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Type-2 Fuzzistics for Symmetric Interval Type-2
Fuzzy Sets: Part 1, Forward Problems

Jerry M. Mendel, Life Fellow, IEEE, and Hongwei Wu, Member, IEEE

Abstract—Interval type-2 fuzzy sets (T2 FS) play a central role
in fuzzy sets as models for words and in engineering applications
of T2 FSs. These fuzzy sets are characterized by their footprints
of uncertainty (FOU), which in turn are characterized by their
boundaries—upper and lower membership functions (MF). In this
two-part paper, we focus on symmetric interval T2 FSs for which
the centroid (which is an interval type-1 FS) provides a measure
of its uncertainty. Intuitively, we anticipate that geometric prop-
erties about the FOU, such as its area and the center of gravities
(centroids) of its upper and lower MFs, will be associated with the
amount of uncertainty in such a T2 FS. The main purpose of this
paper (Part 1) is to demonstrate that our intuition is correct and
to quantify the centroid of a symmetric interval T2 FS, and conse-
quently its uncertainty, with respect to such geometric properties.
It is then possible, for the first time, to formulate and solve forward
problems, i.e., to go from parametric interval T2 FS models to data
with associated uncertainty bounds. We provide some solutions to
such problems. These solutions are used in Part 2 to solve some
inverse problems, i.e., to go from uncertain data to parametric in-
terval T2 FS models (T2 fuzzistics).

Index Terms—Centroid, fuzzistics, interval type-2 fuzzy sets,
type-2 fuzzy sets.

I. INTRODUCTION

A. Prolog

PROBABILITY is replete with parametric models that let us
characterize random uncertainty. These models, e.g., prob-

ability density functions (pdf) such as the Normal, Bernoulli,
Poisson, Exponential, Gamma, Rayleigh, etc., can be used for
both forward and inverse problems. In a forward problem, a pdf
model is chosen and all of its parameters are numerically spec-
ified; then, the model is used to generate random data. In an
inverse problem, data are measured, a pdf model is chosen, and
its parameters are then determined so that the model fits the data
in some sense, e.g., using the principle of maximum-likelihood
the model’s parameters are chosen so that the model is most
likely to have generated the measured data. For both the for-
ward and the inverse problems, statistics can be used. In the for-
ward problem, statistics can be used, e.g., to establish the sample
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mean and standard deviation of the data that have been gener-
ated from the model. In the inverse problem, statistics can be
used, e.g., to establish properties of the parameter estimates such
as their means and standard deviations. Clearly, for random un-
certainty, probability and statistics go hand-in-hand whenever
random data are present.

Fuzzy sets are replete with models that let us characterize
linguistic uncertainty. These are membership function (MF)
models, e.g., type-1 (triangle, trapezoidal, Gaussian, etc.) and
type-2 (interval, noninterval), and these models can also be used
for forward and inverse problems. In a forward problem, MF
models are chosen (to characterize the words that are associated
with a term, e.g., low pressure, medium pressure, and high
pressure) and all of their parameters are numerically specified;
then, the MF models can be used to generate words or MF
values that are associated with numerical values of a primary
variable. In an inverse problem, data are measured (e.g., MF
values or intervals that are associated with MF levels1), a MF
model is chosen and all of its parameters are then determined so
that the model fits the data in some sense, e.g., using the prin-
ciple of least-squares the MF model’s parameters are chosen
so that the MF model fits the data in a least-squares sense.
Although statistics does not seem to play a role in the forward
problem, because the data obtained are not random, statistics
does play an important role in the inverse problem, because MF
data collected from a group of subjects or even from a single
subject at different times are random. In [6], we have coined
the word fuzzistics to represent the interplay between fuzzy
sets and statistics. Earlier works in the fuzzy literatures that
focus on collecting type-1 MF data (e.g., [1]) represent type-1
fuzzistics. This two-part paper is about type-2 fuzzistics.

