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1 For the convenience of the reader, all abbreviatio
2 IT2 FSs are equivalent to interval-valued fuzzy se

membership functions.” There are many references a
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a b s t r a c t

This paper, which is tutorial in nature, demonstrates how the Embedded Sets Representation
Theorem (RT) for a general type-2 fuzzy set (T2 FS), when specialized to an interval (I)T2 FS,
can be used as the starting point to solve many diverse problems that involve IT2 FSs. The
problems considered are: set theoretic operations, centroid, uncertainty measures, similar-
ity, inference engine computations for Mamdani IT2 fuzzy logic systems, linguistic
weighted average, person membership function approach to type-2 fuzzistics, and Interval
Approach to type-2 fuzzistics. Each solution obtained from the RT is a structural solution but
is not a practical computational solution, however, the latter are always found from the for-
mer. It is this author’s recommendation that one should use the RT as a starting point when-
ever solving a new problem involving IT2 FSs because it has had such great success in solving
so many such problems in the past, and it answers the question ‘‘Where do I start in order
to solve a new problem involving IT2 FSs?”

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Interval type-2 fuzzy sets1,2 (IT2 FSs) are now very widely used3 (e.g., [3,11,13,24,26,29,30,34,39–43,45,54,58,62–65]).
When a researcher faces a new problem involving such fuzzy sets a natural question for her or him to ask is ‘‘Where do I start
in order to solve this problem?” This paper provides an answer to this question. To begin, though, some background material is
needed about type-2 and interval type-2 fuzzy sets, after which we return to this question.

A type-2 fuzzy set (T2 FS) eA can be represented in different ways [26]. The point-valued representation (which is usually
the starting point for understanding or describing a general T2 FS) is one in which the membership function (MF) of eA is
specified at every point in its 2D domain of support, i.e.
eA ¼ fððx;uÞ;l~Aðx;uÞÞ j8x 2 X; 8u 2 Jx # ½0;1�g ð1Þ
In (1) x is the primary variable; Jx is called the primary membership of x—it is usually a closed interval of real numbers that are
contained within [0,1], but for some values of x it may only be a single value; and, u is called the primary membership variable
. All rights reserved.

ns (and their meanings) that are used in this paper are collected together in Table 1.
ts (IVFS), which were introduced first by Zadeh [59], who called them ‘‘fuzzy sets with interval-valued
bout IVFSs, most notably [8,1].
500 T2 publications. Only a small sampling from them are listed here.
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(or the secondary variable). While useful as a starting point for obtaining the other representations, (1) does not seem to be
useful for much of anything else.

The vertical slice representation focuses on each value of the primary variable x, and expresses (1) as:
4 An
eA ¼ Z
x2X

l~AðxÞ=x ð2Þ

l~AðxÞ ¼
Z

u2Jx # ½0;1�
fxðuÞ=u ð3Þ
leA ðxÞ is called a secondary MF or a vertical slice, and fx(u) is called the secondary grade. The vertical slice representation is
extremely useful for computation and can also be useful for theoretical studies.

There is even a very new alpha-plane representation for eA [19] that has so far been used to develop a new way to perform
centroid type-reduction for a general T2 FS; however, because this representation is not used in this paper, we refer the read-
ers to [19] for its details.

Finally, there is a so-called wavy-slice representation (which could also be called an embedded T2 FS representation) [33]
that is most valuable in theoretical studies because it quickly leads to the structure of the solution to a new problem, after
which practical procedures are developed to compute that solution. The wavy-slice representation has also been called the
Mendel–John Representation, and because it is the starting point for the rest of this paper, it is stated next, but for discrete
universes of discourse.

Theorem 1 (Representation Theorem [33]). Assume that primary variable x is sampled at N values, x1, x2, . . . , xN, and at each of
these values its primary membership variable ui is sampled at Mi values, ui1;ui2; . . . ;uiMi

. Let eA j
e denote the jth T2 embedded

set4for T2 FS eA , i.e.,
eA j
e � xi; uj

i; fxi
ðuj

iÞ
� �� �

; uj
i 2 fuik; k ¼ 1; . . . ;Mig; i ¼ 1; . . . ;N

n o
ð4Þ
in which fxi
ðuj

iÞ is the secondary grade at uj
i. Note that eA j

e can also be expressed as
eA j
e ¼

XN

i¼1

fxi
uj

i

� �
=uj

i

h i.
xi uj

i 2 fuik; k ¼ 1; . . . ;Mig ð5Þ
Then eA can be represented as the union of its T2 embedded sets, i.e.,
eA ¼[nA

j¼1

eA j
e ð6Þ

nA ¼
YN
i¼1

Mi � ð7Þ
This representation of a T2 FS, in terms of much simpler T2 FSs, the embedded T2 FSs, is not recommended for compu-
tational purposes, because it would require the explicit enumeration of the nA embedded T2 FSs and nA can be astronomical.

In practice, general T2 FSs are at this time still too difficult to use, although much research is underway to rectify this, e.g.,
[4,5,9,10,19]. Consequently, only a special kind of T2 FS is usually used—an interval T2 FS (IT2 FS)—for which all of the sec-
ondary grades equal one.

Returning to the question ‘‘Where do I start in order to solve a new problem involving IT2 FSs?” we shall demonstrate that
the Representation Theorem (RT) specialized to IT2 FSs is a very good answer.

