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Type-2 Fuzzistics for Symmetric Interval Type-2
Fuzzy Sets: Part 2, Inverse Problems

Jerry M. Mendel, Life Fellow, IEEE, and Hongwei Wu, Member, IEEE

Abstract—In Part 1 of this two-part paper, we bounded the cen-
troid of a symmetric interval type-2 fuzzy set (T2 FS), and conse-
quently its uncertainty, using geometric properties of its footprint
of uncertainty (FOU). We then used these bounds to solve forward
problems, i.e., to go from parametric interval T2 FS models to data.
The main purpose of the present paper is to formulate and solve
inverse problems, i.e., to go from uncertain data to parametric in-
terval T2 FS models, which we call type-2 fuzzistics. Given interval
data collected from people about a phrase, and the inherent uncer-
tainties associated with that data, which can be described statisti-
cally using the first- and second-order statistics about the end-point
data, we establish parametric FOUs such that their uncertainty
bounds are directly connected to statistical uncertainty bounds.
These results should find applicability in computing with words.

Index Terms—Centroid, fuzzistics, interval type-2 fuzzy sets, sta-
tistics, type-2 fuzzy sets.

1. INTRODUCTION

ECAUSE this paper is a continuation of [9], we assume
B that the readers are already familiar with [9]. In this paper,
we focus on inverse problems, i.e., given data collected (elicited)
from a group of subjects (as explained later), the parameters
6 will be chosen—estimated—so that the uncertainty inherent
in the data can be modeled by an interval type-2 fuzzy set (T2
FS). Here, we base the parameter estimation on the uncertainty
bounds for the centroid of the interval T2 FS, and we focus on
symmetrical interval T2 FSs whose lower membership function
(LMF) and upper membership function (UMF) are character-
ized just by two parameters, because we will only use two data
statistics to establish each FS. Statistics plays an important role
in the inverse problem, because MF data collected from a group
of subjects or even from a single subject at different times are
random. In an earlier paper [7], we have coined the word fuzzis-
tics to represent the interplay between fuzzy sets and statistics.
Earlier works in the fuzzy literatures that focus on collecting
type-1 MF data (e.g., [1]) represent type-1 fuzzistics. This paper
is about type-2 fuzzistics.

In Section II, we explain how to prepare data that are col-
lected from a group of subjects so that we can use the results
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given in [9]. In Section III, we formulate an inverse problem
that uses two data statistics, and provide two reasonable design
equations that let us connect the data statistics to the lower and
upper bounds of the centroid of a two-parameter interval T2 FS.
In Section IV, we provide four examples that give solutions to
our inverse problem. In Section V, we draw conclusions and
make some suggestions for future research.

II. PREPARING THE DATA

Exactly what kind of data can be elicited from a group of
subjects about a word can in theory range from the entire FOU
to point values of a MF (i.e., a person MF) to intervals. In this
paper, we focus only on intervals because they do not require
a subject to understand the concept of a MF and they can be
elicited using only one question. The former prevents the elic-
itation method from introducing methodological uncertainties!
into the data collection process, and the latter keeps an elicita-
tion survey simple, which is important because most subjects do
not like to answer a lot of questions.

Suppose, therefore, that we have collected interval end-point
data from a group of n subjects for a phrase? (e.g., some, a mod-
erate amount). In our previous works (e.g., summarized in [5,
Ch. 2]), groups of students were asked the question: “Below are
anumber of labels that describe an interval or a “range” that falls
somewhere between O to 10. For each label, please tell us where
this range would start and where it would end.” This was done
for separate collections of 16 and five labels using two different
groups of students. See [5, Table 2-2 and Fig. 2-1] for a sum-
mary of results for the 16 labels, and Table 2-3 for a summary
of results for the five labels. One of the obvious conclusions
drawn from those studies is that interval end-point data that are
collected from groups of subjects have uncertainties associated
with them. Our main goal in this paper is to explain one method
for transferring these uncertainties into the FOU of a symmetric
interval T2 FS, so that the resulting uncertainty about the T2 FS
is consistent (in some sense) with that of the data.

