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Super-Exponential Convergence of the
Karnik–Mendel Algorithms for Computing
the Centroid of an Interval Type-2 Fuzzy Set
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Abstract—Computing the centroid of an interval T2 FS is an im-
portant operation in a type-2 fuzzy logic system (where it is called
type-reduction), but it is also a potentially time-consuming oper-
ation. The Karnik–Mendel (KM) iterative algorithms are widely
used for doing this. In this paper, we prove that these algorithms
converge monotonically and super-exponentially fast. Both proper-
ties are highly desirable for iterative algorithms and explain why
in practice the KM algorithms have been observed to converge very
fast, thereby making them very practical to use.

Index Terms—Centroid, interval type-2 fuzzy sets,
Karnik–Mendel (KM) algorithms, type-2 fuzzy sets.

I. INTRODUCTION

AN INTERVAL type-2 fuzzy set (IT2 FS) is today the most
widely used T2 FS because it is computationally simple to

use. When such FSs are used in a rule-based fuzzy logic system
(FLS) (e.g., [4], [5], [9]–[14], [17], and [23]–[25]), the result is
an interval T2 FLS (IT2 FLS). In such a FLS, fired-rule output
sets are also IT2 FSs, and to go from such sets to a number, as
is usually required in most engineering applications of a FLS,
one must perform two successive operations, type-reduction and
defuzzification. Type-reduction maps the output T2 FS into a
type-1 (T1) FS, and defuzzification converts that T1 FS into a
number.

Type-reduction methods were developed by Karnik and
Mendel [6], [7] and are elaborated upon in [17]. When they
are applied to a general T2 FS they require an astronomical
number of computations. When they are applied to an IT2 FS,
they require a very small number of computations, which is
one of the major reasons that IT2 FLSs have received attention
whereas general T2 FLSs have not.

Even for IT2 FLSs there can be many different kinds of type-
reduction. The ones that have been developed so far all extend
a T1 centroid calculation to T2 FSs, so that if all sources of
uncertainty disappear the output of an IT2 FLS reduces to that
of a T1 FLS. So, computing the centroid of an IT2 FS plays a
central role in IT2 FLSs.

The centroid of an IT2 FS also provides a measure of the un-
certainty of an IT2 FS [24], and more recently has been the basis
for going from data collected from a group of subjects (about an
interval that they associate with the meaning of a word) to the
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footprint of uncertainty (FOU) of an IT2 FS that models that
word [19]–[21].

We explain what the centroid of an interval T2 FS is in
Section II. Here we note that it is an interval set that is
completely characterized by two numbers, its left and right
end-points. There are no known closed-form formulas for these
end points; however, Karnik and Mendel [6], [7] have developed
iterative algorithms for computing these end-points exactly.
Their algorithms have come to be known as the Karnik–Mendel
(KM) algorithms.

For many years we have observed, by means of computer sim-
ulations, that the KM algorithms, although they are iterative,
converge to their exact solutions very rapidly. The only avail-
able convergence statement for them is very pessimistic (con-
vergence occurs in at most iterations where equals the
number of sampled values of the primary variable [7]; as
increases this bound becomes very uninformative), and so we
have been puzzled by the much more optimistic results (e.g.,
convergence in ten or fewer iterations, regardless of , is quite
common) that always appeared from the simulations. The pur-
pose of this paper is to quantify these convergence observations
and to prove super-exponential convergence for the algorithms.
We believe that this will make the use of these algorithms much
more wide spread.

Note that not only are the KM algorithms used to compute the
centroid of an interval T2 FS, they are also widely used in an in-
terval T2 FLS to compute the generalized centroid for center-of
sets type reduction. In addition, they can be used to compute
the so-called fuzzy weighted average (FWA) [1]–[3], [8], [15],
when its computation is based on -cuts, because each -cut of
a FWA has exactly the same structure as the centroid of an in-
terval T2 FS.

The rest of this paper is organized as follows. Section II
quantifies the centroid of an interval T2 FS and reviews the
KM algorithms for its computation. Section III formulates
continuous versions of the KM algorithms because they are used
in the convergence analyses of those algorithms. Section IV
provides important properties of the KM algorithms. Section V
examines convergence properties of those algorithms. Section VI
examines the applicability of our results. Section VII draws
conclusions.

