but provide the extensions of our results
to an interval type-2 nonsingleton type-2 FLS (which contains
an interval type-1 nonsingleton type-2 FLS as a special case) in
Appendix B.

The inference engine first produces a firing set, which is then
used to produce an output consequent set membership function
(MF) for each fired rule, which can then be used to produce a MF
for all (combined) fired rules. For an interval singleton type-2
FLS, it is possible to obtain closed-form formulas for all of these
quantities, and these results are given in Section A.2 of Ap-
pendix A; they are obtained by using well-known closed-form
formulas for the join and meet of interval sets (e.g., [1] and [6]).

The type-reducer leads to a type-reduced set that provides an
interval of uncertainty for the output of a type-2 FLS that is
analogous to a confidence interval that provides an interval of
uncertainty for a probabilistic system. The more uncertainties
that occur in a type-2 FLS, which translate into more uncer-
tainties about its MFs, the larger will be the type-reduced set,
and vice versa. Regardless of which type-reduction method4 we
choose, the type-reduced set for an interval type-2 FLS is an in-
terval type-1 set, and its two end-points can be computed using
an exact iterative method developed by Karnik and Mendel [2]
whose steps are listed in Section A.3 of Appendix A. Because
the type-reduced set is an interval set, its defuzzified value is
simply the average value of its two end-points. A formula for
the defuzzified output is given in Section A.4 of Appendix A.
Using the formulas given in Appendix A, it is possible to com-
pute the input-output relation, , of an interval sin-
gleton type-2 FLS, and these formulas are the starting point for
the design of such a FLS.

It is well known that a type-1 FLS is characterized by a fuzzy
basis function (FBF) expansion (e.g., [8]), and that such an ex-
pansion is not only useful for computing the output of that FLS
but is also used during its design, especially as the starting point

2See Section A.1 of Appendix A for some important definitions about type-2
fuzzy sets.

3See [7] for many reasons supporting the use of interval type-2 sets.
4Type-reduction is briefly reviewed in Section A.3 of Appendix A.
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Fig. 1. Type-2 FLS.

for computing derivatives of an objective function with respect
to MF parameters. An interval singleton type-2 FLS is charac-
terized by two fuzzy basis function (FBF) expansions [5], one
associated with the left end-point of the type-reduced set, and
the other associated with the right end-point of the type-reduced
set. Unlike the FBF expansion for a type-1 FLS, the FBF ex-
pansions for an interval singleton type-2 FLS cannot be used
to actually compute the left and right end-points of the type-re-
duced set, because the latter are in terms of two crossover points,

and ( and for short), that are computed using the
Karnik–Mendel iterative procedures. By the end of those proce-
dures not only are and computed but so also are the left and
right end-points of the type-reduced set. Interestingly enough,
the formulas for the two FBF expansions can however be used
during the design of the FLS, as we explain below.

By “design” we mean specify or optimize the parameters
that characterize the interval type-2 FLS. A type-2 FLS design
method is associated with the following design problem.

We are given a collection of input-output numerical
data training pairs,

, where is the vector input and is the scalar output
of an interval singleton type-2 FLS. Our goal is to com-
pletely specify this type-2 FLS using the training data.
A design method establishes how to specify all the param-

eters of the antecedent and consequent membership functions
using the training pairs

. The most popular design method—the back-propagation
method—is one in which all MF parameters are tuned using a
steepest descent algorithm whose general structure is

(1)

where denotes any one of the FLS design parameters

(2)

and indicates that after taking the derivative of with re-
spect to a specific we must replace all remaining values by

. The challenge to developing easy-to-use steepest descent
algorithms is to establish formulas for the derivatives .
Generally, it is much more complicated to compute such deriva-
tives for an interval type-2 FLS than it is for a type-1 FLS, be-
cause of the following.

• In an interval singleton type-2 FLS the design parameters
appear in5 upper and lower MFs, whereas in a singleton
type-1 FLS they appear in a single MF.

• In an interval singleton type-2 FLS, type-reduction es-
tablishes the two parameters and , which in
turn establish the upper and lower firing-interval MFs that
are used to compute the left and right end-points of the
type-reduced set [see (A-16) and (A-17)]. There is no
type-reduction in a type-1 FLS.

