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Abstract

The centroid of an interval type-2 fuzzy set (IT2 FS) provides a measure of the uncertainty of such a FS. Its calculation
is very widely used in interval type-2 fuzzy logic systems. In this paper, we present properties about the centroid of an IT2
FS. We also illustrate many of the general results for a T2 fuzzy granule (FG) in order to develop some understanding
about the uncertainty of the FG in terms of its vertical and horizontal dimensions. At present, the T2 FG is the only
IT2 FS for which it is possible to obtain closed-form formulas for the centroid, and those formulas are in this paper.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

An interval type-2 fuzzy set (IT2 FS) is today the most widely used T2 FS because it is computationally
simple to use. When such FSs are used in a rule-based fuzzy logic system (FLS) (e.g., [1,2,5–10,12,
13,20,22]), the result is an interval T2 FLS (IT2 FLS). In such a FLS, fired-rule output sets are also IT2
FSs, and to go from such sets to a number, as is usually required in most engineering applications of a
FLS, one must perform two successive operations, type-reduction and defuzzification. Type-reduction maps
the output T2 FS into a type-1 (T1) FS, and defuzzification converts that T1 FS into a number.

Type-reduction methods were developed by Karnik and Mendel [3,4] and are elaborated upon in [12].
When they are applied to a general T2 FS they require an astronomical number of computations. When they
are applied to an IT2 FS, they require a very small number of computations, which is one of the major reasons
that IT2 FLSs have received attention whereas general T2 FLSs have not.
0020-0255/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Even for IT2 FLSs there can be many different kinds of type-reduction. The ones that have been developed
so far all extend a T1 centroid calculation to T2 FSs, so that if all sources of uncertainty disappear the output
of an IT2 FLS reduces to that of a T1 FLS. So, computing the centroid of an IT2 FS plays a central role in IT2
FLSs.

The centroid of an IT2 FS also provides a measure of the uncertainty of an IT2 FS [21], and more recently
has been the basis for going from data collected from a group of subjects (about an interval that they associate
with the meaning of a word) to the footprint of uncertainty (FOU) of an IT2 FS that models that word [17].

In this paper, we present properties about the centroid of an IT2 FS. We also provide a formula for the
centroid of an IT2 fuzzy granule (FG), one that lets us develop some understanding about the uncertainty
of the FG in terms of its vertical and horizontal dimensions. To begin, we briefly review IT2 FSs and the cen-
troid of such FSs.

2. Basics of an interval type-2 fuzzy set

An interval T2 FS eA is characterized as1 [12,16]
1 We
univer
symbo

2 In
eA ¼ Z
x2X

Z
u2Jx�½0;1�

1=ðx; uÞ ¼
Z

x2X
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u2Jx�½0;1�
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where x, the primary variable, has domain X; u, the secondary variable, has domain Jx at each x 2 X; Jx is

called the primary membership of x; and, the secondary grades of eA all2 equal 1. Uncertainty about eA is con-

veyed by the union of all of the primary memberships, which is called the footprint of uncertainty (FOU) of eA,
i.e.
FOUðeAÞ ¼ [
x2X

J x ð2Þ
The upper membership function (UMF) and lower membership function (LMF) of eA are two type-1 MFs that
bound the FOU (e.g., see Fig. 1). The UMF is associated with the upper bound of FOUðeAÞ and is denoted
�l~AðxÞ; 8x 2 X , and the LMF is associated with the lower bound of FOUðeAÞ and is denoted l~AðxÞ, "x 2 X, i.e.
�l~AðxÞ � FOUðeAÞ 8x 2 X ð3Þ
l~AðxÞ � FOUðeAÞ 8x 2 X ð4Þ
Note that
J x ¼ l~AðxÞ; �l~AðxÞ
h i

ð5Þ
so that FOUðeAÞ in (2) can also be expressed as
FOUðeAÞ ¼ [
x2X

l~AðxÞ; �l~AðxÞ
h i

ð6Þ
For continuous universes of discourse X and U, an embedded interval T2 FS eAe is
eAe ¼
Z

x2X
½1=h�=x h 2 J x � U ¼ ½0; 1� ð7Þ
Set eAe is embedded in eA such that at each x it only has one secondary variable (Fig. 1, where secondary grades,
not shown, are all equal to 1). Although there are an uncountable number of embedded IT2 FSs, such FSs are
still quite useful in theoretical developments. Other examples of eAe are 1=�l~AðxÞ and 1=l~AðxÞ, "x 2 X.
shall inter-twine our discussions about fuzzy sets that are defined on continuous or discrete universes of discourse. For discrete
ses of discourse, one should replace the integral signs (e.g., in (1)) with summation signs. Regardless of which notation is used, each
l represents the set-theoretic union operation.
a general T2 FS, the secondary grades can take on any value in [0,1].
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Fig. 1. FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy line) for IT2 FS eA.
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Associated with each eAe is an embedded T1 FS Ae, where
3 Str
second
Ae ¼
Z

x2X
h=x h 2 J x � U ¼ ½0; 1� ð8Þ
Set Ae is the union of all the primary memberships of the set eAe in (7) (Fig. 1), and there are an uncountable
number of Ae. Other examples of Ae are �l~AðxÞ and l~AðxÞ; 8x 2 X . Note that Ae acts as the domain for eAe.