II. CENTROID AND THE KM ALGORITHMS

For readers who are not familiar with interval type-2
fuzzy sets (IT2 FS), we provide some basics about them in
Appendix B. Here, we wish to reiterate the fact that an IT2 FS
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can be decomposed into the union of all of its embedded
T2 FSs [see (B-7) –(B-9)]. Consequently, the centroid [6], [7],
[17] of an IT2 FS is the union of the centroids of all of its em-
bedded T2 FSs. From (B-10), we see that this means we need
to compute the centroids of all embedded T1 FSs that are
contained within the footprint of uncertainty (FOU) of . The
results of doing this will be a collection of numbers, and
these numbers will have both a smallest and largest element,

and , respectively. That such numbers
exist is because the centroid of each of the embedded T1 FSs
is a bounded number. Associated with each of these numbers
will be a membership grade of 1, because the secondary grades
of an IT2 FS are all equal to 1. Letting denote the centroid
of , this means that

(1)

(2)

(3)

and , , are the lower and upper mem-
bership functions1 (defined in Appendix B) that are associated
with . Note that in (2) and (3). The challenge is to compute
and .

Letting

(4)

and differentiating with respect to , we find that

(5)
Unfortunately, equating to zero does not give us any
information about the value of that optimizes .
When we do this, we find

(6)

1If �(x) = ��(x) = �(x) for 8 x 2 X , then the IT2 FS reduces to a T1 FS.
In this paper, where we are only interested in how to compute the centroid of an
IT2 FS, we exclude the reduction of the IT2 FS to a T1 FS, because when this
happens we have a “nonproblem” as far as this paper is concerned.

Observe that no longer appears in the final expression in (6),
so that the direct calculus approach does not work. Returning to
(5), we see that, because , it is true that

if
if

(7)

This equation gives us the direction in which should be
changed in order to increase or decrease , i.e., see
(8), as shown at the bottom of the page.

Because , the maximum value
can attain is and the minimum value it can attain is

. Equation (8) therefore implies that at-
tains its minimum value, , if: (1) for those values of for which

, we set , and (2) for those
values of for which , we set .
Similarly, we can deduce from (8) that attains
its maximum value, , if: (1) for those values of for which

, we set , and (2) for those
values of for which , we set .
Consequently, to compute or switches only one time
between and . The KM algorithms (described
later) locate the switch point, and in general the switch point for

, , is different from the switch point for , .
Putting all of these facts together, we obtain the following

formulas for and :

(9)

(10)

The KM algorithm for computing is as follows.

1. Initialize by setting2

(11)

and then compute

(12)

2Other initializations are possible, but this is the one we shall use here
because it is so simple.

If increases (decreases) as increases (decreases)
If increases (decreases) as decreases (increases)

(8)
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2. Find such that

(13)

3. Set3

(14)

and compute

(15)

4. Check if . If yes, stop and set . If no, go to
Step 5.

5. Set and go to Step 2.

III. CONTINUOUS VERSION OF THE KM ALGORITHMS

Although the KM algorithms are usually stated for the dis-
crete situation, as we have just done, we found that it is much
more convenient to study properties of the algorithms by using
their continuous versions. Because the KM algorithms are so
similar for the calculations of and , we focus our attention
only on convergence properties of the KM algorithm for and
leave the results for to the reader. So, to begin, we state the
continuous version4 of the KM Algorithm for computing .

1. Compute the initial value, , for , as5

(16)

and then set and

(17)

3The KM algorithm for computing c is very similar,

except in this step we set � =
� (x ) i � k

�� (x ) i � k + 1

so that c = x � (x ) + x �� (x )

= � (x ) + �� (x ) .

4We discuss the applicability of using the continuous versions of the KM
algorithms to different kinds of problems in Section VI.

5Here, we are using the initialization stated in (11), and c is the continuous
version of c in (12).

2. Compute as

(18)

3. If convergence has occurred (see Corollary 2), STOP;
otherwise, go to Step 4.

4. Set

(19)

5. Set , and go to Step 2.

Before we study the convergence properties of the KM al-
gorithm, we pause to present some important properties about
function .

