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ABSTRACT

The main thesis of this paper is that words mean different
things to different people and so there is uncertainty
associated with words, which means that fuzzy logic (FL)
must somehow use this uncertainty when it compules with
words. Type 1 FL can not do this, but type 2 FL, as
recenly advocated by Kamnik and Mendel ([4] = [8]) can.
The paper links uncertainty and type-2 FL, and explains
how this uncertainty can be translated into domain
information for type 2 membership functions. Doing this
lets us use these membership functions and type 2 FL to
compute with words. The paper also guantifics the
uncertainty for a eollection of 16 words.

L INTRODUCTION

Zadeh [16] lately has been advocating “computing with
words” (CW) and using fuzzy logic (FL) 1o do this. For,
example, he states: ... computing with words is a
necessity when the available information is too imprecise
o justily the use of numbers and ... when there is a
tolerance for imprecision which can be exploited to
" achicve tractability, robusiness, low solution cost, and
better rapport with reality;” and, “... fuzzy logic is a
methodology for computing with words.” The main thesis
of this paper is that words mean different things to
different people and so there is uncertainty associated with
words, which means that FL must somehow use this
uncertainty when it computes with words, Type 1 FL can
not do this, but type 2 FL, as recently advocated by Kamik
and Mendel ([4] - [$]), can.

First, we will link uncertainty and type-2 FL (Section II).
Then, we will demonstrate (Section 11I) that there is
uncertainty associated with words, and we will guantify
the unceriainty for a collection of 16 words, Finally, we
will -explain how this uncertainly can be translated into
domain information for type 2 membership funciions

(Section IV), Le., into a fastprint of uncertainey. Duoing this
lets us then use these membership functions and type 2 FL
1o compute with words. Conclusions are provided in
Section V.

IL. Uncertainty and Fuzzy Logic

The concept of a fype-2 fuzzy set was introduced by Zadeh
[15] as an extension of the concept of an ordinary fuzzy set
(henceforth called a sype-7] fuzzy ser). Some other
contributors to the (small) literature about type-2 fuzzy
sets are: Dubois and Prade [1] - (3], Kamnik and Mendel
[4] = [8), Kaufman and Gupta [9], Mizumoto and Tanaka
[10), [11], Nieminen [12], Turksen [13], and Yager [14]. A
type-2 fuzzy set is characterized by a fuzzy membership
function, i.c., the membership value (or membership
grade) for cach element is a fuzzy set in [0, 1], unlike a
type-1 set where the membership grade is a crisp number
in [0, 1]. Such sets can be used in situations where there is
uncertainly about the membership grades themselves, e.g.,
uncertainty in the shape of the membership function or in
some of its parameters,

An example of a type-2 lurry set is depicted in Fig. 1. This
is the situation of a triangular membership function (Fig,
1a) whose apex location, m, is uncertain. The apex may be
anywhere from m-§ to m+6,; so the triangular
membership function may lic anywhere in the shaded
region, The vertical projection of an arbitrary point along
the horizontal axis, x*, interscets the shaded region over a
range of values [, B]. This range of values is called [8]
the primary memberships of x. The membership grades of
these primary memberships are called [8] secondary
memberships of x. Three candidate sccondary
memberghips are indicated in Fig. 1b. The term [8]
membership grade for each x, represents all the primary
memberships and their corresponding secondary
memberships taken together. In this paper, we shall refer to

“the collection of primary memberships of x as the footprint



of uncertainty. It is the shaded area in Fig. 1a, znd, it is the
footprint of uncertainty that is needed for words.
Computing with words can be accomplished within the
framework of type-2 FL, once we have established
membership functions for the words, The key though is to
establish the footprints of uncertainty for the words.

Type-2 membership [unctions are used in lype-2 fuzzy
logic systems (FLSs). Figure 2 depicts the structure of a
Lype-2FLS [6]-[8]; it is quite similar to a type-1 FLS, the
only difference being that the antecedent and/or
consequent sets in a type-2 FLS arc type-2, so that cach
rule output set is type-2. Extended (by means of the
Extension Principle) versions of type-1 defuzzification
methods yield a type-1 set from the type-2 rule oulput sets,
We call this process fype-reduction rather than
defuzzification, and the resulting type-1 set, the type-
reduced set. The type-reduced set can then be defuzzified
10 obtain a crisp output. We call the combination of type-
reduction and defuzzification ouiput processing. An
example of output processing is depicted in Fig. 3. The
type-reduced set of a type-2 FLS shows the possible
variation in the erisp output of the FLS duc to uncertain
natures of the antecedents and/ or consequents. It
establishes a band of values around a crisp output value in
much the same way that a confidence interval establishes a
band about a point estimate when stochastic uncertainty is
present; but, it does this for linguistic uncertainties, Such a
band of uncertainty cannot be computed using a type-1
FLS. Due to space limitations, we cannot present any of
the mathematical details that explain how 1o perform type-
reduction and other type-2 operations, See [6]-[8] for these
details. Type-2 FL software (freeware) is available on the
web: http isipl ssc.edul~mendelfsoftware,

II. WORDS AND UNCERTAINTY

We arc interested in applying FL 10 situations where the
meanings of words are associated with a scale 0-10,
because we are interested in obtaining rule cOmsequents
from people using a survey, in which people will be given
questions and their answers will be from a2 small
vocabulary that covers this range. The discussions can
casily be extended to arbitrary scales.