For discrete universes of discourse, in which both the primary and secondary variables3 are discretized,
there exist a countable number of embedded T2 (and T1) FSs (e.g., see [16] or [12]). In this case, eAe and Ae

are given by formulas like (12) and (15) below.
A symmetric IT2 FS is a special case of an IT2 FS, and is one for which the FOU is symmetrical about

x = m, i.e.
�l~Aðmþ xÞ ¼ �l~Aðm� xÞ ð9Þ
l~Aðmþ xÞ ¼ l~Aðm� xÞ ð10Þ
In [16] a new Representation Theorem was derived in which a general T2 FS, eA, is expressed as the union of all
of its embedded T2 FSs, eAj

e. For an IT2 FS, for which X and U are discrete, this can be stated as
eA ¼XnA

j¼1

eAj
e ð11Þ
where
eAj
e ¼

XN

i¼1

½1=uj
i �=xi uj

i 2 J xi � U ¼ ½0; 1� ð12Þ
and
nA ¼
YN
i¼1

Mi ð13Þ
in which Mi denotes the discretization levels of secondary variable uj
i at each of the N xi. Because all of the

secondary grades of an IT2 FS equal 1, we can also express (11) and (12) as
eA ¼ 1=FOUðeAÞ ¼ 1

,XnA

j¼1

Aj
e ð14Þ
where
Aj
e ¼

XN

i¼1

uj
i

,
xi uj

i 2 J xi � U ¼ ½0; 1� ð15Þ
ictly speaking, a T2 FS whose secondary variable is discrete is not an IT2 FS, because an IT2 FS requires that the domain for the
ary variable must be an interval. It is usually for computational purposes that we discretize the secondary variable.
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and it is understood that the notation in (14) means that the secondary grade equals 1 at all elements in
FOUðeAÞ.

With reference to Fig. 1, (14) means collecting all embedded IT2 FSs into a bundle of such sets. This bundle
will always be bounded by the UMF and the LMF of the FOU, since they are both legitimate embedded sets.

3. Centroid of an interval type-2 fuzzy set

Using the Representation Theorem in (11), we define the centroid, C~A, of an IT2 FS eA as the collection of
the centroids of all of its embedded IT2 FSs. From (14), we see that this means we need to compute the cent-
roids of all of the nA embedded T1 FSs contained within FOUðeAÞ. The results of doing this will be a collection
of nA numbers, and these numbers will have both a smallest and largest element, clðeAÞ � cl and crðeAÞ � cr,
respectively. That such numbers exist is because the centroid of each of the embedded T1 FSs is a bounded
number. Associated with each of these numbers will be a membership grade of 1, because the secondary grades
of an IT2 FS are all equal to 1. This means
4 Wh
literatu

5 If G
numbe

6 Th
analog
C~A ¼ 1=fcl; . . . ; crg ð16Þ

where4
cl ¼ min
8hi2½l~AðxiÞ;�l~AðxiÞ�

PN
i¼1xihiPN

i¼1hi

ð17Þ

cr ¼ max
8hi2½l~AðxiÞ;�l~AðxiÞ�

PN
i¼1xihiPN

i¼1hi

ð18Þ
and
x1 < x2 < � � � < xN ð19Þ
The latter is true because xi are sampled values of the primary variable; x1 denotes the left-hand (smallest)
sampled value and xN denotes the right-hand (largest) sampled value.5

Except for one very special FOU, an interval T2 fuzzy granule, which we shall examine in Section 6, there
are no known closed-form formulas for cl and cr; however, Karnik and Mendel [3,4] have developed iterative
algorithms for computing these end-points exactly. Because their published algorithms are contained within
more general algorithms for the case when both xi and hi vary over intervals [for which (17) and (18) must
also include the variations of each of the xi, and one is then led to a6 generalized centroid], we include state-
ments of the two algorithms for computing cl and cr in Appendix A. Here we establish the bases for computing
cl and cr using (17) and (18). Our presentation follows that of [12].

If we take the usual calculus approach to optimizing yðh1; . . . ; hNÞ ¼
PN

i¼1xihi

�PN
i¼1hi, and differentiate

y(h1, . . . ,hN) with respect to hk, we find that:
oyðh1; . . . ; hN Þ
ohk

¼ o

ohk

PN
i¼1xihiPN

i¼1hi

" #
¼ xk � yðh1; . . . ; hNÞPN

i¼1hi

ð20Þ
Because
PN

i¼1hi > 0, it is easy to see from (20) that
oyðh1; . . . ; hN Þ
ohk

P 0 if xk P yðh1; . . . ; hN Þ
< 0 if xk < yðh1; . . . ; hNÞ

�
ð21Þ
en discretizations of the primary variable and primary membership approach zero, {cl, . . . ,cr}! [cl,cr], an interval set. In the
re about the centroid, it is customary to see (16) written as C~A ¼ ½cl; cr�.
aussian MFs are used, then in theory x1!�1 and xN!1; but, in practice when truncations are used x1 and xN are again finite

rs.
e so-called fuzzy weighted average (e.g., [11]) is a generalized centroid in which xi and hi are both general fuzzy numbers. Equations
ous to (17) and (18) were also obtained in [11].
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Unfortunately, equating oy/ohk to zero does not give us any information about the value of hk that optimizes
y(h1, . . . ,hN). When we do this we find:
yðh1; . . . ; hN Þ ¼ xk )
PN

i¼1xihiPN
i¼1hi

¼ xk )
PN

i6¼kxihiPN
i6¼khi

¼ xk ð22Þ
Observe that hk no longer appears in the final expression in (22), so that the direct calculus approach does not
work.

Eq. (21) does give the direction in which hk should be changed in order to increase or decrease y(h1, . . . ,hN),
i.e.
If xk > yðh1; . . . ; hN Þ yðh1; . . . ; hN Þ increases (decreases) as hk increases (decreases)

If xk < yðh1; . . . ; hN Þ yðh1; . . . ; hN Þ increases (decreases) as hk decreases (increases)

�
ð23Þ
Recall (see (17) and (18)) that the maximum value that hk can attain is �l~AðxkÞ and the minimum value that it
can attain is l~AðxÞ. Eq. (23) therefore implies that y(h1, . . . ,hN) attains its maximum value, cr, if:

1. hk ¼ �l~AðxkÞ 8k 3 xk > yðh1; . . . ; hN Þ,
2. hk ¼ l~AðxÞ 8k 3 xk < yðh1; . . . ; hN Þ.

Similarly, we can deduce from (23) that y(h1, . . . ,hN) attains its minimum value, cl, if:

1. hk ¼ �l~AðxkÞ 8k 3 xk < yðh1; . . . ; hN Þ,
2. hk ¼ l~AðxÞ 8k 3 xk > yðh1; . . . ; hN Þ.