IV. PROPERTIES OF

In Section V, we provide the KM algorithm with a graphical
interpretation, but to do so we must first establish some proper-
ties about the function so that we can sketch it. Note that
proofs of theorems and corollaries are given in Appendix A.

Theorem 1: [20], [22] We define as6

(20)

Then

(21)

i.e.,

(22)

Proof: See Appendix A.
The result in (21) is very interesting and somewhat surprising,

because it shows that when the value of is found which min-
imizes it will be . Of course, if is discretized
(for computational purposes), then but does not
exactly equal , which probably explains why (20) was not ob-
served by Karnik and Mendel.

Theorem 2: It is true that

(23a)

and, consequently, that

(23b)

6c in (9) is the discretized version of c (�) in (20). We have much more to
say about the relationships between (9) and (20) in Section VI.
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Proof: See Appendiz A.
Equation (23a) means that lies above when is

to the left of , and lies below when is to the right
of . Equation (23b) means has a negative (or zero) slope
to the left of , and a positive (or zero) slope to the right
of . That the slope cannot be zero for all values of is
obvious, or else function in (20) would be a constant for
all , which it is not.

Note that is not
convex7; hence, it is possible for this function (and its contin-
uous counterpart) to have some flat spots, to the left of or to the
right of its minimum value.

Theorem 3: The Taylor series expansion of about its
minimum value is

(24)

where

(25)
and

(26)

Proof: See Appendix A.
Comment: It is explained in Appendix A why the truncated

Taylor series expansion in (24) only requires first-order differ-
entiability of at . If the LMF and UMF are
continuous Gaussian functions, then will always
be first-order differentiable at . If, on the other hand, the
LMF and the UMF are, e.g., triangular and happens to be at
the apex of the triangle, then will not be first-order
differentiable at . In such a case, the derivative in (26)
should be evaluated either slightly to the left or to the right of

.
Corollary 1: When

(27)

where is a small positive number that denotes the effect of
neglecting the third-order term in the Taylor series expansion of

, then

(28)

7A necessary and sufficient condition for y(� ; . . . ; � ) to be a convex
function of � ; . . . ; � is that its Hessian matrix, H(�) = [@ y(�)=@� @� ],
must be positive semidefinite [16]. It is straightforward to show that
@ y(�)=@� @� = [2y(�)� (x + x )]=[ � ] . When N = 2,
detH(�) = �(x � x ) < 0. This counterexample proves that
y(� ; . . . ; � ) is not always a convex function.

Fig. 1. Graphical interpretation of KM algorithm.

Proof: See Appendix A.
We will make very heavy use of (28) in the sequel. Its validity

can be checked through the evaluation of (27). When satisfies
(27) we can state that we are in the quadratic domain of .
In the rest of this paper we assume that a value of can be
found such that (27) is satisfied.

V. CONVERGENCE PROPERTIES OF THE KM ALGORITHM

As a result of Theorem 2, we can depict as in
Fig. 1, and can now interpret the KM algorithm graphically as
also shown in that figure. To do this, we next explain the trajec-
tory that starts at and terminates at .

The KM algorithm begins by calculating , using (16).
is then projected horizontally until it intersects the line ,
which establishes that . The intersection of the vertical
line with the function leads to [as
computed by (18)], which is then projected horizontally until it
intersects the line , which establishes that
[this is (19)]. The intersection of the vertical line with
the function then leads to , etc. So the
KM algorithm can be interpreted in this way as an alternation
of horizontal and vertical projections in the plane.
Even from the representative example that is depicted in Fig. 1,
it is clear that convergence of the KM algorithm is quite rapid.
Our main goal in this paper is to quantify this.

Theorem 4: The KM algorithms converge monotonically.
Proof: See Appendix A.

In the proof of Theorem 4, we also explain that, for the ini-
tialization of the KM algorithm given in (16), it is true that

(29)

This means, of course, that is always above , as shown in
Fig. 1. Note that, because is the minimum value of ,
(29) must also be true for any other kind of initialization of the
KM algorithm that is based on choosing a switch point and
using (18) to compute . Even if is chosen a priori to lie
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Fig. 2. Normalized convergence factor versus iteration number for the KM al-
gorithm.

below (e.g., in Fig. 1) then after a single iteration of
the KM algorithm its associated value of will lie above
(see the dotted lines in Fig. 1).