To that end, we begin by denoting the data collected
for the left-hand and the right-hand interval end-points
xXtxt ... X! and X7, X3,..., X", respectively. From
these data, we can compute their individual sample average
values and sample standard deviations, namely xfwg,xgvg, st
and s". In order to decide if such data support using a symmet-
rical interval T2 FS, we introduce the following.

Definition: If s' ~ s", then we say that the collected data are3
second-order symmetric. ]

IMost subjects will not know what an MF is.
2We use the terms “phrase,” “word,” and “label” interchangeably.
3A statistical test [10] can be used to establish/verify this.
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Naturally, since the interval end-point data are random, it
is quite possible that the higher (than second)-order moments
of Xt XL ..., X! and X7, X5, ..., X" will not be equal, in
which case the sample probability density functions for the two
sets of data will not be equal. We do not explore this possibility
and its ramifications in this paper.

Assumption: 1If the collected data are second-order sym-
metric, then we assume that a linguistic phrase can be modeled
by using a symmetrical interval T2 FS A. [ |

Based on results that are summarized in [5, Fig. 2-1], the
phrases a fair amount and a considerable amount would be
judged to be second-order symmetric and could therefore be
modeled using a symmetrical interval T2 FS A.

In the rest of this section, we assume that the data are second-
order symmetric. The case when this is not true is currently
under investigation and will be reported on in a future publi-
cation. Some preliminary results are in [8].

In order to use the results that are summarized in [9, Tables
[-1II], we need to shift the data so that they are symmetrical
about the origin (this is the A— A mapping). To do this, we
compute m as

1 r
m = 5 (xévg + xavg) - (1)

After m is computed we shift the two sets of data to the origin
by means of (i = 1,...,n)

X - xl-m=Xx} (2a)
X' = X —m=X,". (2b)
Note that as a result of these transformations
el =gl —m 3
avg = “avg
and
Tovg = Tpyg — M (€))]

but that s* and s are unaffected by the transformations, because
standard deviation is invariant to a linear transformation of vari-
ables. Substituting (1) into (3) and (4), we observe, as expected
for an origin-symmetric A’, that

Il ’
Layg = _‘Taifg' 4)
Our shifted data are now commensurate with the example
results that are summarized in [9, Tables I-III], all of which are
used later.
Because of symmetry, in the sequel, we simplify our notation

a bit by letting s' ~ s" = sand z,,, =

/
avg — €T av,

o
III. FROM DATA TO PARAMETERS OF A FOU

Let Az(a, ) denote the length of the rolerance interval for
which we can assert with 100(1 — )% confidence that it con-
tains at least the proportion 1 — « of the measurements. In this

4How to obtain Ax(c, ) is described in Example 4.
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paper, we have decided to relate z’,, and Az(a, ) to ¢, (A’)

" avg
and ¢,.(A’) by the following two reasonable design equations:

xlavg é [QT(AI) + ET(AI)]/E (6)
Az(a,) &2 e (A") — ¢ (A). (7)

From these two equations, it follows that

. 1

Q’I“(A/) = x;vg - EA:E(O[,’Y) (3
~ 1

ET(A/) = :U/avg + §A.T(a7 7) )]

Because we have proven in [9] that ¢,.(A’) > 0 for an interval
T2 FS that is symmetrical about 0, when we associate the sta-
tistics of survey data with ¢, (A’) and ¢,(A’) as in (8) and (9) it
would seem that we must be very careful to choose a and ~y so
that

(10)

Ty — %Am(a,v) > 0.

(8) and (9) provide values for ¢, (A’) and ,(A’) that are as-
sociated with a word interval, and let us connect data with the
parameters of a symmetric FOU. Note that these are not the only
equations that could have been developed to do this (they are
based on our two reasonable design equations), just as in sta-
tistical parameter estimation one could be led to different es-
timators depending upon the approach taken. How to establish
optimal design equations that let us connect data with the pa-
rameters of a symmetric FOU is an open research topic.