Note also that because hk P 0 for all k, the partial derivative oy=oxk ¼ hk=
PN

i¼1hi P 0. Therefore, y is non-
decreasing (non-increasing) with increasing (decreasing) xk. Combining this fact with the two possible choices
for hk that are stated above, we see that to compute cr(cl) hk switches only one time between �l~AðxkÞ and l~AðxÞ.
The Karnik–Mendel algorithms locate the switch point, and in general the switch point for cr, R, is different
from the switch point for cl, L.

Putting all of these facts together, we obtain the following formulas for cl and cr:
cl ¼
PL

i¼1xi�l~AðxiÞ þ
PN

i¼Lþ1xil~AðxiÞPL
i¼1�l~AðxiÞ þ

PN
i¼Lþ1l~AðxiÞ

ð24Þ

cr ¼
PR

i¼1xil~AðxiÞ þ
PN

i¼Rþ1xi�l~AðxiÞPR
i¼1l~AðxiÞ þ

PN
i¼Rþ1�l~AðxiÞ

ð25Þ
Another way to summarize these results, that we will make use of in the sequel, is to state them for continuous
universes of discourse. Let Ae(l) denote an embedded T1 FS for which (in the sequel, we sometimes let �lðxÞ
and l(x) be short for �l~AðxÞ and l~AðxÞ, respectively)
lAeðlÞðxÞ ¼
�lðxÞ if x 6 l

lðxÞ if x > l

(
ð26Þ
where l is a switch point, i.e. the value of x at which Ae(l) switches from �lðxÞ to l(x). Then
clðeAÞ ¼ min
l2X

centroidðAeðlÞÞ ð27Þ
where
centroidðAeðlÞÞ ¼
R l
�1 x�lðxÞdxþ

R1
l xlðxÞdxR l

�1 �lðxÞdxþ
R1

l lðxÞdx
ð28Þ



J.M. Mendel, H. Wu / Information Sciences 177 (2007) 360–377 365
Similarly, let Ae(r) denote an embedded T1 FS for which
7 Dm
lAeðrÞðxÞ ¼
lðxÞ if x 6 r

�lðxÞ if x > r

�
ð29Þ
where r is another switch point, i.e. the value of x at which Ae(r) switches from l(x) to �lðxÞ. Then
crðeAÞ ¼ max
r2X

centroidðAeðrÞÞ ð30Þ
where
centroidðAeðrÞÞ ¼
R r
�1 xlðxÞdxþ

R1
r x�lðxÞdxR r

�1 lðxÞdxþ
R1

r �lðxÞdx
ð31Þ
4. Properties of the centroid

In this section we provide a collection of properties for the centroid that are valid for any IT2 FS. We use
the term ‘‘centroid’’ to mean the centroid of an IT2 FS.

Theorem 1. The left and right end-points of the centroid, clðeAÞ and crðeAÞ, satisfy the following equations:
clðeAÞ ¼ R cl

�1 x�lðxÞdxþ
R1

cl
xlðxÞdxR cl

�1 �lðxÞdxþ
R1

cl
lðxÞdx

ð32Þ

crðeAÞ ¼ R cr

�1 xlðxÞdxþ
R1

cr
x�lðxÞdxR cr

�1 lðxÞdxþ
R1

cr
�lðxÞdx

ð33Þ
Proof. See Appendix B.1. h

The results in (32) and (33) are very interesting and somewhat surprising, in that they show that for clðeAÞ,
when the value of l is found that minimizes centroid(Ae(l)) it will be l ¼ clðeAÞ; and, for crðeAÞ, when the value
of r is found that maximizes centroid(Ae(r)) it will be r ¼ crðeAÞ. Of course, if X is discretized (for computa-
tional purposes) then l! L � clðeAÞ but L does not exactly equal clðeAÞ, and r! R � crðeAÞ but R does not
exactly equal crðeAÞ, which probably explains why (32) and (33) were not observed by Karnik and Mendel.

Note that the Karnik–Mendel algorithms for finding clðeAÞ and crðeAÞ are instantiations of (32) and (33),
respectively.

Theorem 2. Let eA be an IT2 FS defined on X, and eA0 be eA shifted by7 Dm along X, i.e.
l~A0 ðxÞ ¼ l~Aðx� DmÞ ð34Þ
�l~A0 ðxÞ ¼ �l~A0 ðx� DmÞ ð35Þ
Then the centroid of eA0, ½clðeA0Þ; crðeA0Þ�, is the same as the centroid of eA, ½clðeAÞ; crðeAÞ�, shifted by Dm, i.e.
clðeA0Þ ¼ clðeAÞ þ Dm ð36Þ
crðeA0Þ ¼ crðeAÞ þ Dm ð37Þ
Proof. See Appendix B.2. h

Theorem 2 demonstrates that the span of the centroid set of an IT2 FS is shift-invariant. This means that
regardless of where along X the FOU of eA occurs, as long as the FOU for eA0 is unchanged, then
span½centroidðeA0Þ� ¼ crðeA0Þ � clðeA0Þ ¼ span½centroidðeAÞ� ¼ crðeAÞ � clðeAÞ ð38Þ
may be positive or negative.
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Theorem 2 also justifies our shifting the FOU of eA to a possibly more convenient point along X for the actual

computation of the centroid (e.g., to the origin). When we do that we are computing clðeA0Þ and crðeA0Þ, after

which we can compute the centroid of eA, using (36) and (37), as clðeAÞ ¼ clðeA0Þ � Dm and crð~AÞ ¼ crðeA0Þ � Dm.