Theorem 5: Let be defined as

(30)

When we are in the quadratic domain of , it is true that

(31)

This is the fundamental nonlinear iterative equation of the KM
algorithm within its quadratic domain of convergence, whose
solution can be expressed as

(32)

which is indicative of super-exponential convergence of the KM
algorithm.

Proof: See Appendix A.
Let denote the convergence factor of the KM algorithm

from one iteration to the next, where

(33)

Then8

(34)

A plot of —the normalized convergence
factor—versus , given in Fig. 2, is not linear (as it would
be if the convergence factor was an exponential function), but
is concave upwards. This is indicative of what is referred to as
a super-exponential convergence factor.

8Because � < 1, ln � < 0, which is why we normalize ln 
(j) by j ln �j.

The smaller is, the faster will be the convergence of the
KM algorithm. Because of the monotonic convergence of the
KM algorithm, as gets closer to , gets even closer
to . Examining (30), this means that the closer is to , the
smaller becomes.

We demonstrate next that depends very strongly on the ge-
ometry of . From (30) and (25), observe that

(35)

Let and denote the areas under the lower and
upper MFs of , i.e.,

(36)

(37)

Because , , it is straightforward to show
that

(38)

which places the dependency of on the geometry of
in direct evidence.

Corollary 2: When we are in the quadratic domain of ,
then super-exponential convergence occurs to within bits of
accuracy when

(39)

Equation (39) is satisfied by the first integer for which

(40)

For small values of , we can also determine this first integer as
follows: Compute

(41)

first integer larger than (42)

and is given in (30).
Proof: See Appendix A.

Although we felt compelled to state Corollary 2, we hasten to
point out that to use its results one not only needs to know the
answer, namely , but also . The latter is only available
after the first iteration of the KM algorithm. Hence, the a priori
use of Corollary 2 is limited.
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TABLE I
EXAMPLE 1 KM ALGORITHM ITERATIONS

Note that (40) is solved by first computing its right-hand side
one time, and then computing its left-hand side for
until the first value of is found for which (40) is satisfied.

In the rest of this section, we present three examples that illus-
trate the monotonic super-exponential convergence of the KM
algorithm.

Example 1: Consider a symmetric Gaussian primary MF,
, with uncertain standard

deviation, , for which
, and , so that [9], [17]

(43)

(44)

Table I depicts iteration results for the KM algorithm, shown
to two significant figures, for nine discretizations of ,
ranging from to samples. Observe the
following.

• regardless of , because the FOU is symmetrical.
• Convergence of the KM algorithm to [to two

significant figures ] is rapid, regardless of ,
and occurs in about three iterations.

• The slight differences in final converged values for are
due to the sampling interval.

• When we computed and using (41) and (42) respec-
tively, in which we used and , we
obtained and , which agrees with the sim-
ulation results.

• In order to see if we were within the quadratic domain of
, we computed the quadratic and cubic terms of (24)

when to be 0.46 and , respec-
tively. Since the cubic term is more than four times smaller
than the quadratic term, we are justified in neglecting the
cubic term for this example.

Example 2: Consider a symmetric Gaussian primary MF,
, with uncertain mean

, for which , and
, so that [9], [17]

(45)

(46)

Table II depicts iteration results for the KM algorithm, shown
to two significant figures, also for nine discretizations of ,
ranging from to samples. Observe the
following.

• regardless of , because the FOU is again
symmetrical.

• Convergence of the KM algorithm to [to two
significant figures ] is rapid, regardless of ,
and occurs in about six iterations.

• The slight differences in final converged values for are
due to the sampling interval.

• When we computed and using (41) and (42) respec-
tively, in which we used and , we
obtained and . This is smaller than the ac-
tual value of , which, as can be seen from Table II, equals
6.

• In order to see if we were within the quadratic domain of
, we again computed the quadratic and cubic terms of

(24), but now for , and found them to
be 11.94 and , respectively. Since the cubic term is
much larger than the quadratic term, we were not justified
in neglecting the cubic term for this example. Even so, our
estimated value of compares rather well with the
actual value of .