Recently, Mendel [6] argued that, because words are uncer-
tain, type-2 fuzzy sets (FSs) should be used to model them. He
then proposed an FS model for words that is based on collecting
data from people—person membership functions (MFs)—that
reflect intra- and interlevels of uncertainties about a word, in
which a word FS is the union of all such person FSs. The in-
trauncertainty about a word is modeled using interval type-2
(T2) person FSs, and the interuncertainty about a word is mod-
eled using an equally weighted union of each person’s interval
T2 FS. Even if it may not be practical to collect such person MF
data from subjects today, it is practical to collect other kinds of
data about words (this is explained later in Part 2) for which the
uncertainties about the data can also be modeled using an in-
terval T2 FS.

1Many methods have been developed for doing this for type-1 fuzzy sets (e.g.,
[1] and the many references in it), such as polling, direct rating, reverse rating
and interval estimation.
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Because an interval T2 FS plays such an important role in the
models for words as well as in many engineering applications
of T2 FSs (e.g., [5]), we need to understand as much as possible
about such sets, how they model uncertainties, and how their
parameters can be expressed in terms of data that are collected
from subjects. We do the former in Part 1 and the latter in Part
2.

B. Basics of an Interval T2 FS

Recall that an interval T2 FS is characterized as [5], [9]

(1)

where , the primary variable, has domain , the secondary
variable, has domain at each is called the pri-
mary membership of ; and the secondary grades of all equal
1. Uncertainty about is conveyed by the union of all of the pri-
mary memberships, which is called the footprint of uncertainty
(FOU) of , i.e.,

(2)

The upper membership function (UMF) and lower membership
function (LMF) of are two type-1 MFs that bound the FOU
(e.g., see Fig. 1). The UMF is associated with the upper bound
of and is denoted , and the LMF is
associated with the lower bound of and is denoted

, i.e.,

(3)

(4)

For continuous universes of discourse and , an embedded
interval T2 FS is

(5)

Set is embedded in such that at each it only has one
secondary variable, and there are an uncountable number of
embedded interval T2 FSs. Examples of are2 and

. Associated with each is an embedded T1
FS , where

(6)

Set , which acts as the domain for , is the union of all
the primary memberships of the set in (5), and there are

2In this notation, it is understood that the secondary grade equals 1 at all
elements in FOU( ~A).

Fig. 1. Symmetrical triangular FOU.

an uncountable number of . Examples of are and
.

In this paper, we focus on an important sub-class of an interval
T2 FS, namely the symmetric interval T2 FS, for which the FOU
is symmetrical about , i.e.,

(7)

(8)

For notational simplicity, in the rest of this paper we let
and .

C. Goals and Coverage

Recall that probability lets us characterize random uncer-
tainty using measures such as the mean (expected value),
standard deviation, entropy, etc., and that statistics lets us
estimate these measures from data using the sample mean,
sample standard deviation, sample entropy, etc. What are the
measures that characterize linguistic uncertainty? One such
measure is the centroid of an interval T2 FS [4], which is an
interval type-1 (T1) FS (why this is a legitimate measure of
linguistic uncertainty is explained in Section II).

Intuitively, we anticipate that geometric properties about the
FOU, such as its area and the center of gravities (centroids) of
its upper and lower MFs, will be associated with the amount of
uncertainty in an interval T2 FS, e.g., the larger (smaller) the
area of the FOU the larger (smaller) the uncertainty of . The
main purposes of this two-part paper are to demonstrate that our
intuition is correct, to quantify the centroid of an interval T2 FS
with respect to the geometric properties of its FOU in Part 1 (this
is associated with forward problems), and to then formulate and
solve inverse problems, i.e., to go from uncertain data (that can
be elicited from subjects) to parametric interval T2 FS models
in Part 2.

A FOU can be symmetric or nonsymmetric, and, as we men-
tioned above, in this paper we focus exclusively on the case of
a symmetric FOU. The case of a nonsymmetric FOU is treated
in a separate paper because it requires analyses more general
than those used herein for the symmetric FOU. Knowledge that
a FOU is symmetric acts, in effect, like a constraint on the more
general nonsymmetric FOU, and we have found that such a con-
straint should be used at the front-end of the analyses in order
to obtain the most useful results for such a FOU.