Because we are only using two data statistics, 7, and
Ax(a,7), we focus on a FOU that is characterized only by two
parameters (61, 62), for which it is true that

(11
12)

where f1(61,02) and fa(f1,02) denote explicit formulas for
¢,.(A") and ¢,.(A"), as given in [9, Tables I-IT]. Our objective is
to solve for #; and 6, as

01 = gile, (A), 2 (A)] = g [Whyg, Az(e, )]
0> = gale, (A), e (A)] = ghlag, Ax(e, )]

(13)
(14)

where g;(-) and gj(-) are generic symbols denoting the for-
mulas of f;(i = 1,2) that are in terms of {c,(A),.(A’)} and
{#yg> Az, 7)}, respectively.

Note that after §; and 6, have been determined for A’, they
must be transformed back into their respective parameters for
the unshifted FS A. This is easily done by using one or more of
the following rules.

1) If #; denote FOU parameters of interval T2 FS A’ that

occur either on or parallel to the shifted primary variable
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(2') axis, then #; + m are the corresponding FOU param-
eters of interval T2 FS A that occur either on or parallel to
the unshifted primary variable () axis

2) If #; denote FOU parameters of interval T2 FS A’ that
occur on the secondary-variable (u) axis, then §; also de-
note FOU parameters of interval T2 FS A. Such parameters
are shift-invariant.

3) If A; denote standard deviation FOU parameters of interval
T2 FS A’ , whose primary MF is Gaussian, then 6; also
denote standard deviation FOU parameters of interval T2
FS A, i.e., standard deviation parameters are also shift-
invariant.

Instead of presenting formal proofs for these simple rules, we
refer the reader to the figures in [9, Tables I-III] for illustrative
examples. All of the footprints of uncertainty in Tables I and II
are covered by rules 1) and 2), whereas all of the footprints of
uncertainty in Table III are covered by rules 1) and 3).

Equations (13) and (14) relate the FOU of a symmetrical in-
terval T2 FS to word-interval statistics and may be interpreted
as the solutions of an inverse problem of going from word-
interval data to a parametric FOU model. To the best knowl-
edge of the authors, this represents the first solution of an in-
verse problem for a T2 FS. It represents a combining of sta-
tistics {7}, Az(a,7)} and uncertainty bounds for T2 FSs,
{c,(A"),.(A")}. Equations (13) and (14) provide the first so-
lutions to a type-2 fuzzistics problem.

IV. EXAMPLES

In this section we provide four examples that illustrate the
calculations of #; and s for the two-parameter FOUs depicted
in [9, Tables I-III]. These FOUs are given in Tables I-III of
the present paper. Our last example deals with data and how
{Toyg> Az(r, )} are calculated from them.

Example 1: Symmetric FOU-Lower MF is Triangular and
Upper MF is Trapezoidal or Triangular: Examining Table I
of [9], we see that only its Special Cases 1 and 3-6 are for
an FOU that is specified by two parameters. The solutions for
their associated inverse problems are summarized in Table I. In
order to simplify the notation here we have let ¢, = ¢,.(A’) and
& = G (A).

To obtain the results given in Table I for Special Case 1, FOU
parameters b and ¢ were first expressed in terms of ¢, and ¢,
and then in terms of z, and Ax(«, ) as follows.

avg
* Using the formulas for ¢, and ¢ in Table I, we computed

cr/e. =1+ ¢/2b (15)
from which we found that
c:2b<c—’“—1>. (16)
Cr

* Substituting this value for ¢ into the Table I formula for ¢,
and solving for b, we determined

2_
3c; ¢y

b= (& —c,)(2e, — c,).

a7

* Substituting this value of b into (16), we obtained

6¢,C,
(2¢, —¢,.).

* Substituting (8) and (9) into (17) and (18), we obtained the
Table I results.