Example 3: Consider a nonsymmetrical FOU whose LMF
is nonsymmetrical triangular and UMF is nonsymmetrical
Gaussian, i.e.,

(47)

(48)

Additionally, and
. Table III depicts iteration results for the KM

algorithm, shown to two significant figures, also for nine dis-
cretizations of , ranging again from to

samples. Observe the following.
• is not the same for all , because the FOU is unsym-

metrical, and sampling seems to make a difference for an
unsymmetrical FOU whereas it does not for a symmetrical
FOU; however, when the sampling becomes fine enough
(e.g., ) then for all such subsequent
small values.

• (which ranges from 0.26 to 0.45) is more dependent upon
in this example, because of the non-symmetric nature

of the FOU, but regardless of convergence of the KM
algorithm [to two significant figures ] is rapid.

• When we computed and using (41) and (42) respec-
tively, in which we used and , we
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TABLE II
EXAMPLE 2 KM ALGORITHM ITERATIONS

TABLE III
EXAMPLE 3 KM ALGORITHM ITERATIONS

obtained and , which agrees with the sim-
ulation results.

• In order to see if we were within the quadratic domain of
, we again computed the quadratic and cubic terms

of (24), when , to be 0.75 and
, respectively. Since the cubic term is about three

times smaller than the quadratic term, we are again justified
in neglecting the cubic term for this example.

We performed the same sort of simulations for five other ex-
amples and in all cases our estimated value for agreed with
the actual value of , and the cubic term in (24) was consider-
ably smaller than the quadratic term, so that we were justified
in neglecting the cubic term for those examples.

VI. APPLICABILITY OF RESULTS

The results presented previously, in which we have used the
continuous version of the KM algorithms, are clearly applicable
when we begin with and wish to compute its centroid,
because to do this we can discretize (sample) the primary vari-
able as finely as we wish. This means that in (2) and (3),
there is a natural way to make all , so
that going from the discrete centroid to the continuous centroid
is legitimate. Alternatively, (15) follows directly from (20) by
a straightforward discretization of the latter equation in which

.
We now explain how our analysis is also applicable to the

computation of the so-called generalized centroid (GC), which,
as mentioned in Section I, is widely used in type-reduction of an
interval T2 FLS. For the GC we must again compute and in
(2) and (3), but now the do not correspond to a sampling of the
primary variable. Instead are ordered values of a sequence of

positive numbers (e.g., lower MF values of rule-consequent
interval T2 FSs), such that but

Fig. 3. Relative locations of the � in relation to c and c .

Fig. 4. FOU (shaded), LMF (dashed), UMF (solid), and an embedded
FS (wavy line) for IT2 FS ~A.

. In this case, in order to convert the discrete GC to a
continuous GC, we can always find a small positive number
such that each is an integer multiple (which could be rather
large) of it. We can then insert integer multiples of between
all and associate zero values at all of those points. By this
construction, the GC is converted into the centroid of a fictional
interval T2 FS, most of whose values are zero, and we can
therefore apply the continuous analyses of this paper to using
the KM algorithms for computing the GC.

VII. CONCLUSION

As noted in the Introduction, the centroid (or type-reduction)
is used in IT2 FLSs and in going from MF data collected
from a group of subjects to the FOU of an IT2 FS, and can
even be used to compute the FWA. Although computing the
centroid of an interval T2 FS is important, it is potentially a
time-consuming operation. The KM iterative algorithms are
widely used for computing the centroid. In this paper we
have proven that these algorithms converge monotonically and
super-exponentially fast. Both properties are highly desirable
for iterative algorithms and explain why in practice the KM
algorithms have been observed to converge very fast, thereby
making them very practical to use.

An open problem is to find an optimal way to initialize
the KM algorithm, optimal in the sense that such a value of

would lead to the smallest value of without a priori
knowledge of .
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APPENDIX A
PROOFS OF THEOREMS

Proof of Theorem 1: Because the proof of Theorem 1 only
appears in [22], which (as of Nov. 1, 2005) is not yet published,
we provide a condensed version of it here. The proof of (22),
due to Mendel and Wu, proceeds in two steps.