In Section II, we justify the use of the centroid of an in-
terval T2 FS as a legitimate measure of the uncertainty of ,
after which we provide a mathematical interpretation for the
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Karnik-Mendel method for computing the centroid of a gen-
eral (symmetric or non-symmetric) interval T2 FS and review
some new results for such a centroid. In Section III we establish
upper and lower bounds for the two end-points of the centroid
of a symmetric interval T2 FS and express them in terms of geo-
metric properties of the FOU for such a FS. The difference be-
tween the upper and lower bounds for each of the end-points of
the centroid is called an uncertainty interval. In Section IV, we
provide formulas that connect the parameters of specific FOUs
to their uncertainty intervals. These examples represent forward
problems and their solutions. Conclusions and directions for fu-
ture work are given in Section V.

II. CENTROID OF AN INTERVAL TYPE-2 FUZZY SET

A. Introduction

Recall that the centroid of the interval T2 FS is an
interval set that is completely specified by its left and
right end-points3, and , respectively, i.e.,
[4], [5]

(9)

In this equation, which represents the union of the centroids of
all of the embedded type-1 fuzzy sets of , primary variable

has been discretized for computational purposes, such that
. Unfortunately, no closed-form formulas

exist to compute and ; however, Karnik and Mendel [4] have
developed iterative procedures for computing these end-points
exactly, and recently Mendel [8] proved that given a FOU for a
symmetric interval T2 FS, then the centroid of such a T2 FS is
also symmetrical about . For such a T2 FS it is therefore
only necessary to compute either or , resulting in a 50%
savings in computation.

Before we summarize the Karnik–Mendel (KM) procedures
in a form that will be very useful to us, we must first justify the
use of the length as a legitimate measure of the uncer-
tainty of . Wu and Mendel [12] noted that according to infor-
mation theory uncertainty of a random variable is measured by
its entropy [2]. Recall that a one-dimensional random variable
that is uniformly distributed over a region has entropy equal to
the logarithm of the length of the region. Comparing the MF,

, of an interval FS , where

otherwise
(10)

with probability density function, , of a random variable
, which is uniformly distributed over , where

otherwise
(11)

3We use the notation c ( ~A) � c and c ( ~A) � c interchangeably.

we find that they are almost the same except for their ampli-
tudes. Therefore, it is reasonable to consider the extent of the
uncertainty of the FS to be the same as (or proportional to)
that of the random variable . Since the centroid of a T2 FS is
an interval set, its length can therefore be used to measure the
extent of the T2 FS’s uncertainty4.

B. KM Procedures: Interpretation

The KM iterative procedures for computing and (the
details of which are not needed in this paper) can be interpreted
for the purposes of this paper as follows [12]. Let denote
an embedded T1 FS for which

if
if (12)

where is a switch point, i.e., the value of at which
switches from to . Then

centroid (13)

where5

centroid (14)

Similarly, let denote an embedded T1 FS for which

if
if

(15)

where is another switch point, i.e., the value of at which
switches from to . Then

centroid (16)

where

centroid (17)

The solutions for and in (13) and (16) are found by using the
KM iterative procedures. That and , which lead to

and , only involve the lower and upper MFs of , and there
is only one switch between them, are theoretical results that are
proven by Karnik and Mendel [4].

C. Centroid Facts for General Interval T2 FSs

Because Karnik and Mendel developed their iterative proce-
dures by first discretizing and , they were apparently un-

4The entropy of a T2 FS should also provide a measure of the uncertainty
of ~A; however, to-date, such entropy has not yet appeared in the FS literature.
Because many entropies of a T1 FS have been published (e.g., [3]), each giving
a different numerical value of entropy, we expect a similar situation to occur
for entropy of a T2 FS. On the other hand, the centroid of ~A provides a unique
measure, since there is only one such centroid.

5Although the KM procedures are derived and usually stated in discrete form,
for the purposes of this paper it is more convenient to summarize them in con-
tinuous form.
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aware of the following important results that serve as the bases
for the rest of this paper.