In the rest of this paper we establish mathematical formulas
to compute the derivatives . The derivations of these
formulas can be approached in different ways, e.g. choose a
type-2 fuzzy set’s membership function footprint of uncertainty6

(FOU) as soon as possible or defer the choice of a FOU for as
long as possible. In this paper, we take the latter approach, be-
cause by doing so our results are applicable to any kind of FOU.

Section II provides some fundamental assumptions; Sec-
tion III provides general formulas for the right and left
end-points of the type-reduced set; Section IV provides for-
mulas for derivatives of with respect to antecedent MF
parameters; Section V provides formulas for derivatives of

with respect to consequent MF parameters; Section VI
provides an example; Section VII provides conclusions. Note
that the formulas in Sections III–V are independent of the
choices made for the type-2 antecedent and consequent MFs.
Finally, Appendix A has important background material about
type-2 fuzzy sets, and fuzzy inference engine, type-reduction
and defuzzification for interval singleton type-2 FLSs; and,
Appendix B presents derivative formulas for interval type-2
nonsingleton type-2 FLSs.

5Upper and lower MFs are defined in Definition A-8.
6The FOU is defined in Definition A-6.
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TABLE I
RULE-ORDERED AND RULE-REORDERED QUANTITIES

II. ASSUMPTIONS

We make four fundamental assumptions.

1) Parameters to be tuned are different for each rule and for
each antecedent and consequent, i.e. no parameters are
shared across rules or MFs.

2) Formulas for antecedent and consequent MFs are not
specified ahead of time.

3) Derivatives needed for a steepest descent tuning-algo-
rithm are to be computed by means of mathematical for-
mulas.

4) Center-of-sets type-reduction is used.

If some parameters are shared across rules or MFs then at
some point in our analyzes below a detour must be taken. We
will indicate precisely where this occurs. By not specifying for-
mulas for antecedent and consequent MFs ahead of time, our
results will be as general as possible. If mathematical formulas
for derivatives cannot be obtained, it may still be possible to de-
termine derivatives numerically using perturbation techniques.
We do not cover such techniques in this paper because the kinds
of primary MFs that one usually chooses can be described math-
ematically, e.g., triangles, trapezoids, Gaussians, etc. We choose
center-of-sets type-reduction because there is an explicit appear-
ance of antecedent and consequent MF parameters for it. The
same is true for height type-reduction but is not true for cen-
troid or center-of-sums type-reduction (see Table A-I).

III. GENERAL EXPRESSIONS FOR AND

Although, as discussed in Section I, we always compute
and using the Karnik–Mendel iterative procedures, we use
formulas for and to compute derivatives that are needed
in the back-propagation update algorithms. Such formulas can
be deduced from step 4 of the iterative procedure (Section A.3),
the paragraph just below that procedure, and (A-16) and (A-17),
and are

(3)

and

(4)

These formulas cannot be used as is because the , , , and
have been reordered during step-1 of the two iterative proce-

dures used to compute and . In order to compute derivatives
of and with respect to MF parameters, we need to know ex-
actly where specific antecedent and consequent MF parameters
are located, and this is very difficult to ascertain when and
are not in rule-ordered format. So, our first task is to re-express
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TABLE II
FORMULAS USED TO CALCULATE AND IN RULE-ORDERED FORMAT

(3) and (4) in rule-ordered format. Along the way, we shall also
remove the explicit dependence of on and on .

Rule-ordered firing intervals are denoted as . We have
labeled the rule reordered firing intervals , i.e.,

(5)

(6)

In (A-15), observe that , and that in
the two Karnik–Mendel procedures it is the
that are reordered7 in order to compute , whereas it is the

that are reordered to compute . In this
paper, we continue to let and denote rule-reordered values;
however, we introduce and to denote their rule-ordered
counterparts. Table I summarizes the rule-ordered and rule-un-
ordered quantities that we will need in the rest of this paper. The
question that we address next is how do we go from the rule-re-
ordered versions of and to the rule-ordered versions?