This paper brings many (scattered) results together in one place for the first time so that the reader can see the usefulness
of approaching a new theoretical problem for IT2 FSs by starting with the RT; hence, in that sense it is a tutorial. However,
the idea of using the RT as a starting point to solve any new problem involving IT2 FSs is an outgrowth of its past successes,
and in that sense is a new contribution.

The rest of this paper is organized as follows: Section 2 provides the RT for IT2 FSs; Section 3, which is the main section of
the paper, explains how the RT in Theorem 2 can obtain the structure of solutions for many problems involving IT2 FSs;
examples are given in Section 4 and Section 5 draws conclusions.

2. Representation of an IT2 FS

An IT2 FS eA is completely described [26,29] by its lower and upper MFs, l~AðxÞ and �l~AðxÞ, respectively. The footprint of
uncertainty (FOU) of an IT2 FS is described in terms of these MFs, as
FOUð eA Þ ¼ [
x2X

l~AðxÞ; �l~AðxÞ
h i

ð8Þ
embedded T2 FS is a T2 FS that has only one primary membership at each xi. It is also called a wavy-slice [33].
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If X is discrete, then (8) is modified to:
5 Thi
FOUð eA Þ ¼ [
x2X

l~AðxÞ; . . . ; �l~AðxÞ
n o

ð9Þ
In (9) the . . . notation means ‘‘all of the embedded T1 FSs between the lower and upper MFs.” Frequently, (8) and (9) are used
interchangeably without any confusion. The area of the FOU provides an indication of the amount of uncertainty that is in the
IT2 FS, and is sometimes used as another representation for an IT2 FS, e.g., [55,63] and [64].

The specialization of the RT in Theorem 1 to an IT2 FS is contained in the following5:

Theorem 2 (Representation for an IT2 FS [34]). For an IT2 FS, for which X and U are discrete, the domain of eA is equal to the
union of all of its embedded T1 FSs, so that eA can be expressed as
eA ¼ 1=FOUð eA Þ ¼ 1
[nA

j¼1

Aj
e

,
ð10Þ
where Aj
e is an embedded T1 FS (that acts as the domain for eA j

e; j ¼ 1; . . . ;nAÞ;nA is given by (7), and
Aj
e ¼

XN

i¼1

uj
i=xi; uj

i 2 fl~AðxiÞ; . . . ; �l~AðxiÞg � ð11Þ
In (10) it is understood that the notation 1=FOUð eA Þ means putting a secondary grade of 1 at all elements in the FOUð eA Þ.
This representation of an IT2 FS, in terms of embedded T1 FSs, is very useful for deriving theoretical results, as we explain

and demonstrate below. It can be interpreted as a covering theorem, because eA is represented by all of the embedded T1 FSs
that cover its FOU.
3. Uses of the RT

In this section, which is the main section of the paper, we explain how the RT has been used to obtain the structure of the
solution (and not the practical computational solution) to the following problems for IT2 FSs: set theoretic operations, cen-
troid, uncertainty measures, similarity, inference engine computations for Mamdani IT2 fuzzy logic systems (FLSs), linguistic
weighted average (LWA), person-MF approach to type-2 fuzzistics, and Interval Approach (IA) to type-2 fuzzistics. We do not
claim that the RT is the only way to obtain solutions for these problems; however, we do claim that having a common start-
ing point for all of these problems is much better than pulling a solution out of thin air, by which we mean stating a solution
without any a priori mathematical justification for it.

3.1. Set theoretic operations

The union, intersection and complement are the three fundamental set theoretic operations that are used in FS theory.
Consider two IT2 FSs eA and eB . From Theorem 2 (henceforth called the RT), it follows that:
eA [ eB ¼ 1=FOUð eA [ eB Þ ¼ 1
[nA

j¼1

Aj
e[

, [nB

i¼1

Bi
e ¼ 1

[nA

j¼1

[nB

i¼1

Aj
e

,
[ Bi

e ð12Þ

eA \ eB ¼ 1=FOUð eA \ eB Þ ¼ 1
[nA

j¼1

Aj
e\

, [nB

i¼1

Bi
e ¼ 1

[nA

j¼1

[nB

i¼1

Aj
e

,
\ Bi

e ð13Þ

eA ¼ 1=FOUð eA Þ ¼ 1
[nA

j¼1

Aj
e

,
¼ 1

[nA

j¼1

Aj
e

,
ð14Þ
where nA and nB denote the number of embedded T1 FSs that are associated with eA and eB , respectively. What we must now
do is compute the union or intersection of the nA � nB pairs of embedded T1 FSs Aj

e and Bi
e, or the complement of the embed-

ded IT2 FSs that are associated with eA . Eqs. (12)–(14) represent the structures of the solutions to computing eA [ eB ; eA \ eB
and eA . Mendel et al. [34] show how to complete the computations on the right-hand sides of (12)–(14) using T1 FS math-
ematics, since by virtue of the RT the remaining set theoretic operations only involve T1 FSs. Their results are given in the top
part of Table 2.
s theorem is actually a Corollary to Theorem 1; but since this paper is all about IT2 FSs, it has been elevated herein to the status of a theorem.



Table 2
Results for IT2 FSs.