Theorem 1: Let be an interval T2 FS defined on with
lower MF and upper MF . The centroid of is an
interval T1 FS that is characterized by its left and right end-
points and , where

(18)

(19)

Proof: See Appendix C.
The results in (18) and (19) are very interesting, because they

show that for , when the value of is found that minimizes
centroid it will be ; and, for , when the value

of is found that maximizes centroid it will be .
Of course, if is discretized (for computational purposes) then

but does not exactly equal , and
but does not exactly equal , which probably explains why
(18) and (19) were not observed by Karnik and Mendel.

Theorem 2: Let be an interval T2 FS defined on , and
be shifted by6 along , i.e.,

(20)

(21)

Then, the centroid of , is the same as the cen-
troid of , shifted by , i.e.,

(22)

(23)

Proof: See [11].
Theorem 2 demonstrates that the span of the centroid set of

an interval T2 FS is shift-invariant. This means that regardless
of where along the FOU of occurs, as long as the FOU for

is unchanged, then

span centroid

span centroid

(24)

Theorem 2 also justifies our shifting the FOU of to a possibly
more convenient point along for the actual computation of the
centroid. When we do that, we are computing and ,
after which we can compute the centroid of , using (22) and
(23), as and .

D. Centroid Fact for a Symmetrical Interval T2 FS

Theorems 1 and 2 are valid for all interval T2 FSs, symmet-
rical or non-symmetrical. For the centroid of a symmetrical in-
terval T2 FS, we also have the following.

6�m may be positive or negative.

Theorem 3: If the interval T2 FS defined on is symmet-
rical about , then

(25)

(26)

More specifically

(27)

Proof: See [11] for the proofs of (25) and (26). Equation
(27) follows from Mendel [7], [8] in which, as mentioned above,
it is proved that given a FOU for a symmetric interval T2 FS,
then the centroid of such a T2 FS is also symmetrical about

; hence, from which (27) follows.

III. BOUNDS ON AND FOR A SYMMETRIC FOU

Because closed-form formulas do not exist for and we
have not been able to study how these end-points explicitly de-
pend upon geometric properties of the FOU, namely on the area
of the FOU and the centroids of the upper and lower MFs of the
FOU. The approach taken in the rest of this paper is to obtain
bounds for both and , and to then examine the explicit de-
pendencies of these bounds on the geometric properties of the
FOU.

The geometric properties that we shall make use of, for a FOU
that is symmetric about , are

• : Area under the upper MF;
• : Area under the lower MF;
• : Area of the FOU, where

(28)

• : Centroid of half of , where

(29)

is computed based upon (16) and (17), and this involves one
switch between and . When the switch occurs at the
optimal value of then, of course, is at its maximum
value. When the switch occurs at any other value of then
centroid ; hence, any such switch point can pro-
vide a valid lower bound for .

Definition: The centroid of an7 arbitrary embedded T1 FS
that switches once between and provides us with a
valid lower bound8 for . A valid bound is not necessarily the
best bound, but it may be one that can be expressed in terms of
the geometric properties of the FOU.

7Although “arbitrary,” it should be a carefully chosen embedded T1 FS, or
else the bounds will be too loose to be of much use.

8Or a valid upper bound for c because centroid(A (l)) � c .



MENDEL AND WU: TYPE-2 FUZZISTICS FOR SYMMETRIC INTERVAL TYPE-2 FUZZY SETS: PART 1, FORWARD PROBLEMS 785

Fig. 2. End-points (X) of the centroid [c ; c ] of ~A for a FOU that is symmet-
rical about m and the lower and upper bounds (j) for the two end-points.

Imposing symmetry constraints on we obtain the
following valid lower and upper bounds for both and :

Theorem 4: Let be the primary domain of . Then
the end-points, and for the centroid of a symmetric interval
T2 FS, , are bounded from below and above by (Fig. 2)9

(30)

(31)

where

(32)

(33)

(34)

(35)

Proof: See Appendix A.
Comment 1: Theorem 4 demonstrates that the bounds

and their associated bounding intervals (uncertainty inter-
vals)— —for the end-points of the centroid of

are indeed expressible in terms of geometric properties of
the FOU. It has made use of the a priori geometric knowledge
about the symmetry of the FOU.