A. Re-Expressed in Rule-Ordered Format

We want to re-express , given in rule-reordered form
(Table I), in terms of a rule-ordered quantities, i.e., in terms of

, , and . To begin, we define a collection of vectors
and matrices that are summarized in Table II.

7For other type-reduction methods, what gets reordered can be deduced from
the column in Table A-I labeled “ and defined.”

Fact 1: can be re-expressed in terms of rule-ordered quan-
tities as

(7)

Proof: We must re-express the four sums that appear in
the rule-reordered version of , given in Table I, i.e.,8

(8)

(9)

8Note, for example, that
and

, so
that .
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Fig. 2. Computational flow-chart: derivatives for antecedent parameters.

(10)

(11)

Substitute (8)–(11) into
to

obtain the first term on the right-hand side of (7). The second

term appearing on the right-hand side of (7) is obtained by
using the quantities , , , and , that are defined in the
last four rows of Table II, in the first term on the right-hand
side of (7). The last term on the right-hand side of (7) is just an
expanded version of the second term.

Observe that (7) involves the entire and vectors and the en-
tire vector. This is good because we can then take the deriva-
tives of with respect to any element in or without having
to worry ahead of time whether or not it actually appears in .
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TABLE III
UPPER AND LOWER MF PARAMETER DEPENDENCIES (THE VALUE ESTABLISHES THE ACTIVE BRANCH)

Fig. 3. FOU for Gaussian primary MF with uncertain mean.

Matrices and and vectors and will automatically
dispose of the unnecessary elements of and , since they de-
pend on .

B. Re-Expressed in Rule-Ordered Format

Fact 2: can be re-expressed in terms of rule-ordered quan-
tities as

(12)

Proof: Just follow the proof of Fact 1 using quantities that
are defined in the right-hand column of Table II.

IV. CALCULATION OF FOR ANTECEDENT

PARAMETERS

Antecedent parameters are the parameters that characterize
antecedent MFs. For example, a Gaussian primary MF with un-
certain mean, as defined in (A-7), is characterized by three pa-
rameters, , and . Temporarily, let us denote any one
of the antecedent parameters that will be tuned as (

and ). Index denotes the fact that there
can be more than one parameter associated with the MF of each
antecedent and rule . Here we use the chain rule to com-

pute . Our starting point is (2), in which is
given by (A-18), which we restate here as

(13)

Hence

(14)

where we used the facts that
and . In (14), we now treat

and as functions of and ; hence

(15)

(16)

We now need to evaluate all of the derivatives in (15) and (16).
Fact 3: The following are true:

(17)

(18)

(19)

(20)

Proof: Because all calculations are alike, we only provide
the derivation of (18). From the second and third forms of in
(7), it follows that

(21)

so that

(22)
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TABLE IV
DERIVATIVES OF

TABLE V
DERIVATIVES OF

Next, we focus on computing and that

are needed in (15) and (16). Formulas for and
are given in (A-11) and (A-12), respectively. Observe that the
former are in terms of the antecedent upper MFs whereas
the latter are in terms of the antecedent lower MFs .

Fact 4: Parameter can only appear in or and
cannot appear in and for .

Proof: This is a direct result of Assumption 1.
As a direct consequence of Fact 4, we see that9

(23)

(24)

Hence, (15) and (16) simplify to

(25)

(26)

so that [see (14)]

(27)
Fact 5: It is true that

(28)

9We hasten to point out that if an MF parameter is shared across some or all
antecedent MFs, then (23) and (24) are invalid, and a different analysis must be
performed from this point on.

Proof: Substitute (27) into (14).
Fact 6: It is also true that for product t-norm

(29a)

(30a)

and for minimum t-norm

(29b)

(30b)

where , when and , when .
Proof: Apply the chain rule to (A-11) and (A-12) making

use of Fact 4.10

The remaining calculations of and
require specification of antecedent MFs and

their associated FOUs.
So, as to see the forest from the trees, we next present a

computational flow chart (see Fig. 2) for the calculations of
. We show the inherent parallelism in the compu-

tations and where additional information is needed before the
computations can be completed. Many of the computations only
have to be done one time regardless of which antecedent param-
eters are tuned. The ones in the heavier outlined blocks must be
done for each .