How can we cover such a scale with words? What is the
smallest number of words that cover the interval 0-107 We
will demonstrate that the answer to these questions depend
on whether or not we include uncertainty asscciated with
the words.

In order to answer these questions, we performed a survey.
With the help of a social scientist (Prof. Sheila Murphy,
USC Annenberg School of Communications), we
established 16 words which we thought would cover the

interval 0-10. No specific context was associated with
these words; however, this in no way implies that the
results described below are invariant to context. The
words (which arc referred to as labely in the survey) were
randomized. Engineering undergraduate students were
given the survey, whose wording is as follows: “Below arc
a number of labels that describe an interval or a ‘range’
that falls somewhere between 0 to 10. For cach label,
please tell us where this range would start and where it
would stop. (In other words, please tell us how much of the
distance from 0 to 10 this range would cover.) For
example, the range ‘quite a bit" might start ar 6 and end at
8. It is important o note that not all the ranges are the
fame size.” A table was provided to the students, so that
they only had to fill in two numbers for each label. Survey
results from 70 respondents arc summarized in Fig. 4. For
cach label there are two circles with a solid line between
them. The circles are located at the mean start and end
points for the label. The dashed lines to the left of the left-
hand circles and to the right of the right-hand circles,
which each terminate in a vertical bar, equal one standard
deviation, for the mean start and end points, respectively.
Observe that standard deviations are not the same for the
start and end values for each label,

Observe, also, from Fig. 4 that: (1) There is a gap between
‘none” and ‘very little,' implying that either another word
should be inserted between them or they should be
combined; for illustrative purposes, in the rest of this
paper, we do the latter; (2) People scem to agree that
‘none’ starts at zero ... and there is very litle uncertainty
about this: (3) The same can not be said for the label ‘a
maximum amount”; the right-hand mean value for its range
i$ 9.7571 and not 10; perhaps (as suggested by a reviewer
of the journal version of this paper) people are often wary
about assigning the highest possible numerical value to a
question—Tfor many people, there is always room for
“more” of whatever is being asked about; (4) So, the 16
words do not quite cover the 0-10 interval, but this only
occurs al the right-most extreme values; (5) There scems Lo
be a linguistic gap between the labels ‘some’ and ‘a
moderate amount,” as evidenced by the small degree of
overlap between these labels; perhaps this gap can be filled
by adding the label ‘somewhat moderate’; and, (6) The
dashed portions of the intervals for each label represent the
label's uncertainty,

What do we do with such uncertainty information, when
we compute with words using (lype-1) FL? Usually, in
(type-1) FL we would tend 1o explicitly igrore the
uncertainty, either by using just the [start, end) range for a
label, or by perhaps being conservative, and using the
range associated with the Imterval [start - standard
deviation (starf), end + standard deviation (end)). As Fig, 4
indicates, it is not correct to do the former, and, as
explained nexy, it is also not correct o do the larer,



The dashed lines in Fig. 4 represent linguistic uncertainty,

in much the same way that standard deviation for a

measured random gquantity represents its uncertainty.
When we work in the province of probability, we find it
useful and important to distinguish between the mean and
the standard deviation, so why should less be cxpected of
us when we work with linguistic uncertainties?
Unfortunately, type 1 FL can not let us distinguish the
dashed part of an interval from the solid part, Type-2 FL
can.

One of the interesting observations from Fig. 4 is: the
smallest number of labels that cover the interval 0-10 is 3
{e.g., ‘none to very little,” ‘a moderate amount,” and ‘a
maximum amount’), and this is only possible because of
linguistic uncertainties, as reflected by the standard
deviations associated with cach label. So, linguistic
uncertainty is good, in that it lets us cover the 0-10 range
with a much smaller number of labels than without it {i.e.,
without it, there would be no overlap between the intervals
for these 3 labels). Put another way, in the context of firing
rules in a FLS, uncertainty can fire rules. This can not
occur in the framework of type-1 FLSs; but, it can oceur in
the framework of type-2 FLSs. So, uncertainty has the
potential to reduce complexity.