Set theoretic operations [34]
Union eA [ eB ¼ 1

S
8x2X

�
l~AðxÞ _ l~BðxÞ; �l~AðxÞ _ �l~BðxÞ
h i

Intersectiona eA \ eB ¼ 1
S
8x2X

�
l~AðxÞHl~BðxÞ; �l~AðxÞH�l~BðxÞ
h i

Complement eA ¼ 1
S
8x2X

�
1� l~AðxÞ;1� �l~AðxÞ
h i

Uncertainty measures [15,49]

Centroid CeA ¼ ½clð eA Þ; crð eA Þ� ¼ PL

i¼1
xi �l~AðxiÞþ

PN

i¼Lþ1
xil~AðxiÞPL

i¼1
�l~AðxiÞþ

PN

i¼Lþ1
l~AðxiÞ

;

PR

i¼1
xil~AðxiÞþ

PN

i¼Rþ1
xi �l~AðxiÞPR

i¼1
l~AðxiÞþ

PN

i¼Rþ1
�l~AðxiÞ

" #
L and R computed using the KM Algorithms in Table 3.

Cardinality PeA ¼ ½plð eA Þ; prð eA Þ� ¼ ½pðleA ðxÞÞ; pð�leA ðxÞÞ�; pðBÞ ¼ jXj
PN

i¼1lBðxiÞ=N

Fuzziness FeA ¼ ½f1ð eA Þ; f2ð eA Þ� ¼ ½f1ðAe1Þ; f2ðAe2Þ�; f ðAÞ ¼ h
PN

i¼1gðlAðxiÞÞ
� �

Ae1 : lAe1
ðxÞ ¼

�leA ðxÞ �leA ðxÞ is further away from 0:5 than leA ðxÞ
leA ðxÞ otherwise

�

Ae2 : lAe2
ðxÞ ¼

�leA ðxÞ both �leA ðxÞ and leA ðxÞ are below 0:5
leA ðxÞ both �leA ðxÞ and leA ðxÞ are above 0:5
0:5 otherwise

8<:
Variance V eA ¼ ½v lð eA Þ;vrð eA Þ� ¼ min8Aj

e
veA ðAj

eÞ;max8Aj
e
veA ðAj

eÞ
h i

KM Algorithms are used to compute v lð eA Þ and vrð eA Þ
Skewness SeA ¼ ½slð eA Þ; srð eA Þ� ¼ min8Aj

e
seA ðAj

eÞ;max8Aj
e
seA ðAj

eÞ
h i

KM Algorithms are used to compute slð eA Þ and srð eA Þ
Similarity [52]

Jaccard sJð eA ; eB Þ ¼ RX
minð�l~AðxÞ;�l~BðxÞÞdxþ

R
X

minðl~AðxÞ;l~BðxÞÞdxR
X

maxð�l~AðxÞ;�l~BðxÞÞdxþ
R

X
maxðl~AðxÞ;l~BðxÞÞdx

a w denotes a t-norm, most commonly the minimum or product.

Table 1
Abbreviations and their meanings.

Abbreviation Meaning

AC Average cardinality
CWW Computing with words
FLS Fuzzy logic system
FOU Footprint of uncertainty
FS Fuzzy set
FWA Fuzzy Weighted Average
IA Interval Approach
IT2 Interval type-2
IT2 FS Interval type-2 fuzzy set
KM Karnik–Mendel
LMF Lower membership function
LWA Linguistic weighted average
MF Membership function
RT Representation Theorem
T1 FS Type-1 fuzzy set
T2 FS Type-2 fuzzy set
UMF Upper membership function
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3.2. Centroid

The centroid of an IT2 FS, developed originally by Karnik and Mendel [15], provides a measure of the uncertainty of that
FS [53], and is also one of the most important computations for that FS. Using the RT, the centroid, CeA , of an IT2 FS eA is de-
fined as the collection of the centroids of all of its embedded IT2 FSs. This means the centroids of all nA embedded T1 FSs
contained within FOUð eA Þ have to be computed. The results of doing this are a collection of nA numbers, and these numbers
will have both a smallest and largest element, clð eA Þ � cl and crð eA Þ � cr , respectively. That such numbers exist is because the
centroid of each of the embedded T1 FSs is a bounded number. Associated with each of these numbers is a membership grade
of 1, because the secondary grades of an IT2 FS are all equal to 1. Consequently, CeA can be expressed as:



Table 3
KM Algorithms for computing the centroid end-points of an IT2 FS, eA , and their properties [15,26,29]. Note that x1 6 x2 6, . . . ,6 xN.

Step KM algorithm for cl KM algorithm for cr

cl ¼min8hi2 l~AðxiÞ;�l~AðxiÞ
� � PN

i¼1xihi=
PN

i¼1hi

� �
cr ¼max8hi2 l~AðxiÞ;�l~AðxiÞ

� � PN
i¼1xihi=

PN
i¼1hi

� �
1 Initialize hi by setting hi ¼ ½l~AðxiÞ þ �l~AðxiÞ�=2; i ¼ 1; . . . ;N (or hi ¼ l~AðxiÞ; i 6 bðnþ 1Þ=2c and hi ¼ �l~AðxiÞ; i > bðnþ 1Þ=2c, where b�c denotes the first