Theorem 3. (a) If FOUðeAÞ is amplitude scaled by k, where 0 < k < 1, meaning that FOUðeAÞ ! kFOUðeAÞ (i.e.
�l~A0 ðxÞ ¼ k�l~AðxÞ and l~A0 ðxÞ ¼ kl~AðxÞÞ then the centroid is FOU scale-invariant. (b) If FOUðeAÞ is shifted vertically

by a constant amount (i.e. �l~A0 ðxÞ ¼ �l~AðxÞ þ d and l~A0 ðxÞ ¼ l~AðxÞ þ d) then the centroid is not vertically shift-

invariant. (c) If the primary variable x is uniformly scaled to x/c, where c > 0 (i.e. �l~AðxÞ ¼ �l~Aðx=kÞ and

l~A0 ðxÞ ¼ l~Aðx=kÞ) then the centroid scales by c to c½clðeAÞ; crðeAÞ�.
Proof. See Appendix B.3. h

Note that if IT2 FS eA is a normal FS, then at least one value of its UMF must equal 1. Amplitude scaling
and vertical shifting are not permitted if normality must be preserved, in which case Parts (a) and (b) of this
theorem are inapplicable to such a normal FS. In Section 6 we will see that a fuzzy granule does not have to be
normal, and so scaling of it may be permissible (as long as the UMF of the shifted or scaled FG does not
exceed 1).

Theorem 4. If the primary variable (x) is bounded, i.e. x 2 [xL,xR], so that x1 � xL and xN � xR, then
clðeAÞP xL ð39Þ
crðeAÞ 6 xR ð40Þ
Proof. See Appendix B.4. h

So even though we cannot in general obtain closed-form formulas for the centroid end-points, this theorem
provides us with a quick way to check an aspect of computed values for those end-points. Unfortunately, this
theorem is not very informative for an IT2 FS that is associated with Gaussian primary MFs, because for such
a T2 FS xL = �1 and xR =1.

Theorem 5. If LMF ðeAÞ is entirely on the primary-variable (x) axis, and x 2 [xL,xR], then the centroid does not

depend upon the shape of FOUðeAÞ and, as the sampling approaches zero, it equals [xL,xR].

Proof. See Appendix B.5. h

An example of a FOU for which LMFðeAÞ is entirely on the primary-variable (x) axis, and x 2 [xL,xR], is
depicted in Fig. 2. It is called a completely filled-in FOU. While the results of this theorem may seem strange,
let us remember that each of the centroids in (16) that make up the centroid of eA provides a center of gravity
about the vertical (primary membership) axis and according to Theorem 4 each of these centroids must be
contained within [xL,xR]. For a completely filled-in FOU, the centroid actually equals [xL,xR].

Interval T2 FSs with symmetrical FOUs have been very widely used by practitioners of T2 FSs (e.g., [1,5–
10,12,19]). We turn next to such FSs.
1

x

UMF(A)UMF(A)

FOU(A)

xRxL

Fig. 2. Completely filled-in FOU.
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5. The centroid and its properties for a symmetric FOU

Symmetrical FOUs occur frequently, e.g., create a FOU by starting with a Gaussian primary MF and allow
its mean, standard deviation or both to vary over intervals, then the resulting FOU will be symmetrical (e.g.,
Fig. 4). For such a FOU, we have:

Theorem 6 ([14,15]). Given a FOU for an IT2 FS, one that is symmetrical about primary variable y at y = m

(e.g., Fig. 4), then the centroid of such a T2 FS is symmetrical about y = m, and the average value (i.e. the

defuzzified value) of all the elements in the centroid equals m.

Proof. See Appendix B.6. h

Although the results in this theorem may seem intuitive to some readers, its proof requires some effort. Here
(as in [14,15]) we explain the importance of the theorem. First of all, its results represent a 50% savings in com-
putation for a symmetrical FOU. Instead of having to compute both clðeAÞ and crðeAÞ, one only needs to com-
pute e.g., clðeAÞ using a KM algorithm, after which one can compute crðeAÞ from the formula
crðeAÞ ¼ 2m� clðeAÞ ð41Þ

This equation is a direct result of the symmetry of the centroid about m.

Additionally, suppose we begin with interval T2 fuzzy numbers, each characterized by a symmetrical FOU,
and perform an operation (e.g., arithmetic, set-theoretic, non-linear function) on them that leads to another
interval T2 fuzzy number that also has a symmetrical FOU, then according to this theorem the result of com-
bined centroid plus defuzzification procedures (which are performed after these operations) could just as well
have been obtained by treating the T2 fuzzy numbers as crisp numbers and performing crisp operations on
them. In short, for such T2 fuzzy numbers and operations, if all that is desired is a crisp number after performing

said operations on the T2 fuzzy numbers, then it is a waste of effort to perform the calculations using T2 FS math-
ematics. All knowledge about the uncertainties of the numbers, as captured by their T2 MFs, is lost at the end
of the centroid + defuzzification procedures. Of course, the centroid of such IT2 FSs still provides a useful
measure of the uncertainties that have propagated through the operations. These observations lead us to
the following:

Corollary 1 (To Theorem 6). If all that is desired is a crisp number after performing operations on IT2 FSs, then

for the use of such sets to make a difference to not using them (e.g., to using T1 FSs or just crisp numbers) the

operations that are applied to them must lead to an IT2 FS that has a non-symmetrical FOU.

Interestingly enough, non-symmetrical FOUs occur in IT2 Mamdani or TSK (Takagi–Sugeno–Kang) rule-
based FLSs [12]. For example, in an IT2 Mamdani FLS, although the FOU for each fired rule is usually sym-
metrical (e.g., Fig. 5) this symmetry is (fortunately) lost when the fired rule T2 FSs are combined, e.g., by
Fig. 4. FOU that is symmetrical about m ¼ 1
2
ðm1 þ m2Þ.
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Fig. 6. Union combined output set (dark shaded region) for the two fired output sets in this figure.
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Fig. 5. Fired output sets (dark shaded regions) for two fired rules in an IT2 Mamdani FLS when min t-norm is used.
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union (e.g., Fig. 6), height defuzzification, etc. Note that in Figs. 5 and 6 light shaded regions are the FOUs of
two fired consequent sets, f1 and �f 1 are the lower and upper firing levels for Rule-1, and f2 and �f 2 are the com-
parable quantities for Rule-2. Formulas for these upper and lower firing levels can be found in [5,12].