See Appendix B for comparable results for an interval type-2
nonsingleton type-2 FLS.

10For minimum -norm, note for example, that
if and , and equals otherwise, where

is not a function of . Consequently,
if and , and equals 0 otherwise.

This can be expressed mathematically as:
. Note that is a step

function.
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TABLE VI
MEANINGS OF , , , AND IN (A-15) FOR DIFFERENT TYPE-REDUCTION METHODS . IN THIS TABLE, ALL SYMBOLS REFER

TO RULE-ORDERED QUANTITIES

V. CALCULATION OF FOR CONSEQUENT

PARAMETERS

Generally speaking, consequent parameters are the parame-
ters that characterize consequent MFs. When, however, we use
center-of-set type-reduction, as we have assumed in Assump-
tion 4 (Section II), then those parameters can be replaced by
the two end-points of the centroids of the type-2 consequent
sets (see Table A-I in Appendix A). Doing this can reduce the
number of design parameters. For example, if the consequent

MF is also a Gaussian primary MF with uncertain mean, that
is characterized by three design parameters, then using the
two end-points of the centroids of this type-2 MF reduces the
number of design parameters from three to two.

Note that the consequent parameters do not need the “ ” or
“ ” subscripts in ( and are associated with a spe-
cific antecedent). Additionally, (see the formulas for and
in Table I) or .11

11Note that this parameterization is true for center-of-sets and height type-
reduction but is not true for centroid or center of sums type-reduction.
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Fig. 4. Modification to top part of Fig. 2.

TABLE VII
AND UNDER PRODUCT T-NORM. FOR MINIMUM T-NORM, REPLACE BY , BY AND BY .

STATES ARE DEFINED IN TABLE VIII

From (2) and (13), it is easy to show that

(31)

and

(32)

Fact 7: It is true that

(33)

(34)

where is the th unit vector.

Proof: Using the vector calculus fact that ,
it is easy to show, from (7) and (12), that

(35)

(36)

Equations (33) and (34) follow directly upon application of
to (35) and (36), respectively.12

12Recall that , so that
.
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TABLE VIII
DEFINITIONS OF THE FIVE STATES. FOR MINIMUM T-NORM, REPLACE BY , BY AND BY

This completes the derivations of general derivative formulas.
To proceed further, the FOUs of MFs must be specified. Be-
cause calculations of for consequent parameters are
so straightforward, we do not include a flowchart for their im-
plementation. Just implement (31)–(34), and use the vectors and
matrices that are defined in Table II.

VI. EXAMPLE

In order to compute and using (29a)
and (30a), we need and .
Here, we will compute and
for Gaussian primary MFs with uncertain means (see Example
A-1). To start off, we restate the results of Example A-1 using
the more explicit notations for antecedent MFs (
and )

(37)

(38)

(39)

We summarize the parameters that and depend
upon, as a function of , in Table III. Its results were ob-
tained by examining (38) and (39) (see, also, Fig. 3). Let

, , and . Tables IV and V provide
and , respectively.

The results in these Tables IV and V would be used in
Fig. 2 as follows. The tests on variable , given in Tables IV
and V, let us implement the top two blocks in which we
have to determine the active branches of the lower and upper

TABLE IX
UPPER AND LOWER MF PARAMETER DEPENDENCIES (SEE TABLE VII)

MFs. The results in Table V provide which

is needed to compute , and the results in
Table IV provide which is needed to compute

.

VII. CONCLUSION

We have made type-2 FLSs much more accessible to FLS de-
signers by providing mathematical formulas and computational
flowcharts for computing the derivatives that are needed to im-
plement steepest-descent parameter tuning algorithms for such
systems. We have demonstrated why computing such deriva-
tives is much more challenging than it is for a type-1 FLS, and
have provided derivative calculations that are applicable to any
kind of type-2 MF, since most of the calculations can be per-
formed without prespecifying the nature of those MFs. Even-
tually, one does have to specify the nature of the type-2 MF
in order to complete the calculations. We showed how to com-
plete the calculations for a Gaussian primary MF with uncertain
means.