integer equal to or smaller than �), and then compute

c0 ¼ cðh1; . . . ; hNÞ ¼
PN

i¼1xihi=
PN

i¼1hi

2 Find k (1 6 k 6 N � 1) such that xk 6 c0 6 xk+1

3 Set hi ¼ �l~AðxiÞ when i 6 k, and hi ¼ l~AðxiÞ Set hi ¼ l~AðxiÞ when i 6 k, and hi ¼ �l~AðxiÞ

when i P k + 1, and then compute when i P k + 1, and then compute

clðkÞ �
Pk

i¼1
xi �l~Aðxi Þþ

PN

i¼kþ1
xil~AðxiÞPk

i¼1
�l~Aðxi Þþ

PN

i¼kþ1
l~AðxiÞ

crðkÞ ¼
Pk

i¼1
xil~AðxiÞþ

PN

i¼kþ1
xi �l~AðxiÞPk

i¼1
l~AðxiÞþ

PN

i¼kþ1
�l~AðxiÞ

4 Check if cl(k) = c0. If yes, stop and set
cl(k) = cl and call k L. If no, go to Step 5

Check if cr(k) = c0 . If yes, stop and set cr(k) = cr and call k R. If no, go to Step 5

5 Set c0 = cl(k) and go to Step 2 Set c0 = cr(k) and go to Step 2

Properties of the KM algorithms [21,35]

Convergence is monotonic and super-exponentially fast

6 Wh
(e.g., [1
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CeA ¼ 1=fcl; . . . ; crg ð15Þ
where6
clð eA Þ � cl ¼ min
8hi2 l~AðxiÞ;�l~AðxiÞ½ �

XN

i¼1

xihi

XN

i¼1

hi

," #
ð16Þ

crð eA Þ � cr ¼ max
8hi2 l~AðxiÞ;�l~AðxiÞ½ �

XN

i¼1

xihi

XN

i¼1

hi

," #
ð17Þ
Eqs. (15)–(17) provide the structure of the centroid. In general, there are no closed-form formulas for cl and cr; however, Kar-
nik and Mendel [15] have developed two very simple and easy to implement iterative algorithms (now known as the KM
Algorithms) for computing these end-points exactly, that can be run in parallel. Table 2 provides more detailed structures
for cl and cr, and Table 3 provides the two KM Algorithms.

3.3. Uncertainty measures

In this section, it is shown how the RT can be used to obtain structural solutions for finding the following additional
uncertainty measures for an IT2 FS (as mentioned in Section 3.2, the centroid is also an uncertainty measure): cardinality,
fuzziness (entropy), variance and skewness. All of the material in this section is taken from [49].

3.3.1. Cardinality
Let PeA denote the cardinality of IT2 FS eA . Then, using the RT, P~A is the union of the cardinalities of all of eA ’s embedded T1

FSs, Aj
e, i.e.
P~A ¼
[
8Aj

e

pðAj
eÞ ¼ ½plð eA Þ;prð eA Þ� ð18Þ
where pðAj
eÞ is a chosen T1 FS cardinality (it will have a smallest value and a largest value over 8Aj

e), and
plð eA Þ ¼min
8Aj

e

pðAj
eÞ ð19Þ

prð eA Þ ¼max
8Aj

e

pðAj
eÞ ð20Þ
en discretizations of the primary variable and primary membership approach zero, {cl, . . . ,cr} ? [cl,cr], an interval set. In the literature about the centroid
5,26,39]), it is customary to see (15) written as C~A ¼ ½cl; cr �.



J.M. Mendel / Information Sciences 179 (2009) 3418–3431 3423
There are many definitions of T1 FS cardinality, including De Luca and Termini’s [6], also called the power of a T1 FS, which is
the most widely used definition; however, this measure increases as N (number of samples) increases and its limit as N ?1
does not exist. We have therefore defined a normalized cardinality that is more useful for sampled continuous universes of
discourse, i.e.
pðAÞ ¼ jXj
N

XN

i¼1

lAðxiÞ ð21Þ
Solutions for plð eA Þ and prð eA Þ, based on (21), are found in [49], and are given in Table 2.
Closely related to PeA is the scalar average cardinality, ACð eA Þ, where
ACð eA Þ ¼ plð eA Þ þ prð eA Þ
2

ð22Þ
Average cardinality plays an important role in similarity (Section 3.4).

3.3.2. Fuzziness (entropy)
Let FeA denote the fuzziness of IT2 FS eA . Then, using the RT, FeA is the union of the fuzziness of all of eA ’s embedded T1 FSs,

Aj
e, i.e.
FeA ¼[
8Aj

e

f ðAj
eÞ ¼ ½flð eA Þ; frð eA Þ� ð23Þ
where f ðAj
eÞ is a chosen T1 FS fuzziness (it will have a smallest value and a largest value 8Aj

e), and
flð eA Þ ¼ min
8Aj

e

f ðAj
eÞ ð24Þ

frð eA Þ ¼max
8Aj

e

f ðAj
eÞ ð25Þ
There are also many definitions of T1 FS fuzziness, but all of them are special cases of the following general fuzziness measure
[16], f(A), where:
f ðAÞ ¼ h
XN

i¼1

gðlAðxiÞÞ
 !