Theorem 7. If the IT2 FS eA defined on X is symmetrical about m 2 X, then
clðeAÞ 6 m ð42Þ
crðeAÞP m ð43Þ
Proof. See Appendix B.7. h

This theorem demonstrates that for a symmetrical FOU the centroid end-points cannot crossover to the
other side of the symmetry point of the FOU, i.e. cl must lie to the left of m and cr must lie to the right of
m. A comparable result does not exist for a non-symmetrical FOU.

6. The centroid of an interval type-2 fuzzy granule

A fuzzy granule, introduced by Zadeh (e.g., [23]), often has the shape of a rectangle (Fig. 7). It is interpreted
(by us) as the FOU of an IT2 FS, and subsequently as an IT2 FS. In the sequel we shall denote the type-2 fuzzy
granule as T2 FG. It is the only IT2 FS (so far) for which we have been able to compute the centroid in closed
form. In this section we show some of the details for doing this.
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Fig. 7. FOU of an interval T2 fuzzy granule.
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Examining Fig. 7, we see that l~AðxÞ ¼ L and �l~AðxÞ ¼ R for x 2 [aL,aR]; hence, (24) and (25) can be expressed
as8
8 Bec
denote
clðeAÞ ¼ R
PL�

i¼1xi þ L
PN

i¼L�þ1xiPL�

i¼1Rþ
PN

i¼L�þ1L
ð44Þ

crðeAÞ ¼ L
PR�

i¼1xi þ R
PN

i¼R�þ1xiPR�

i¼1Lþ
PN

i¼R�þ1R
ð45Þ
where x1 = aL, xN = aR and xi = aL + (i � 1)(aR � aL)/(N � 1). As N!1 and xi+1 � xi! 0, we can express
(44) and (45) in their continuous forms, as
clðeAÞ ¼ R
R al

aL
xdxþ L

R aR

al
xdx

R
R al

aL
dxþ L

R aR

al
dx

ð46Þ

crðeAÞ ¼ L
R ar

aL
xdxþ R

R aR

ar
xdx

R
R ar

aL
dxþ L

R aR

ar
dx

ð47Þ
where al,ar 2 [aL,aR] are the switching points for clðeAÞ and crðeAÞ. It is easy to show that (46) and (47) can be
expressed as
clðeAÞ ¼ Rðal þ aLÞðal � aLÞ þ LðaR þ alÞðaR � alÞ
2Rðal � aLÞ þ 2LðaR � alÞ

ð48Þ

crðeAÞ ¼ Lðar þ aLÞðar � aLÞ þ RðaR þ arÞðaR � arÞ
2Lðar � aLÞ þ 2RðaR � arÞ

ð49Þ
Since al minimizes clðeAÞ, the derivative of clðeAÞ with respect to al must be zero, i.e. dcl/dal = 0; hence, it fol-
lows that
ðR� LÞ ðR� LÞa2
l=2� ðRaL � LaRÞal þ ðRa2

L � La2
RÞ=2

� �
Rðal � aLÞ þ LðaR � alÞ½ �2

¼ 0 ð50Þ
Letting the numerator of (50) equal zero, we obtain two possible values for al, namely
al ¼
ðRaL � LaRÞ 	

ffiffiffiffiffiffi
RL
p
ðaR � aLÞ

R� L
ð51Þ
Because al 2 [aL,aR], it is easy to show that only the positive solution in (51) is permissible; hence,
al ¼
ðRaL � LaRÞ þ

ffiffiffiffiffiffi
RL
p
ðaR � aLÞ

R� L
¼

ffiffiffi
L
p

aR þ
ffiffiffi
R
p

aLffiffiffi
L
p
þ

ffiffiffi
R
p ð52Þ
ause we are using L and R in this section to denote the vertical dimensions of the T2 FG, we use L* and R* in (24) and (25) to
the two switch points.
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Fig. 8. Uncertainty curve for an IT2 FG.
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Substituting (52) into (48), we find (after some algebra) that
clðeAÞ ¼ ffiffiffi
L
p

aR þ
ffiffiffi
R
p

aLffiffiffi
L
p
þ

ffiffiffi
R
p ð53Þ
Proceeding in a similar manner for crðeAÞ, by setting dcr/dar = 0, we find first that
ar ¼
ðRaR � LaLÞ �

ffiffiffiffiffiffi
RL
p
ðaR � aLÞ

R� L
¼

ffiffiffi
R
p

aR þ
ffiffiffi
L
p

aLffiffiffi
R
p
þ

ffiffiffi
L
p ð54Þ
and then that
crðeAÞ ¼ ffiffiffi
R
p

aR þ
ffiffiffi
L
p

aLffiffiffi
R
p
þ

ffiffiffi
L
p ð55Þ
Observe, from (52) and (53) that al ¼ clðeAÞ and from (54) and (55) that ar ¼ crðeAÞ, exactly as predicted by
Theorem 1; hence, these calculations provide us with additional confirmation of the correctness of the results
of that theorem.

Observe, also that
crðeAÞ � clðeAÞ ¼ ðaR � aLÞ
ffiffiffi
R
p
�

ffiffiffi
L
pffiffiffi

R
p
þ

ffiffiffi
L
p ¼ ðaR � aLÞ

ffiffiffiffiffiffiffiffiffi
R=L

p
� 1ffiffiffiffiffiffiffiffiffi

R=L
p

þ 1
ð56Þ
which provides us with the uncertainty interval for a T2 FG as an explicit function of its four defining param-
eters. Additionally, observe from (56) that:

1. When L = 0, crðeAÞ � clðeAÞ ¼ aR � aL, which is in agreement with Theorem 5, since for the T2 FG (see
Fig. 7) x1 = aL and xN = aR.

2. The defuzzified value of the centroid, xD, given by
xD �
clðeAÞ þ crðeAÞ

2
¼ aL þ aR

2
ð57Þ

does not depend on the vertical dimensions of the T2 FG, whereas the centroid does; hence, xD is not a
useful measure of the uncertainty of a T2 FG, whereas the centroid is.