It is important for the reader to remember the four assump-
tions stated in Section II. If any of them are not obeyed, then
some or all of the results of this paper must be modified.
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TABLE X
DERIVATIVES OF

TABLE XI
DERIVATIVES OF

APPENDIX A
CALCULATIONS REQUIRED TO IMPLEMENT AN INTERVAL

SINGLETON TYPE-2 FUZZY LOGIC SYSTEM

In this appendix we summarize all of the calculations that
are needed to implement an interval singleton type-2 FLS. For
detailed derivations of all of these results as well as more back-
ground on type-2 FLSs, see [6]. To begin we define important
terms that are associated with a type-2 fuzzy set and a type-2
FLS.

A. Preliminaries

Consider a type-2 FLS having inputs
and one output . We assume there are rules where

the th rule has the form

(A-1)

This rule represents a type-2 relation between the input space
, and the output space, , of the type-2 FLS.

Associated with the antecedent type-2 fuzzy sets, , are the
type-2 MFs , and associated with the conse-

quent type-2 fuzzy set is its type-2 MF . We frequently
use the simpler notation for .

Definition A-1: A type-2 fuzzy set, denoted , is character-
ized by a (three-dimensional) type-2 membership function (MF)

, i.e.,

(A-2)

where denotes union over all admissible and , and
. At each fixed value of , is the primary

membership of and is called the primary variable.
Definition A-2: At each value of , say , the two-

dimensional plane whose axes are and is called a
vertical slice of . A secondary MF is a vertical slice of

. It is for and ,
i.e.,

(A-3)
in which . Because , we drop the prime
notation on , and refer to as a secondary MF; it is
a type-1 fuzzy set, which we also refer to as a secondary set.

Definition A-3: The domain of a secondary MF is called the
primary membership of . In (A-2) and (A-3), is the primary
membership of , where for .

Definition A-4: The amplitude of a secondary MF is called a
secondary grade. In (A-3), is a secondary grade.

Definition A-5: An interval type-2 fuzzy set is a type-2 fuzzy
set all of whose secondary MFs are type-1 interval sets, i.e.,

, .
Interval secondary MFs reflect a uniform uncertainty at the

primary memberships of , and are the ones most commonly
used in a type-2 FLS. Note that an interval set can be represented
just by its domain interval, which can be expressed in terms of
its left and right end-points as , or by its center and spread
as [ , ], where and .
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Definition A-6: Uncertainty in the primary memberships of
a type-2 fuzzy set, , consists of a bounded region that we call
the FOU. It is the union of all primary memberships, i.e.,

(A-4)

The term FOU is very useful, because it not only focuses our
attention on the uncertainties inherent in a specific type-2 MF,
whose shape is a direct consequence of the nature of these uncer-
tainties, but it also provides a very convenient verbal description
of the entire domain of support for all the secondary grades of
a type-2 MF.

Definition A-7: Consider a family of type-1 MFs
where are parameters,

some or all of which vary over some range of values, i.e.,
. A primary MF is any one of these

type-1 MFs, e.g., .
For short, we use to denote a primary MF. It will be
subject to some restrictions on its parameters. The family of all
primary MFs creates a FOU.

Two examples of very useful primary MFs are: Gaussian
MF with uncertain mean and certain standard deviation,
and Gaussian MF with certain mean and uncertain standard
deviation.

Definition A-8: An upper MF and a lower MF are two type-1
MFs that are bounds for the FOU of a type-2 fuzzy set . The
upper MF is associated with the upper bound of , and
is denoted , . The lower MF is associated with the
lower bound of , and is denoted , , i.e.,

(A-5)

and

(A-6)

Because the domain of a secondary MF has been constrained in
Definition A-1 to be contained in [0, 1], lower and upper MFs
always exist.

Example A-1: Consider the case of a Gaussian primary MF
having a fixed standard deviation, , and an uncertain mean that
takes on values in , i.e.,

(A-7)

Corresponding to each value of we will get a different mem-
bership curve (Fig. 3). The uniform shading for the FOU denotes
interval sets for the secondary MFs and represents the entire in-
terval type-2 fuzzy set .