ð26Þ
In (26), h is a monotonically increasing function from R+ to R+, and g: [0,1] ? R+ is a function associated with each xi. Addi-
tionally, (a) g(0) = g(1) = 0; (b) g(0.5) is a unique maximum of g; and, (c) g must be monotonically increasing on [0,0.5] and
monotonically decreasing on [0.5,1]. An example of such an f(A) is Yager’s fuzziness measure [56]:
fY ðAÞ ¼ 1�
PN

i¼1j2lAðxiÞ � 1jr
h i1=r

N1=r ð27Þ
where r is a positive constant.
Solutions for flð eA Þ and frð eA Þ, based on (26), are found in [49], and are also given in Table 2.

3.3.3. Variance
Let V ~A denote the variance of IT2 FS eA . Then, using the RT, V ~A is the union of the variance of all of eA ’s embedded T1 FSs, Aj

e,
i.e.
VeA ¼[
8Aj

e

vðAj
eÞ ¼

[
8Aj

e

PN
i¼1 xi � cðAj

eÞ
h i2

lAj
e
ðxiÞPN

i¼1lAj
e
ðxiÞ

264
375 ð28Þ
In (28), cðAj
eÞ is the centroid of the jth T1 embedded FS Aj

e, and in order to compute (28) all of the nA embedded T1 FSs would
have to be explicitly enumerated. In general, there will be an uncountable number of such T1 FSs so it is not possible to do
this. To circumvent this, Wu and Mendel [49] have introduced the following relative variance of Aj

e to eA ;v ~AðA
j
eÞ, after which it

is used to define the variance of eA :
veA ðAj
eÞ ¼

PN
i¼1 xi � cð eA Þh i2

lAj
e
ðxiÞPN

i¼1lAj
e
ðxiÞ

ð29Þ
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In (29), cð eA Þ is the center of the centroid of eA ;CeA , that is given in (15), i.e.,
7 The
comput

8 It is
cð eA Þ ¼ clð eA Þ þ crð eA Þ
2

ð30Þ
Using cð eA Þ in (29) is analogous to using the population mean in the definition of variance in probability.
The variance of IT2 FS eA ;VeA , is now re-defined (again using the RT) as the union of relative variance of all of its embedded

T1 FSs, Aj
e, as:
VeA ¼[
8Aj

e

veA ðAj
eÞ ¼ ½v lð eA Þ;v lð eA Þ� ð31Þ
where
v lð eA Þ ¼ min
8Aj

e

veA ðAj
eÞ ð32Þ

v rð eA Þ ¼ max
8Aj

e

veA ðAj
eÞ ð33Þ
How to compute v lð eA Þ and v rð eA Þ by means of KM algorithms7 is explained in [49]. Once v lð eA Þ and v rð eA Þ have been computed,
one can then compute the standard deviation of an IT2 FS eA , STDð eA Þ, as:
STDð eA Þ ¼ V1=2eA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v lð eA Þq

;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð eA Þq	 


ð34Þ
3.3.4. Skewness
Let SeA denote the skewness of IT2 FS eA . Then, using the RT, SeA is the union of the skewness of all of eA ’s embedded T1 FSs,

Aj
e, i.e.
SeA ¼[
8Aj

e

sðAj
eÞ ¼

[
8Aj

e

PN
i¼1 xi � cðAj

eÞ
h i3

lAj
e
ðxiÞPN

i¼1lAj
e
ðxiÞ

264
375 ð35Þ
In order to compute SeA all of the nA embedded T1 FSs would have to be explicitly enumerated, and, as for the variance, this
cannot be done. To circumvent this, Wu and Mendel [49] have introduced the following relative skewness of Aj

e to eA ; seA ðAj
eÞ,

after which it is used to define the skewness of eA :
seA ðAj
eÞ ¼

PN
i¼1 xi � cð eA Þh i3

lAj
e
ðxiÞPN

i¼1lAj
e
ðxiÞ

ð36Þ
where cð eA Þ is defined in (30).
The skewness of IT2 FS eA ; SeA , is now re-defined (again using the RT) as the union of relative skewness of all of its embed-

ded T1 FSs Aj
e as:
SeA ¼[
8Aj

e

seA ðAj
eÞ ¼ ½slð eA Þ; slð eA Þ� ð37Þ
where
slð eA Þ ¼ min
8Aj

e

seA ðAj
eÞ ð38Þ

srð eA Þ ¼ max
8Aj

e

seA ðAj
eÞ ð39Þ
How to compute slð eA Þ and srð eA Þ by means of KM algorithms is also explained in [49].

3.4. Similarity

The T1 FS literature is filled with a multitude of similarity measures, e.g., Bustince et al. [2] state ‘‘there are approximately
50 expressions for determining how similar two fuzzy sets are.” One of the most popular T1 FS similarity measures is
Jaccard’s [14], namely8:
use of KM Algorithms to compute the variance (and skewness) of an IT2 FS represents another use for those algorithms. They have also been used to
e the Fuzzy Weighted Average [21].
required that f be a function satisfying f(A [ B) = f(A) + f(B) for disjoint A and B. Cardinality is one such function.
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sJðA;BÞ ¼
f ðA \ BÞ
f ðA [ BÞ �

cardðA \ BÞ
cardðA [ BÞ ð40Þ
It is the one used below.
Wu and Mendel [51] have developed a vector similarity measure (VSM) to find the IT2 FS eB i that most closely resembles

IT2 FS eA . They argue that in order to compute the similarity of IT2 FSs it is necessary to compare their shapes as well as their
proximity (they are interested in similarity for computing with words [60,61,31,32]). More recently [52], they have shown
that the Jaccard similarity measure for IT2 FSs has better properties than the VSM.