A plot of (56) is given in Fig. 8. In that figure we have let:
Da � aR � aL ð58Þ

Dc � cr � cl ð59Þ

k �
ffiffiffiffiffiffiffiffiffi
R=L

p
and k > 1 ð60Þ
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so9 that (56) can be re-expressed as
9 k >
Dc ¼ Da
k� 1

kþ 1

� 	
ð61Þ
Observe that as k increases Dc/Da! 1. One way to use Fig. 8 is to specify a value for k, read off the value of
Dc/Da, fix a value for Dc and compute Da.

7. Conclusions

In this paper we have collected very useful properties about the centroid of an IT2 FS, and have also illus-
trated many of the general results for an IT2 fuzzy granule (T2 FG). At present, the T2 FG is the only IT2 FS
for which it is possible to obtain closed-form formulas for the centroid.

As mentioned in [17], intuitively we anticipate that geometric properties about the FOU, such as its area
and the center of gravities (centroids) of its upper and lower MFs, will be associated with the amount of uncer-
tainty in an IT2 FS. Because closed-form formulas do not exist for cl and cr, it is impossible (except for the T2
FG in Section 6) to study how these end-points explicitly depend upon the geometric properties of the FOU.
Interestingly enough, upper and lower bounds on cl and cr can be expressed in terms of the geometric prop-
erties. For derivations of these bounds and discussions on how to use the bounds for solving forward problems
(i.e. how to go from parametric IT2 FS models to data) and inverse problems (i.e. how to go from uncertain
data to parametric IT2 FS models—type-2 fuzzistics), see [17–19].

Appendix A. The Karnik–Mendel (KM) algorithms for determining cl(eA) and cr(eA)

A.1. KM algorithm for crðeAÞ
The five steps of this algorithm are:

1. Initialize hi by setting
hi ¼
1

2
l~AðxiÞ þ �l~AðxiÞ
h i

i ¼ 1; . . . ;N ðA:1Þ
and then compute
c0 ¼ cðh1; . . . ; hN Þ ¼
PN

i¼1xihiPN
i¼1hi

ðA:2Þ
2. Find k (1 6 k 6 N � 1) such that
xk 6 c0 6 xkþ1 ðA:3Þ

3. Set
hi ¼
l~AðxiÞ i 6 k

�l~AðxiÞ i P k þ 1

�
ðA:4Þ
and compute
c00 ¼
Pk

i¼1xil~AðxiÞ þ
PN

i¼kþ1xi�l~AðxiÞPk
i¼1l~AðxiÞ þ

PN
i¼kþ1�l~AðxiÞ

ðA:5Þ
4. Check if c00 = c 0. If yes, stop and set c00 = cr. If no, go to Step 5.
5. Set c 0 = c00 and go to Step 2.
1 because R > L (see Fig. 7).
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A.2. KM algorithm for clðeAÞ
Same as previous procedure, except in Step 3, set
10 Un
hi ¼
�l~AðxiÞ i 6 k

l~AðxiÞ i P k þ 1

(
ðA:6Þ
so that
c00 ¼
Pk

i¼1xi�l~AðxiÞ þ
PN

i¼kþ1xil~AðxiÞPk
i¼1�l~AðxiÞ þ

PN
i¼kþ1l~AðxiÞ

ðA:7Þ
Appendix B. Proofs of theorems

B.1. Proof of Theorem 1

We only prove (32) because the proof of (33) is so similar, and we do this in two steps:

• Step 1: We show that10 cl satisfies the following equation:
½�lðclÞ � lðclÞ� cl

Z cl

�1
�lðxÞdxþ

Z 1

cl

lðxÞdx

 �

�
Z cl

�1
x�lðxÞdxþ

Z 1

cl

xlðxÞdx

 �� �

¼ 0 ðB:1Þ
• Step 2: We show that cl can only be as in (32).

Step 1: Beginning with (26)–(28), (27) implies that the derivative of centroid (Ae(l)) with respect to l is zero
when evaluated at cl, i.e.
d

dl

R 1

1 x�lðxÞ þ
R1

l xlðxÞdxR l
�1 �lðxÞdxþ

R1
l lðxÞdx

" #�����
l¼cl

ðB:2Þ
This equation expands to
½cl�lðclÞ � cllðclÞ�
R cl

�1 �lðxÞdxþ
R1

cl
lðxÞdx

h i
� ½�lðclÞ � lðclÞ�

R cl

�1 x�lðxÞdxþ
R1

cl
xlðxÞdx

h i
R cl

�1 �lðxÞdxþ
R1

cl
lðxÞdx

h i2
¼ 0 ðB:3Þ
from which it follows that:
½�lðclÞ � lðclÞ� cl

Z cl

�1
�lðxÞdxþ

Z 1

cl

lðxÞdx

 �

�
Z cl

�1
x�lðxÞdxþ

Z 1

cl

xlðxÞdx

 �� �

¼ 0 ðB:4Þ
which is (B.1).
Step 2: Let l1 2 X for which
�lðl1Þ � lðl1Þ ¼ 0 ðB:5Þ
less otherwise noted, in this Appendix cl and cr are short for clðeAÞ and crðeAÞ.
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and l2 2 X for which
11 Th
the FO
l2

Z l2

�1
�lðxÞdxþ

Z 1

l2

lðxÞdx

 �

¼
Z l2

�1
x�lðxÞdxþ

Z 1

l2

xlðxÞdx

 �

ðB:6Þ
Observe that (B.6) can be solved for l2, and expressed as
l2 ¼ centroidðAeðl2ÞÞ ðB:7Þ
Since both l1 and l2 satisfy (B.1), either or both of them may be cl. We now show that
centroidðAeðl1ÞÞP centroidðAeðl2ÞÞ when l1 6¼ l2 ðB:8Þ
Because cl is the minimum of the centroids of all embedded T1 FSs, it therefore cannot be centroid (Ae(l1)), but
must be centroid (Ae(l2)).

If it happens that l1 = l2 = cl, then it may happen that11 �lðclÞ ¼ lðclÞ, in which case (B.1) is simultaneously
satisfied by both of its terms equaling zero. By these arguments we see that (B.1) can never be satisfied by
�lðclÞ ¼ lðclÞ alone.