Comment 2: The proof of Theorem 4 demonstrates that a
valid way to compute and is to do it first for the
symmetric FOU shifted to the origin, i.e., for FOU , in
which case we set in (32) and (33) to obtain
and . Then, based on Theorem 2 [(22) and (23)], we add

to those results to obtain and for the original
unshifted FOU.

IV. SOLUTIONS TO SOME FORWARD PROBLEMS

In this section, we provide four examples that illustrate
Theorem 4. Each example illustrates the solution to a forward
problem, namely, given we compute the centroid
uncertainty bounds given by (32) and (33) with .

Example 1: Symmetric FOU—Lower MF is Triangular and
Upper MF is Trapezoidal or Triangular: In this case (see the

9In general, �1 > x > x > 1, e.g., if the primary MF is Gaussian,
then its associated FOU extends to�1. In that case,max(x ; c ( ~A)) = c ( ~A)
and min(�c ( ~A); x ) = �c ( ~A). For most other FOUs, x and x are finite
numbers, and we need to use the more complete bounds in (30) and (31).

figure in the first row of Table I)

if
if
otherwise

(36)

if
if
if
otherwise

(37)

where and . The quantities
that are used in and are computed as

(38)

(39)

(40)

where

(41)

and

(42)

Consequently, and are given by the
entries in the first row of Table I.

Table I also shows six special cases of these most general re-
sults. We include them because their FOUs are geometrically
quite different looking than the FOU of the general case.
and are easily obtained for these special cases by making
the appropriate substitutions into the results given for the gen-
eral case.

Example 2: Symmetric FOU—Lower MF and Upper MF
are Trapezoidal: In this case (see the figure in the first row of
Table II)

if
if
if
otherwise

(43)

if
if
if
otherwise

(44)
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TABLE I
THE SYMMETRICAL INTERVAL TYPE-2 FUZZY SET ( ~A ) WHOSE LMF IS TRIANGULAR AND UMF IS TRAPEZOIDAL (OR TRIANGULAR)

where and . The quantities that are used
in and are computed as

(45)

(46)

and is given by (40) in which

(47)

and

(48)

Consequently, and are given by the
entries in the first row of Table II.

Table II also shows two special cases of the general results.
We again include these special cases because their FOUs are ge-
ometrically quite different looking than the FOU of the general
case.
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TABLE II
THE SYMMETRICAL INTERVAL TYPE-2 FUZZY SET ( ~A ) WHOSE LMF AND

UMF ARE TRAPEZOIDAL

Example 3: Symmetric FOU—Gaussian With Uncertain
Mean and Standard Deviation: In this case (see the figure in
the first row of Table III)

if

if
(49)

if

if

if

(50)

The quantities that are used in and are computed
as

(51)

where

(52)

(53)

and , which is given by (40), is computed in Ap-
pendix B.

Quantities and are given by the
entries in the first part of Table III.

Table III also shows two special cases of the general results.
We again include these special cases because their FOUs are ge-
ometrically quite different looking than the FOU of the general
case.

Example 4: Symmetric FOU—Gaussian UMF and Scaled
Gaussian LMF: In this case (see the figure in the last row of
Table III)

(54)

(55)

Because the calculations of the quantities that are used in
and are very similar to the ones just given in Example 3,
we leave them to the reader. Quantities and

are given by the entries in the last row of Table III. Com-
pared to the results in Example 3, the results for this example
are quite simple.

Using the results in Tables I–III it is possible to choose a FOU,
specify numerical values for its parameters, and then compute

and . By varying the parameters of each FOU, it is then
possible to observe how varies, and it is also possible
to study when, or if, and [see (30)
and (31)]. Because such studies are not central to this paper and
its companion paper (Part 2), we leave them to the interested
reader.

V. CONCLUSION

We have demonstrated that the centroid of an interval T2 FS
provides a measure of the uncertainty in such a FS. The centroid
is a type-1 FS that is completely described by its two end-points.
Although it is not possible to obtain closed-form formulas for
these end-points, we have established closed-form formulas for
their upper and lower bounds. Most importantly, these bounds
have been expressed in terms of geometric properties of the
FOU, namely its area, the areas under the UMF and the LMF,
and the centers of gravity of half of the UMF and half of the
LMF (the latter two describe the center of gravity of half of the
FOU). As a result, for the first time it is possible to quantify the
uncertainty of an interval T2 FS with respect to these geometric
properties of its FOU.