Using the RT, an intuitive realization of SJð eA ; eB Þ, using (40), is:
SJð eA ; eB Þ ¼ [
8Aj

e ;B
j
e

cardðAj
e \ Bj

eÞ
cardðAj

e [ Bj
eÞ
¼ ½SJ:l; SJ;r� ð41Þ
where
SJ;l ¼ min
8Aj

e ;B
j
e

cardðAj
e \ Bj

eÞ
cardðAj

e [ Bj
eÞ

ð42Þ

SJ;r ¼max
8Aj

e ;B
j
e

cardðAj
e \ Bj

eÞ
cardðAj

e [ Bj
eÞ

ð43Þ
As for variance and skewness, it is not possible to compute SJ,l and SJ,r, because to do so would require the enumeration of all
of the embedded T1 FSs, Aj

e and B0je . Additionally, even if one could compute SJ,l and SJ,r, it is still necessary to convert [SJ,l,SJ,r]
into a crisp number because in many applications ranking of similarities are needed. Wu and Mendel [52] then proceed to re-
define SJð eA ; eB Þ as sJð eA ; eB Þ using average cardinalities [see (22)], i.e.
sJð eA ; eB Þ � AC½ eA \ eB �
AC½ eA [ eB � ð44Þ
A formula for computing this sJð eA ; eB Þ is in [52], and is also given in Table 2.

3.5. Inference engine computations for Mamdani IT2 fuzzy logic systems (FLSs)

This is a very large topic (e.g., see [26]), and because of space limitations, only the simplest of situations is presented—a
single rule that has one antecedent and is activated by a crisp number (i.e., singleton fuzzification). See [34] for generaliza-
tions to many other situations.

The simple rule is:
IF x is eF ; THEN y is eG ð45Þ
Our goal is to compute the generalized sup-star composition using the RT for this single-rule FLS, when Mamdani minimum
or product implication are used.

Let eF be an IT2 FS in the discrete universe of discourse Xd for the antecedent, and eG be an IT2 FS in the discrete universe of
discourse Yd for the consequent. Decompose eF into nF embedded IT2 FSs eF i

e ði ¼ 1; . . . ;nFÞ, whose domains are the embedded
T1 FSs Fi

e, and decompose eG into nG embedded IT2 FSs eG j
e ðj ¼ 1; . . . ;nGÞ, whose domains are the embedded T1 FSs Gj

e.
According to the RT, eF and eG can be expressed as:
eF ¼[nF

i¼1

eF i
e ¼ 1=FOUðeF Þ ð46Þ

FOUðeF Þ ¼[nF

i¼1

eF i
e ¼

[nF

i¼1

XNx

j¼1

ui
j xj
�

; ui
j 2 Jxj

# U ¼ ½0;1� ð47Þ

eG ¼[nG

j¼1

eG j
e ¼ 1=FOUð eG Þ ð48Þ

FOUð eG Þ ¼[nG

j¼1

eG j
e ¼

[nG

j¼1

XNy

k¼1

wj
k=yk; wj

k 2 Jyk
# U ¼ ½0;1� ð49Þ
Consequently, there are nF � nG possible combinations of embedded T1 antecedent and consequent FSs so that the totality of
fired output sets for all possible combinations of these embedded T1 antecedent and consequent FSs will be a bundle of func-
tions B(y) as depicted in Fig. 1, where



Fig. 1. Fired output FSs for all possible nB = nF � nG combinations of the embedded T1 FSs for a single antecedent rule (Mendel et al. [34], � IEEE 2006).
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BðyÞ,
[nF

i¼1

[nG

j¼1

lBði;jÞðyÞ 8y 2 Yd ð50Þ
Each of the MFs in (50) is for a T1 FLS. The remaining computations in (50) can all be performed using T1 FS mathematics,
and their details are in [34]. The overall idea is to compute lB(i,j)(y) and to then bound all of these functions. Doing the latter
brings the LMFs and UMFs of both eF and eG into the description of B(y).

3.6. Linguistic weighted average

Zadeh [61,62] proposed the paradigm of computing with words (CWW9). CWW using T1 FSs has been studied by many other
researchers, e.g., [12,17,23,40,44,46,47,57]. A specific architecture for making subjective judgments using CWW was proposed
by Mendel [25–27,31,32]. It is called a Perceptual Computer (Per-C), and because words can mean different things to different
people it uses IT2 FS models for all words. The Per-C has three elements: encoder, which transforms linguistic perceptions into
IT2 FSs that activate a CWW engine; decoder, which maps the output of a CWW engine back into a word; and the CWW engine.
One novel CWW engine is the linguistic weighted average (LWA) [48,50].

The LWA is an extension of the Fuzzy Weighted Average (FWA) (e.g., [7,18,21], when all quantities in the following arith-
metic weighted average are modeled as IT2 FSs:
y ¼
Pn

i¼1xiwiPn
i¼1wi

ð51Þ
in which xi are sub-criteria (e.g., data, features, decisions, recommendations, judgments, scores, etc.) and wi are their respec-
tive weights. Let eY LWA denote the LWA, and express it as:
eY LWA ¼
Pn

i¼1
eX i
fW iPn

i¼1
fW i

ð52Þ
This is called an LWA because when eX i and fW i are modeled as IT2 FSs (i.e., by FOUs) they can be associated with FS models
of words (e.g., [31,32]). Eq. (52) is an expressive equation and cannot be used as is to compute eY LWA. Here is how the RT can
be used to provide the structure of how to compute eY LWA.