Returning to the proof of (B.8), we first consider the case when l1 < l2, for which centroid (Ae(l1)) can be re-
expressed as
centroidðAeðl1ÞÞ ¼
R l1

�1 x�lðxÞdxþ
R1

l1
xlðxÞdxR l1

�1 �lðxÞdxþ
R1

l1
lðxÞdx

¼
R l2

�1 x�lðxÞdx�
R l2

l1
x�lðxÞdxþ

R1
l2

xlðxÞdxþ
R l2

l1
xlðxÞdxR l2

�1 �lðxÞdx�
R l2

l1
�lðxÞdxþ

R1
l2

lðxÞdxþ
R l2

l1
lðxÞdx

¼
R l2

�1 x�lðxÞdxþ
R1

l2
xlðxÞdx�

R l2

l1
x½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx�

R l2

l1
½�lðxÞ � lðxÞ�dx

¼
l2

R l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx

h i
�
R l2

l1
x½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx�

R l2

l1
½�lðxÞ � lðxÞ�dx

ðB:9Þ
In obtaining this last line, we have substituted the left-hand side of (B.6) for the right-hand side of (B.6), where
the latter appears in the numerator of the third line of (B.9). Because l2 > l1 and it is always true that
�lðxÞ � lðxÞP 0, it follows that:
0 <

Z l2

l1

x½�lðxÞ � lðxÞ�dx 6 l2

Z l2

l1

½�lðxÞ � lðxÞ�dx ðB:10Þ
Upon the substitution of the upper bound in (B.10) into the numerator of (B.9), we see that
centroidðAeðl1ÞÞP
l2

R l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx

h i
� l2

R l1

l2
½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx�

R l1

l2
½�lðxÞ � lðxÞ�dx

P l2 ¼ centroidðAeðl2ÞÞ ðB:11Þ
where the last part of (B.11) follows from (B.7). This completes the proof of (B.8) when l1 < l2.
e condition �lðclÞ ¼ lðclÞ means that at x = cl the upper and lower MFs touch each other, something that is perfectly permissible in
UðeAÞ.
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Turning next to the case when l1 > l2, we see that centroid (Ae(l1)) can be re-expressed as
centroidðAeðl1ÞÞ ¼
R l1

�1 x�lðxÞdxþ
R1

l1
xlðxÞdxR l1

�1 �lðxÞdxþ
R1

l1
lðxÞdx

¼
R l2

�1 x�lðxÞdxþ
R l1

l2
x�lðxÞdxþ

R1
l2

xlðxÞdx�
R l1

l2
xlðxÞdxR l2

�1 �lðxÞdxþ
R l1

l2
�lðxÞdxþ

R1
l2

lðxÞdx�
R l1

l2
lðxÞdx

¼
R l2

�1 x�lðxÞdxþ
R1

l2
xlðxÞdxþ

R l1

l2
x½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdxþ

R l1

l2
½�lðxÞ � lðxÞ�dx

¼
l2

R l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx

h i
þ
R l1

l2
x½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdxþ

R l1

l2
½�lðxÞ � lðxÞ�dx

ðB:12Þ
In obtaining this last line, we have substituted the left-hand side of (B.6) for the right-hand side of (B.6), where
the latter appears in the numerator of the third line of (B.12). Because l1 > l2, and it is always true that
�lðxÞ � lðxÞP 0, it follows that:
Z l1

l2

x½�lðxÞ � lðxÞ�dx P l2

Z l1

l2

½�lðxÞ � lðxÞ�dx ðB:13Þ
Upon the substitution of (B.13) into the numerator of (B.12), we see that
centroidðAeðl1ÞÞP
l2

R l2

�1 �lðxÞdxþ
R1

l2
lðxÞdx

h i
þ l2

R l1

l2
½�lðxÞ � lðxÞ�dxR l2

�1 �lðxÞdxþ
R1

l2
lðxÞdxþ

R l1

l2
½�lðxÞ � lðxÞ�dx

P l2 ¼ centroidðAeðl2ÞÞ ðB:14Þ
which proves (B.8) when l1 > l2.
Eqs. (B.11) and (B.14) together prove the truth of (B.8). Consequently, it is only l2 that is the legitimate

solution of (B.1), and therefore l2 = cl, where cl is given by (32).

B.2. Proof of Theorem 2

We only prove (36) because the proof of (37) is so similar. Eqs. (26)–(28) are for fuzzy set eA. Their com-
parable equations for fuzzy set eA0 are
lA0eðlÞðxÞ ¼
�l~A0 ðxÞ if x 6 l

l~A0 ðxÞ if x > l

(
ðB:15Þ

clðeA0Þ ¼ minl2X centroidðA0eðlÞÞ ðB:16Þ

centroidðA0eðlÞÞ ¼
R l
�1 x�l~A0 ðxÞdxþ

R1
l xl~A0 ðxÞdxR l

�1 �l~A0 ðxÞdxþ
R1

l l~A0 ðxÞdx
ðB:17Þ
Substituting (34) and (35) into (B.17), we find that
centroidðA0eðlÞÞ ¼
R l
�1 x�l~Aðx� DmÞdxþ

R1
l xl~Aðx� DmÞdxR l

�1 �l~Aðx� DmÞdxþ
R1

l l~Aðx� DmÞdx

¼
R l
�1ðx� DmÞ�l~Aðx� DmÞdxþ

R1
l ðx� DmÞl~Aðx� DmÞdxR l

�1 �l~Aðx� DmÞdxþ
R1

l l~Aðx� DmÞdx
þ Dm

¼
R l�Dm
�1 y�l~AðyÞdy þ

R1
l�Dm yl~AðyÞdyR l�Dm

�1 �l~AðyÞdy þ
R1

l�Dm l~AðyÞdy
þ Dm ¼ centroidðAeðl� DmÞÞ þ Dm ðB:18Þ
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Substituting (B.18) into (B.16), it follows that (note that X 0 is the domain for A0e, and X is the domain for Ae,
where X 0 = X � Dm):
clðeA0Þ ¼ min
l2X 0

centroidðA0eðlÞÞ ¼ Dmþmin
l2X 0

centroidðAeðl� DmÞÞ ¼ Dmþmin
t2X

centroidðAeðtÞÞ

¼ Dmþ clðeAÞ ðB:19Þ
which is (36).