• Step 1: We show that satisfies the following equation:

(A-1)

• Step 2: We show that can be computed using (22).
Step 1: A necessary condition for finding at
point is that the derivative of with respect
to must be zero when evaluated at , i.e.,

(A-2)

This equation expands to

(A-3)

from which it follows that

(A-4)

which is (A-1).
Step 2: Let for which

(A-5)

and for which

(A-6)

Observe that (A-6) can be solved for , as

(A-7)

Since both and satisfy (A-1), either or both of them
may be . We now show that

for (A-8)

Because is the minimum of , it therefore cannot be
[unless ], but must be .

If it happens that , then it may happen that
, in which case (A-1) is simultaneously satis-

fied by both of its terms equaling zero. By these arguments
we see that (A-1) can never be satisfied by
alone. Note that the condition means that at

the upper and lower MFs touch each other, some-
thing that is perfectly permissible in the .
Returning to the proof of (A-8), we first consider the case
when for which can be re-expressed as
shown in (A-9) at the bottom of the page. In obtaining the
last line, we have substituted the left-hand side of (A-6) for
the right-hand side of (A-6), where the latter appears in the
numerator of the third line of (A-9).
Because and it is always true that

, it follows that:

(A-10)

(A-9)
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Upon substitution of the upper bound (A-10) into the nu-
merator of (A-9), we see that

(A-11)

where the last part of (A-11) follows from (A-7) and (18).
This completes the proof of (A-8) when .
Because the proof of (A-8) when is so similar
to the proof just given when we leave its details
to the reader. Note though that instead of (A-10), we must
now use

(A-12)
Equation (A-11) and its counterpart for together
prove the truth of (A-8). Consequently, it is only that
is the legitimate solution of (A-1) and, therefore, ,
where is given by (22).
Proof of Theorem 2: Because is the minimum of ,

it is true that

for (A-13)

hence

when (A-14)

This completes the proof of the first row of (23a). Next we focus
on the second row of (23a).

Beginning with (22), we see that

(A-15)

Let and add to both sides of
(A-15), in order to see that

(A-16)

Because , and, and
, we obtain the following inequality from

(A-16):

(A-17)

Because , (A-17) can be ex-
pressed as

(A-18)

which completes the proof for the second row of (23a).
To prove (23b), we begin with (A-2) and (A-3) before is

replaced by [i.e., in (A-3) replace each by ], in which
case it is straightforward to show that

(A-19)

Because , and (23a) is true, we obtain (23b)
from an analysis of (A-19) for and .

Proof of Theorem 3: The Taylor series expansion of
about its minimum value is

(A-20)

Since

(A-21)

(A-20) simplifies to

(A-22)

Because the two calculations on the right-hand side of (A-22)
are straightforward exercises in calculus, and because of space
limitations, we leave their details to the reader. However, here
we would like to mention a couple of things about differentia-
bility at .
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The details of computing show that
terms involving the first derivative of always
equal zero at [regardless of whether or not
and are differentiable at ] because they are
multiplied by a common factor that equals zero due to (22)
being true when . On the other hand, the details of
computing show that the derivative

does occur, but all second-derivative
terms of are always equal to zero at for
exactly the same reason just given about the computation of

. See the comment after Theorem 3 for
discussions about the differentiability of at .

Proof of Corollary 1: We choose such that in (24)

(A-23)

Note that it is possible for to be positive or neg-
ative; hence, the use of the absolute value sign in (A-23). Equa-
tion (27) is a direct consequence of (A-23).

Proof of Theorem 4: Our proof is for the continuous ver-
sion of the KM algorithm (see Section III), which finds . We
will show that

.
Because , as computed in (16), can be interpreted in the

framework of the minimization problem in (2) for specific
choices of the [in (2), the are not restricted to just the
LMF and UMF values; and, the average of those values lies
in the allowable interval for each of the ], it must be true
that . If then, according to Theorem 1, is
the minimum of . On the other hand, if , then,
according to the second line of (23a) (with ), we see
that . Combining these two cases, we see
that .

From (19) of the KM algorithm is chosen as .
If equals the minimum value of then . On
the other hand, if , then, according to the second line
of (23a) [with ], we see that or,
equivalently, that . Combining these two cases,
we see that or, equivalently, that .
From the first part of this proof, we now see that

.
Continuing in this same way, it is straightforward to show that

(see Fig. 3)

(A-24)

This means, of course, that the KM algorithm is monotonically
convergent. That (A-24) contains a finite number of steps has
already been proved by Karnik and Mendel [7], with their very
conservative bound of steps.