Because all eX i and fW i are IT2 FSs, eY LWA is also an IT2 FS, and therefore
eY LWA ¼ 1=FOUð eY LWAÞ � ½YLWA;YLWA� ð53Þ
where YLWA and YLWA are the LMF and UMF of eY LWA, respectively. Because the FOU of eY LWA is completely determined by YLWA

and YLWA, computing eY LWA is equivalent to computing YLWA and YLWA.
Applying the RT to each eX i and fW i, it follows that:
eX i ¼ 1=FOUð eX iÞ ¼ 1
[nXi

ji¼1

,
Xji

e ¼ 1
[
8xi2Xi

,
½l~Xi
ðxiÞ; �l~Xi

ðxiÞ� � 1
[
8xi2Xi

,
½Xi;Xi� ð54Þ

fW ¼ 1=FOUðfW Þ ¼ 1
[nWi

ki¼1

,
Wki

e ¼ 1
[
8wi2Wi

,
½l ~Wi
ðwiÞ; �l ~Wi

ðwiÞ� � 1
[
8wi2Wi

,
½Wi;Wi� ð55Þ
erent acronyms have been used for ‘‘computing with words”, e.g., CW and CWW. We have chosen to use the latter, since its three letters coincide with
e words in ‘‘computing with words”.
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In (52), eX i only appears in the numerator of eY LWA; hence,
YLWA ¼ min
8Wi2½Wi ;Wi �

Xn

i¼1

XiWi

Xn

i¼1

Wi

," #
ð56Þ

YLWA ¼ max
8Wi2½Wi ;Wi �

Xn

i¼1

XiWi

Xn

i¼1

Wi

," #
ð57Þ
For each Wi, YLWA and YLWA are FWAs (they only involve T1 FSs); however, they would each have to be computed by first
enumerating all of the T1 embedded FSs Wki

e , and then computing the FWAs for all possible combinations of these T1 FSs.
Clearly, this cannot be done because there can be infinitely many Wki

e ; so, once again the RT very quickly leads to the struc-
ture of a solution, but again demonstrates why it cannot be used to obtain a practical method for computing the solution. In
[50], YLWA and YLWA are computed by using a-cuts, the results being very practical algorithms.

3.7. Person-MF approach to type-2 fuzzistics

Fuzzistics is a term introduced in [28,30,36–38] that represents an amalgamation of the words fuzzy and statistics. It is
associated with the inverse problem of mapping word data that are collected from a group of subjects to an IT2 FS model
for the word. The RT has served as a guide for two approaches to type-2 fuzzistics. In this section, we explain one of these
approaches, the person-MF approach, whereas in the next section we explain a second approach, the interval Approach.

In the person-MF approach [31]:

1. person-MF data (a person-MF is an FOU that a person provides on a prescribed scale for a primary variable; it can only be
provided by someone who is already knowledgeable about FSs, so this first approach is quite limited) is collected that
reflects both the intra- and inter-levels of uncertainties about a word, from a group of people (Fig. 2);

2. an IT2 FS model for a word is defined as the union of all such person MFs; and,
3. this aggregation is mathematically modeled and approximated.

The RT is associated with Steps 1 and 2. In Step 1, each person-MF can be thought of as an embedded T1 FS on steroids
(although this is said jokingly, it is actually a very accurate description), and can itself be decomposed into its embedded T1
FSs by means of the RT applied to it. Using the union operator to aggregate the person-MFs in Step 2 is another application of
the RT; so, the person-MF approach is guided by the RT. For details about exactly how to implement this approach to type-2
fuzzistics, see [31].

3.8. Interval Approach (IA) to type-2 fuzzistics

In the IA [20,22]:

1. interval end-point data are collected from a group of subjects (each subject answers the question ‘‘On a scale of 0–10,
where would you locate the end-points of an interval that you associate with the word W?”);

2. statistics (mean and variance) for the data intervals are established;
3. data statistics are mapped into the parameters of a prescribed T1 FS;
4. all of the T1 FSs are aggregated using the union operator; and,
5. this aggregation is mathematically modeled and approximated.
Fig. 2. Person MFs (FOUs) from three people for the word some. Each person sketches in his or her FOU.



Table 4
Examples.