The upper MF, , is

(A-8)

where, for example, .
The thick solid curve in Fig. 3 denotes the upper MF. The lower
MF, , is

(A-9)

The thick dashed curve in Fig. 3 denotes the lower MF.
From this example we see that sometimes an upper (or a

lower) MF cannot be represented by just one mathematical func-
tion over its entire -domain. It may consist of several branches
each defined over a different segment of the entire -domain.13

When the input, , is located in a specific -domain segment,
we call its corresponding MF branch an active branch ([4], [6]),
e.g., in (A-9), when , the active branch for

is .

B. Fuzzy Inference Engine Results

The major result for an interval singleton type-2 FLS is sum-
marized in the following

Theorem A-1: [5], [6] In an interval singleton type-2 FLS
using product or minimum t-norm: a) the result of the input and
antecedent operations, is an interval type-1 set, called the firing
set, i.e.,

(A-10)

where

(A-11)
and

(A-12)
b) the rule fired output consequent set, , is the interval
type-2 fuzzy set

(A-13)

where and are the lower and upper membership
grades of . (c) suppose that of the rules in the FLS
fire, where , and the combined output type-1 fuzzy set,

, is obtained by combining the fired output consequent
sets by taking the union of the rule fired output consequent
sets; then (A-14), as shown at the bottom of the next page, holds.

A complete proof of this theorem can be found in [5] and [6].
Generalizations of this theorem to the very important case when
the input to the type-2 FLS is a type-2 fuzzy set are also given
in those references (see, also Appendix B for some of those
results).

C. Type-Reduction

Five different type-reduction methods are described in [6].
Each is inspired by what we do in a type-1 FLS, when we de-
fuzzify the (combined) output of the inference engine using a va-

13This is not peculiar to type-2 fuzzy sets. For example, a type-1 triangular
MF consists of two branches each defined over a different segment of the domain
variable.
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riety of defuzzification methods that all do some sort of centroid
calculation, and, is based on computing the centroid of a type-2
fuzzy set. Using the Extension Principle, Karnik and Mendel [2]
defined the centroid of a type-2 fuzzy set; it is a type-1 fuzzy set.
Computing the centroid of a general type-2 fuzzy set can be very
intensive; however, for an interval type-2 fuzzy set, two exact it-
erative methods for computing its centroid have been developed
by them. This was possible because the centroid of an interval
type-2 fuzzy set is an interval type-1 fuzzy set, and such sets
are completely characterized by their left- and right-end points;
hence, computing the centroid of an interval type-2 fuzzy set
only requires computing those two end-points.

The different kinds of type-reduction can all be expressed as

(A-15)

in which , , , and have different meanings, as
summarized in Table VI. In this paper, we only focus on
center-of-sets type-reduction.

In (A-15), all symbols refer to quantities that are rule-ordered.
In the Karnik–Mendel iterative procedures, (one for computing

and one for computing ) that we summarize next, all quan-
tities are reordered according to step 1: The Karnik–Mendel it-
erative procedure for computing is as follows:14

1) Without loss of generality, assume that the precomputed
are arranged in ascending order; i.e.,
. Re-order the accordingly and call them .

2) Compute as by initially
setting for , where
and have been previously computed using (A-11) and
(A-12), respectively, and let .

3) Find such that .
4) Compute with for

and for , and let .
5) If , then go to Step 6). If , then stop and

set .
6) Set equal to , and return to Step 3).
The iterative procedure for computing is very similar to

the one just given for . In step 1, it is now the precomputed
that are arranged in ascending order; i.e., ,
and the that are reordered accordingly (they are now called

). In step 2 is computed as by
initially setting for . In step

14This procedure is a special case of computing a fractionally linear function
[3]; however, it was developed independently of their work.

3, is found such that ;
and, in step 4) is computed as with

for and for .
These two four-step iterative-procedures (steps 1) and 2) are

initialization steps) have been proven by Karnik and Mendel [2]
to converge to the exact solutions in no more than iterations.