Using the results in this paper, it is possible to examine many
“forward” problems, i.e., given a class of footprints of uncer-
tainty (e.g., triangular, trapezoidal, Gaussian) we have estab-
lished the bounds on the centroid as a function of the parameters
that define the FOU, and have summarized many such results in
Tables I–III.

In Part 2, we examine “inverse” problems, i.e., given data col-
lected from people about a phrase, and the inherent uncertain-
ties associated with that data (which can be described statisti-
cally), we establish parametric FOUs such that their uncertainty
bounds are directly connected to statistical uncertainty bounds.
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TABLE III
THE SYMMETRICAL INTERVAL TYPE-2 FUZZY SET ( ~A ) WHOSE LMF AND UMF ARE BASED ON GAUSSIAN FUNCTIONS

How to generalize the results in this paper to a nonsymmet-
rical FOU is presently under study and will be reported on
shortly. Some results for this case have already appeared in
[10] (they are based on minimax techniques that are described
in [12]). This case is very important because interval data that
have already been collected for words demonstrate that for most
words uncertainties about the two end-points are not equal.

Another interesting avenue of research is to establish tighter
bounds on the centroid than we have done in this paper. One
way to do this for the upper bound is described in Section A-D,
but its details remain to be explored.

APPENDIX A
PROOF OF THEOREM 4

A. Derivation of

Our derivation of in (32) proceeds in three steps.

Step 1) Let be shifted by so that it is symmetrical
about the origin. For we show that , given
by (32) with , is a valid lower bound for

and that .
Step 2) We obtain an expression for .
Step 3) We show that is a valid lower bound for

when is symmetrical about an arbitrary , and
that

Step 1) We focus first on the interval T2 FS that is sym-
metrical about the origin (i.e., ). Consider a
special embedded T1 FS [from the class of em-
bedded T1 FSs whose MFs are described by (15)],
defined as

if
if

(A-1)

Because is an embedded T1 FS of ,
centroid is a valid lower bound for ,
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where the concept of a “valid lower bound” has
been defined in Section III. It follows that

centroid

(A-2)

Note that in going from line 2 to line 3 of this deriva-
tion we have made use of the symmetry of
about the origin, namely that . We
can re-express the last line of (A-2) as

centroid

centroid

(A-3)

where is computed using (29) in which
. Note that centroid is exactly the same

as given in (32) with . Due to the
definition of a valid bound, we conclude that
is a valid lower bound for .
That follows from the last line of (A-2)
because for .

Step 2) Recall that is shifted by ; therefore, the
lower and upper MFs of and are related ac-
cording to (20) and (21) (in which ) as:

(A-4)

(A-5)

Here we show that .
The areas and , which appear in
(A-3) as well as in (32) (for arbitrary values of )
are the same for both and . We now prove that

, as follows:

(A-6)

Consequently, beginning with (A-3) and using
(A-6), we find

(A-7)

In order to complete this part of the proof, we pause
to state and prove the following:
Fact: If is shifted by along and we have
computed and , then

(A-8)

(A-9)

Similar results hold for and .
Proof: Using (23) with , it is clear that

(A-10)

Consequently, upper and lower bounds for
can be expressed in terms of comparable quantities
for , as

(A-11)

(A-12)

Note that these bounds are not necessarily
greatest-lower or least-upper bounds; they are just
any bounds. That said, we know, e.g., that
is a lower bound on ; hence, by (A-12),

is the comparable lower bound on
. We call this lower bound on .

A similar argument leads us to .
Substituting (A-12) into (A-7), we find that

(A-13)

which is (32).
Step 3) In Step 1), we have proven that is a

valid lower bound for when is symmet-
rical about the origin. From (A-8) and ,
we see that

(A-14)

We conclude, therefore, that is a valid
lower bound for when is symmetrical about
an arbitrary .