Two IT2 FSs: eA ¼ Sizeable and eB ¼ Large

Set theoretic operationseA [ eB ; eA \ eB

eA ; eB

Uncertainty measures
Centroid CeA ¼ ½6:17;8:15� CeB ¼ ½7:5;8:75� CeA [eB ¼ ½6:63;8:32� CeA \eB ¼ ½6:48;9:03�
Cardinality PeA ¼ ½0:25;0:65� PeB ¼ ½0:28; 0:62� PeA [eB ¼ ½0:28; 0:71� PeA \eB ¼ ½0:04; 0:54�
Fuzziness FeA ¼ ½0; 0:41� FeB ¼ ½0:01;0:28� FeA [eB ¼ ½0:01;0:43� FeA \eB ¼ ½0; 0:26�
Variance V eA ¼ ½0:10;2:30� V eB ¼ ½0:10;1:18� V eA [eB ¼ ½0:34;2:40� V eA \eB ¼ ½0:01;2:08�
Skew SeA ¼ ½�4;2:21� SeB ¼ ½�1:55; 0:47� SeA [eB ¼ ½�4:09;1:59� SeA \eB ¼ ½�3:06;2:56�

Similarity
Jaccard sJð eA ; eB Þ ¼ 0:43 sJð eA [ eB ; eA \ eB Þ ¼ 0:43

Inference engine computations
If x is eA , Then y is eB
f(x1) = [0,0.53] f(x2) = [0.42,1]

Firing intervals

LWA
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The RT is the basis for Steps 3 and 4. The resulting T1 FS from Step 3 is interpreted as an embedded T1 FS that resides
within the word’s FOU. Using the union operator to aggregate the person-MFs, in Step 4, is another application of the RT;
hence, the IA is also guided by the RT. For details about exactly how to implement this approach to type-2 fuzzistics, see [22].

4. Examples

Table 4 provides examples. It begins with FOUs for two IT2 FSs, eA and eB that were obtained by collecting interval end-
point data from a group of subjects for the words sizeable and large, and then using the IA [22] to map the data into these
FOUs. The FOUs for eA and eB are taken from [22].

FOUs are shown for the union and intersection of eA and eB as well as for the complements of eA and eB . These FOUs were
obtained by using the set theoretic formulas given in Table 2.

Five uncertainty measures have been computed for eA and eB as well as for their union and intersection. These results were
obtained using the uncertainty measure statements made in Table 2. Focusing, e.g., on the centroid, observe that the length

of the interval for CeA is larger than that of CeB , indicating that there is more uncertainty about eA then there is about eA , which

is consistent with the observation that FOUð eA Þ has more area than FOUðeB Þ.
The Jaccard similarity measure has been computed for the similarities between eA and eB as well as for the similarities

between their union and intersection. Observe that, surprisingly, the numerical values for these two similarities are the
same. This can be proven, by comparing the Table 4 FOUs for eA [ eB and eA \ eB , and using the Table 2 formulas for
sJð eA ; eB Þ, the intersection (using the minimum t-norm) and the union, i.e.:
10 In t
conside
sJð eA [ eB ; eA \ eB Þ ¼
R

X min �l~A[~BðxÞ; �l~A\~BðxÞ
� �

dxþ
R

X min l~A[~BðxÞ;l~A\~BðxÞ
� �

dxR
X max �l~A[~BðxÞ; �l~A\~BðxÞ

� �
dxþ

R
X max l~A[~BðxÞ;l~A\~BðxÞ

� �
dx
¼
R

X
�l~A\~BðxÞdxþ

R
X l~A\~BðxÞdxR

X
�l~A[~BðxÞdxþ

R
X l~A[~BðxÞdx

¼

R
min �l~AðxÞ; �l~BðxÞ

� �
dxþ

R
min l~AðxÞ;l~BðxÞ

� �
dxR

max �l~AðxÞ; �l~BðxÞ
� �

dxþ
R

max l~AðxÞ;l~BðxÞ
� �

dx
¼ sJð eA ; eB Þ ð58Þ
The inference engine results in Table 4 are for a single antecedent rule in which eA plays the role of the antecedent and eB
plays the role of the consequent. They are shown for two values of the antecedent variable, namely x1 = 5.5 and x2 = 7.5.
The effect of these values of x on the antecedent FOU can be seen in the top figure in Table 4 for eA . As is shown in [34]
two calculations are required. First, a firing interval is computed, where for a single antecedent rule this is obtained from
the intersection of the vertical line at x = xi and FOUð eA Þ. These firing intervals are f(x1) = [0,0.53] and f(x2) = [0.42,1]. Next,
the fired-rule output IT2 FS is obtained by computing the intersection of the firing interval with FOUðeB Þ. These IT2 FSs
are shown in Table 4 when the minimum t-norm was used. Quite different looking FOUs are obtained for x1 and x2.

The last example in Table 4 is for the LWA. FOUs are shown for three linguistic sub-criteria and their associated linguistic
weights. These FOUs were also taken from [22]. In this simple example, x1, x2 and x3 correspond to three values of the same
variable whose domain has been normalized to the interval 0–10, for which larger values are weighted more importantly
than are the small values. The FOUð eY LWAÞ shows that the aggregation of the six words leads to an FOU that seems to be
situated around the mid-point of the interval [0,10], and because the FOU contains a large area, there is considerable
uncertainty about this average. Using the Jaccard similarity measure, it is straightforward to map eY LWA into a word whose
FOU is most similar to it. How to do this is explained in [51] and [52].

5. Conclusions

This tutorial paper has demonstrated how the Embedded Sets Representation Theorem for a general T2 FS, when
specialized to an IT2 FS, can be used as the starting point to solve many diverse problems that involve IT2 FSs. The solution
obtained from the RT is only a structural solution and is not a practical10 computational solution, however, the latter is always
found by starting with the former. It is this author’s recommendation that one should use the RT as a starting point whenever
solving a new problem involving IT2 FSs, because it has had such great success in solving so many such problems in the past,
and it answers the question ‘‘Where do I start in order to solve a new problem involving IT2 FSs?”
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