Proof of Theorem 5: Because the KM algorithm converges
monotonically

(A-25)

hence

(A-26)

Assuming we are in the quadratic domain of , so that (28)
holds, observe from (28) that:

(A-27)

But, ; hence, the left-hand side of (A-27) is and,
therefore

(A-28)

Based on (28) and (19) (which is a key equation in the KM
algorithm), we see that at the th iteration of the KM algorithm

(A-29)

which is the fundamental nonlinear iterative equation of the
KM algorithm within its quadratic domain of convergence. We
now iterate (A-29) using (A-26) [solved for ] and
(A-28). For

(A-30)

For , (A-29) becomes:

(A-31)

Continuing in this manner, we obtain (32). Observe that when
, , and when , , as in (A-30)

and (A-31), respectively.
Proof of Corollary 2: Substituting (32) into (39) for both

and , we obtain

(A-32)
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This can be expressed as

(A-33)

from which we obtain (40). Note that because for
all values of , we use the absolute signs in (40).

If is relatively small (e.g., ) then even
for very small values of . In this case, we can approximate
(A-32) as

(A-34)

Solving this equation for we obtain (41). Because is not
necessarily an integer, we then need to choose as the first
integer larger than .

APPENDIX B
BASICS OF INTERVAL TYPE -2 FUZZY SETS

An interval T2 FS is characterized as9 [17], [18]

(B-1)
, the primary variable, has domain ; , the secondary vari-

able, has domain at each ; is called the primary
membership of ; and, the secondary grades of all10 equal 1.
Uncertainty about is conveyed by the union of all of the pri-
mary memberships, which is called the FOU of , i.e.,

(B-2)

The UMF and LMF of are two type-1 MFs that bound the
FOU (e.g., see Fig. 4). The UMF is associated with the upper
bound of and is denoted , , and the
LMF is associated with the lower bound of and is de-
noted , . In this paper we sometimes shorten

and to and , respectively. Note that

(B-3)

so that in (B-2) can also be expressed as

(B-4)

9We will intertwine our discussions about fuzzy sets that are defined on con-
tinuous or discrete universes of discourse. For discrete universes of discourse,
one should replace the integral signs [e.g., in (B-1)] with summation signs. Re-
gardless of which notation is used, each symbol represents the set-theoretic
union operation.

10In a general T2 FS, the secondary grades can take on any value in [0; 1].

For continuous universes of discourse and , an embedded
interval T2 FS is

(B-5)

Set is embedded in such that at each it only has one sec-
ondary variable (see Fig. 4 where secondary grades, not shown,
are all equal to 1). Although there are an uncountable number of
embedded IT2 FSs, such FSs are still quite useful in theoretical
developments. Other examples of are and ,

, where, in this notation it is understood that the sec-
ondary grade equals 1 for .

Associated with each is an embedded T1 FS , where

(B-6)

Set , which acts as the domain for , is the union of all the
primary memberships of the set in (B-5) (Fig. 4), and there
are an uncountable number of . Other examples of are

and , .
For discrete universes of discourse, in which both the primary

and secondary variables11 are discretized, there exist a countable
number of embedded T2 (and T1) FSs (e.g., see [18] or [17]).
In this case, and are given by formulas like (B-8) and
(B-11) below.

In [18] a new Representation Theorem was derived in which
a general T2 FS, , is expressed as the union of all of its em-
bedded T2 FSs, . For an IT2 FS, for which and are dis-
crete, this can be stated as

(B-7)

where

(B-8)

and

(B-9)

in which denotes the discretization levels of secondary vari-
able at each of the . We can also express (B-7) and (B-8)
as

(B-10)

where

(B-11)

11Strictly speaking, a T2 FS whose secondary variable is discrete is not an
IT2 FS, because an IT2 FS requires that the domain for the secondary variable
must be an interval. It is usually for computational purposes that we discretize
the secondary variable.
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and it is understood that the notation in (B-10) means that the
secondary grade equals 1 at all elements in . Referring
to Fig. 4, (B-10) means collecting all embedded T1 FSs into a
bundle of such sets. This bundle will always be bounded by the
UMF and the LMF of the FOU, since they are both legitimate
embedded sets.
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