IV. FOOTPRINTS OF UNCERTAINTY FOR WoRrDs

The footprint of uncertainty for a word depends on kow
interval information is obtained from people. To begin, we
consider 3 possibilities, each associated with a different
wording of a query, Each query begins in the same Wy
“Below are a number of labels that describe an interval or
a ‘range’ that falls somewhere between 0 and 10.":

1. For each label, tell us where this range would start
and where it would stop,

2. For each label, tell us where this range is centered
and how far to the right of the center and how far
10 the left of the center the interval extends,

3. For each label, tell us where the range is centered
and how long the interval is.

We used the first wording for the survey that is described
in Section III. Tts answers establish sample statistics for the
two end-points of an interval. The answers to the third
query also establish sample statistics for two points, the
center and each end point, where each end point is
assumed to be equidistant from the center, If an end-point
bumps into 0 or 10, it is truncated at those values. The
answers to the second query scemingly establish sample
statistics for three points, the center and the left- and right-
end points; however, this query has a serious linguistic
shortcoming: the word ‘center’ implies that the interval

will extend equally to the left and right of the center; but
the rest of the query can cause il to extend by different
amounts to the left and right of the center, which is a
contradiction. So, we do nol investigate the footprints of
uncertainty for the sccond query. Because of space
limitations, we present results only for the first warding,
whose answers establish sample statistics for the two end-
points of an interval,

Next, we present a construction procedure for determining
the footprint of uncertainty for type-2 membership
functions. In all cases we use triangular membership
functions for the interior membership functions.
Construction procedures for shoulder membership
functions are described in the journal version of this paper.
As a reminder, the sccondary membership functions are
located on the footprint of uncenainty.

Let a denote the average value for the left-hand point of
the interval and b denote the average value for the right-
hand point of the interval. The standard deviation for the
location of the left-hand point is denoted sdl, and the
standard deviation for the location of the right-hand point
is denoted sd2. Points a and b are shown as selid circles in
Fig. 5. We define the uncertainty intervals for the two
points as [a - sdJ, a + 541] and b — 52, b + 527,
respectively.

There are two cases that we must consider: (1) 5 — 542 > g
+5dl and (2) b - 52 < a + 541, In the first case (Fig. 5a)
the uncertainty interval for point & does not overlap with
the uncertainty interval for point b; but, in the second case
(Fig. 5b), it does.

Case 1: b - 5d2 > a + sd! (see Fig. 5a). (1) Letb—a =
I (2) Locate the apex of the triangle at /2, and assign it
unity height; (3) The left-hand vertex of the triangle, on the
horizontal axis, can range from a - sdl to a + sal: the
region of uncertainty for the left-hand leg is the shaded
left-hand triangle whose vertices arc at: (a - 5dJ L0, (a +
sdi, 0), and (12, 13 (4) The right-hand vertex of the
triangle, on the horizontal axis, can range from b - 5d2 to b
+ 5d2; the region of uncertainty for the right-hand leg is the
shaded right-hand triangle whose vertices are at: (b - 5d2,
U, (b + 542, 0), and (i/2, 1); and, (5) The footprimt of
uncertainty is the union of all points in the two shaded
triangles,

Case 2: b — 52 < a + sdl (see Fig. 5b). The
construction procedure is exactly the same as in Case 1.
Now, however, there is no open space belween the two
shaded triangles, because & = 542 < g + sdi. So, the region
of uncertainty is the shaded triangle whese vertices are ar-
(a-5dl, 0), (b + s5d2, 0), and (I/2, 1),



It is important 1o recall that the footprint of uncertainty is

the domain for the type-2 membership function; secondary -

values sit on top of this domain, e.g., Fig. 1. Additionally,
since intervals and end-point uncertainties are different for
the words that's cover the 0-10 interval (Fig. 4), the
footprints of uncertainty are word-specific.

V. CoNCcLUSIONS

We have demonstrated that computing with words
involves linguistic uncertainties, and maintain that type-1
fuzzy logic can not incorporate such uncertaintics, but,
type-2 fuzey logic can. Words can mean different things to
different people, and it is this that causes the uncertainty.
Intervals for words need to be established for each
application—context is important; this can be done using a
survey. We have demonstrated that for a list of 16 labels,
uncertainty about these labels lets us cover the interval 0
—10 with as few as 3 labels; this can not be done using
these labels if uncertainty is ignored. For the list of labels
we used, it would take at least 6 of them to cover the
interval with a sufficient degree of overlap between
intervals (see Fig. 4). So, uncertainty has the potential to
reduce complexity; but, it requires type-2 FL to do this.
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Figure 1. (a) Triangle whose apex location, m, is uncertain, and varies in [m=06,,m+6,];
(b) possible secondary membership functions at point x*.
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Figure 2. The structure of a type-2 FLS. Note that output processing consists of type-reduction followed by
defuzzification.
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Figure 3. Pictorial representation of output processing. First, the individual rule output
sets are combined in some manner to obtain type-2 fuzzy set (Fig. a); then, type-
reduction is applied to to obtain the type-1 set (Fig. b); finally, the type-1 fuzzy set is
defuzzified to produce the crisp output (Fig. c).
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Figure 5. Footprint for secondary membership functions when end-point
information is requested. (a) Uncertainty interval for a does not overlap with the
uncertainty interval for b; and, (b) Uncertainty interval for @ overlaps with the
uncertainty interval for b.
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