B.3. Proof of Theorem 3

(a) Amplitude scaling FOUðeAÞ by k means that FOUðeAÞ ! kFOUðeAÞ, where 0 < k < 1, [in which case
UMFðeAÞ ! kUMF ðeAÞ and LMFðeAÞ ! kLMFðeAÞ] so that:
PN

i¼1xihiPN
i¼1hi

!
PN

i¼1xikhiPN
i¼1khi

¼
PN

i¼1xihiPN
i¼1hi

ðB:20Þ
Because scale factor k cancels from the numerator and denominator, (17) and (18) are unchanged when
FOUðeAÞ is scaled by k, and we say that the centroid is FOU scale-invariant.

(b) Shifting FOUðeAÞ vertically by a constant amount, say v, we see that:
PN
i¼1xihiPN

i¼1hi

!
PN

i¼1xiðhi þ vÞPN
i¼1ðhi þ vÞ

6¼
PN

i¼1xihiPN
i¼1hi

ðB:21Þ
hence, (17) and (18) change when FOUðeAÞ is shifted vertically by a constant amount. This means that
the centroid is not vertically shift-invariant.

(c) Note that in our notation hi is short for hi(xi). Let eA0 denote the scaled version of eA, for which the MF of
every embedded T1 FS is lA0e

ðxÞ ¼ lAe
ðx=cÞ. Then
CentroidðA0eÞ ¼
PN

i¼1xihiðxi=cÞPN
i¼1hiðxi=cÞ

¼ c

PN
i¼1

xi
c hiðxi=cÞPN

i¼1hiðxi=cÞ
¼ c

PN
i¼1yihiðyiÞPN

i¼1hiðyiÞ
¼ cCentroidðAeÞ ðB:22Þ
So all of the centroids of all embedded T1 FSs are scaled by c; hence, by virtue of (17) and (18), and c > 0,
½cl; cr� ! c½cl; cr� ðB:23Þ
which means that centroid [cl,cr] is scaled by c.

B.4. Proof of Theorem 4

That cl P xL follows from:
PN
i¼1xihiPN

i¼1hi

P x1

PN
i¼1hiPN
i¼1hi

¼ x1 � xL ðB:24Þ
which is (39). That cr 6 xR follows from:
PN
i¼1xihiPN

i¼1hi

6 xN

PN
i¼1hiPN
i¼1hi

¼ xN � xR ðB:25Þ
which is (40).

B.5. Proof of Theorem 5

To show cl = xL consider the embedded T1 FS (see Fig. 3) {(xL ,0), (x2, e), (x3,0), . . . , (xR, 0)}. When e! 0
the sampling approaches zero, and x2! xL. It follows that:
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Fig. 3. Constructions for the two embedded T1 FSs that are used in the proof of Theorem 5.
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PN
i¼1xihiPN

i¼1hi

¼ x2e
e
¼ x2 ! xL as e! 0 ðB:26Þ
From Theorem 4, we know that cl P xL; hence, this fact together with (B.26) let us conclude that cl = xL.
To show cr = xR, consider the embedded T1 FS (see Fig. 3) {(xL, 0), (x2,0), . . . , (xN�1, e), (xR, 0)}. When

e! 0 the sampling approaches zero, and xN�1! xR. It follows that:
PN
i¼1xihiPN

i¼1hi

¼ xN�1e
e
¼ xN�1 ! xR as e! 0 ðB:27Þ
From Theorem 4, we know that cr 6 xR; hence, this fact together with (B.27) let us conclude thatcr = xR.

B.6. Proof of Theorem 6

A complete proof of this theorem appears in [15]. It relies very heavily on the Mendel–John Representation
Theorem, and the facts that:

1. For an origin-shifted symmetrical FOU, all of its embedded T2 FSs are either symmetrical about y = 0 or
are unsymmetrical about y = 0.

2. For an origin-shifted symmetrical FOU, all of the symmetrical embedded T2 FSs have a centroid equal to12

1/0.
3. For an origin-shifted symmetrical FOU, all of the unsymmetrical embedded T2 FSs occur as pairs of mirror

images about the vertical axis.
4. Let g(y) denote an origin-shifted unsymmetrical embedded T2 FS with centroid 1=�g, and h(y) denote the

mirror image of g(y) with centroid 1=�h. Then, 1=�h ¼ 1=� �g.

B.7. Proof of Theorem 7

Let eA0 denote eA shifted to the origin, so that in Theorem 2, Dm = �m. We first prove that clðeA0Þ 6 0 wheneA0 is symmetrical about the origin. Having done that, then from Theorem 2, it will be true that
clðeAÞ ¼ clðeA0Þ þ m 6 m.

Consider a special embedded T1 FS A0e, defined as
lA0e
ðxÞ ¼

�lðxÞ if x 6 0

lðxÞ if x > 0

(
ðB:28Þ
is the T2 representation of 0, i.e. it is 0 for sure, so that the secondary grade of 0 is 1.
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The centroid of A0e is
centroidðA0eÞ ¼
R 0

�1 x�lðxÞdxþ
R1

0 xlðxÞdxR 0

�1 �lðxÞdxþ
R1

0
lðxÞdx

¼
R1

0 �x�lð�xÞdxþ
R1

0 xlðxÞdxR1
0

�lð�xÞdxþ
R1

0 lðxÞdx
ðB:29Þ
Making use of the symmetry of eA0 about the origin [(9) and (10) in which m = 0], we find that:
centroidðA0eÞ ¼
�
R1

0 x½�lðxÞ � lðxÞ�dxR1
0

�lðxÞdxþ
R1

0 lðxÞdx
6 0 ðB:30Þ
because �lðxÞP lðxÞ for "x 2 X. Since clðeA0Þ must be at least as small as centroidðA0eÞ, we have therefore
shown that clðeA0Þ 6 0.

The proof that crðeA0ÞP m is so similar to the proof that clðeAÞ 6 m, we leave it to the reader.
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