Observe that in these procedures, the computed numbers
and (called cross-over points or switch-points) are very im-
portant. For , , whereas for ; hence,

can be represented as

(A-16)

Additionally, for and for , so that
can be represented as

(A-17)

D. Defuzzification

Because is an interval set, we defuzzify it using the av-
erage of and ; hence, the defuzzified output of an interval
singleton type-2 FLS is

(A-18)

APPENDIX B

RESULTS FOR INTERVAL TYPE-2 NONSINGLETON TYPE-2 FLSs

In this appendix, we provide results comparable to those
given in the main body of the paper, but for an interval type-2
nonsingleton type-2 FLS. For such a FLS not only are the rule
antecedents and consequent characterized by interval type-2
fuzzy sets, but the inputs that activate the FLS are also interval
type-2 fuzzy sets (a special case of which is a type-1 fuzzy set).
We denote the MF for input by , with lower and
upper MFs and , respectively.

A. Fuzzy Inference Engine Results

The major results for an interval type-2 nonsingleton type-2
FLS are in [5] and are also summarized in of [6, Th. 12–1]. For
the purposes of this paper, we only need the following procedure
to compute .

1) Choose a t-norm (product or minimum) and create the
functions and , where

(B-1)

(A-14)
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and

(B-2)

2) Let and denote the values of that are
associated with and , re-

spectively. Compute and .

3) Evaluate and where

(B-3)

and

(B-4)

Note that and will depend upon measure-
ment .

4) Compute and as

(B-5)

and

(B-6)

Note that these results are comparable to those in part a) of The-
orem A-1. The main difference between computing the firing
interval for an interval type-2 nonsingleton type-2 FLS and an
interval singleton type-2 FLS is having to compute and

. Note also that parts b) and c) of Theorem A-1 apply as
is to the present nonsingleton case.

B. Changes

The changes in Sections I–V are as follows.
1) In Section I, change in (2) to ,

where “ ” is short for type-2 nonsingleton type-2.
2) In all sections, wherever the phrase “interval singleton

type-2 FLS” is used, replace it with “interval type-2 non-
singleton type-2 FLS.”

3) There are no changes to Sections II and III.
4) Fact 4 is changed to: For specific values of and , an-

tecedent parameters can only appear in

and and cannot appear in and

for . This is a direct result of Assump-

tion 1 in Section II and the facts that and
only depend on one value of and .

5) In Fact 5, change in (28) to .
6) In Fact 6, replace by and by

for all . Although we will still

refer to the equations for computing and
as (29) and (30), respectively, it is to

be understood that those equations are now modulo these
changes.

7) The flowchart in Fig. 2 is modified as follows.
a. Replace the top four blocks of Fig. 2 by the blocks

in Fig. 4.
b. Change in the center lower two blocks to

.
c. In the block for computing , replace

“(A-11)” by “(B-5), in which .”
d. In the block for computing , replace

“(A-12)” by “(B-6), in which .”
8) In Section V, change in (31) and (32) to

.

C. An Example

In order to compute and
using (29) and (30), we need

and . Here, we will compute
and for an-

tecedent Gaussian primary MFs with uncertain means and
input measurement Gaussian primary MFs with uncertain
standard deviations. Formulas for antecedent MFs and their
upper and lower MFs are given in (37)–(39). Formulas for input
measurement MFs and their upper and lower MFs are

(B-7)

(B-8)

(B-9)

Results for and are given in Ta-
bles VII and VIII. Detailed derivations of these results can be
found for product t-norm, in [6, pp. 394–399]. The results for
minimum t-norm are derived in exactly the same manner as
the ones for product t-norm. We summarize the parameters
that and depend upon, as a function
of , in Table IX. Its results were obtained by examining
Table VII.

Let , , , and
. From Table IX observe that depends on in all

five of its states, and depends on only in States (1) and (5).
No state depends on both and . Tables X and XI provide
roadmaps of nonzero or zero derivatives of

and . You can compute the exact derivatives
by using the formulas in Table VII.

The results in Tables VIII, X, and XI would be used in
Figs. 2 and 4 as follows. The tests on variable
in VIII let us implement the top block of Fig. 4 in which
we have to determine the active states. The results in
Table X provide which is needed

to compute , and the results in Table V
provide which is needed to compute

.
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