B. Derivation of

From (9), it is clear that , which is
why in (31) .

Our derivation of in (33) also proceeds in three steps.
Step 1) As before, let be shifted by so that it is

symmetrical about the origin. For we show that
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given in (33) with is a valid upper
bound for .

Step 2) We obtain an expression for .
Step 3) We show that is a valid upper bound for

when is symmetrical about an arbitrary .

Step 1) When is symmetrical about the origin, because
(Theorem 3, with ) we can rewrite

in (19) as shown in (A-15) at the bottom of
the page. Because for , it
follows that

(A-16)

(A-17)

Using (A-16) and (A-17) in (A-15), the latter be-
comes (for discussions about a tighter upper bound,
see Section D)

(A-18)

which can be re-expressed, using the formula for
given in (29) when , as

(A-19)

Observe that the right-hand side of (A-19) is exactly
the same as in (33) when .

Step 2) Because the details for this step are so similar to those
given in Step 2) of Subsection 1-A, we leave them
for the reader. Of course, the starting point now is
(33), and we also use (A-9).

Step 3) In Step 1), we have proven that is a valid upper
bound for when is symmetrical about the

origin. In Theorem 2 and Step 2, we have proven
that when is shifted by both and
are also shifted by . We conclude, therefore, that

is a valid upper bound for when is
symmetrical about an arbitrary .

C. Derivations of and

From (9), it is also true that , which
is why in (30) .

Because is symmetrical about , it follows [see Fig. 2 and
(27)] that

(A-20)

(A-21)

from which it is easy to obtain the results in (34) and (35) for
and .

D. A Tighter Upper Bound

It is theoretically possible to obtain an even tighter upper
bound on by using the already computed value of ,
as follows. Using the fact that , re-express the
last line of (A-15) as shown in (A-22) at the bottom of the next
page. It then follows that

(A-23)

which can be expressed as

(A-24)

The first term in (A-24) is the same as our upper bound in
(A-19), whereas the second term, which must always be posi-
tive, can be interpreted as a correction term to (A-19). Note that

(A-15)
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to compute the tighter upper bound for from (A-24), we
must: (1) calculate ; (2) calculate the right-hand side of
(A-24), which now becomes our new ; and (3) add to
this value, giving us the tighter .

Inequality (A-24) represents a novel use of the already-com-
puted lower bound ; however, computing the correction
term is in most cases much more demanding than computing
(A-19); hence, in this paper, we use (A-19) and leave further ex-
plorations of the use of (A-24) as an interesting open research
problem.

APPENDIX B
COMPUTATION OF FOR EXAMPLE 3

We compute the two integrals that are in (40) for Example 3

(B-1)

(B-2))

APPENDIX C
PROOF OF THEOREM 1

Because the proof of Theorem 1 only appears in [11], which
is not yet published, we provide a condensed version of it here.
The proof of10 (18), due to Mendel and Wu, proceeds in two
steps.
Step 1) Let be given by (18) in which in the limits of

integration are replaced by . A necessary condition
for finding is that the derivative of
with respect to must be zero when evaluated at ,
i.e.,

(C-1)

This equation expands to

(C-2)

from which it follows that

(C-3)

Step 2) We now show that can only be as in (18). Let
for which

(C-4)

10We do not need the proof of (19) because of the assumed symmetry of
FOU( ~A), i.e., knowing c we can compute c using (27).

(A-22)
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and for which

(C-5)

Observe that (C-5) can be solved for , as

(C-6)

Since both and satisfy (C-3), either or both of
them may be . One must now show that

for (C-7)

Because is the minimum of , it therefore cannot be
, but must be .

If it happens that , then it may happen that
, in which case (C-3) is simultaneously satisfied

by both of its terms equaling zero. By these arguments we see
that (C-3) can never be satisfied by alone. Note
that the condition means that at the upper
and lower MFs touch each other, something that is perfectly
permissible in the .

The proof of (C-7) must be done for both for and
. Both parts use some relatively simple inequality anal-

ysis applied to . Because of space limitations, these details
are not included here but can be found in [11].
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