Note that Special Case 1 has a geometric constraint between
b and c associated with it (see the FOU figure for it in Table I),
namely ¢ < b. Using the formulas for b and c that are given in
Table I, and a little bit of algebra, it is easy to translate this con-
straint between the FOU parameters into a constraint between
the two data statistics, i.e.,

CcC =

(13)

19)

The FOU parameter values for Special Cases 3-6, given in
Table I, were obtained in a similar manner. Note that Special
Cases 3 — 6 require ¢ < b,a < b,h < 1,and a < b, re-
spectively. These geometric constraints lead to the constraints
between z;,,, and Az(«, ) that are listed in Table .

Examining the inverse solutions in Table I, we make the fol-

lowing interesting observations.

* Comparing the solutions for Special Cases 1 and 4, we
see that they are complementary in the sense that Spe-
cial Case 1 can only be used when =, > 5Az(a,7)/2,
whereas Special Case 4 can only be used when 27, <
5Az(a,7y)/2. Observe, also, that b (Special Case 1) = a
(Special Case 4) and ¢ (Special Case 1) = b (Special Case
4).

* Although Special Cases 5 and 6 are constrained by x’avg >
Az(a,7y)/2, this constraint will always be satisfied be-
cause « and v must be chosen so that (10) is satisfied. ™

Example 2: Symmetric FOU—Lower MF and Upper MF are

Trapezoidal: Examining [9, Table II], we see that only its Spe-
cial Case 2 is for a FOU that is specified by two parameters. The
solution for its associated inverse problem is summarized in our
Table II. To obtain these results, we first established formulas

for ¢, /¢, and 1/¢,. — 1/¢,, which led to the equations

4¢, —
b= M (20)
Cr
3c,.c,
b+ 2c = —=rC @1
(CT - gr)
and we then solved these for b and c, as
77” 477‘ -
— E))QTC ( ¢ _ 327’) (22)
(CT - Qr)(4c7” - Qr)
3c%¢,
c= S (23)

(ET - g'r)(45’f‘ - gr)

after which we substituted (8) and (9) into them. Note, from the
formulas for b and ¢ in Table II, that the geometric constraint
¢ < b that must be maintained by this FOU is always satisfied
because it is always true that ¢, > ¢, [compare (22) and (23)].
|
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TABLE I
SYMMETRICAL INTERVAL TYPE-2 FUuzzZy SETS CHARACTERIZED BY TWO PARAMETERS, EACH OF WHOSE LMF IS TRIANGULAR AND
UMF IS TRAPEZOIDAL (OR TRIANGULAR)

Special case 1 for which 2 =1anda =5

Auvmr b+c
32, + A0)(2x, - Ax)
Armr b - 4Ax(2x,,, + 3Ax)
Chrou (b+c)3 c= 3(2)(;“» + Ax)(2x(:‘»g - Ax)
2x),, +3Ax
G (¢ +bc)/6b (g + 300
x Valid when x/, > 5Ax/2
c b c, (¢® +be)/[3(2b + ¢)]
Special case 3 for which a = b and h = b/(b+c)
- Auvmr b+e
i Au B(b +0) o AxF 20K, )
: > > 2
¢ +2b” +2bc
c _— 3(2x], — Ax
HFOU 32b+0) - ( 11\; )
z (c+26°+2bc) | Valid when Ax/2<x), <2Ax
x 6b"
¢ b < 3
Special case 4 for which 2 =1 anda = ¢
Aumr: a+b N
Ao P L Ax')(me_L, - Ax)
Corou (@+b)3 4Ax(2x;,, + 3Ax)
— > 3(2x,, e —
C, (b* + ab)/6a b= 32xay + AX)2x0, — AX)
(2x,,, +3A%)
x c, B* + ab)/[3Q2a + b)] Valid when x/,, <5Ax/2
a b
Special case 5 for whichc =0 anda = b
AUMI" b
Apr bh o By~ AX
Curou b3 2)(;‘1, +3Ax
c b(1 - h)/6h p o S + AV, — AY)
4Ax
x c, b(1 = h)/[3(1 + h)] Valid when x/,, > Ax/2
b
Special case 6 for whichc¢ =0 and 7 = 1
AU.MI" b
Armr a 32x,, - Axy
crrou (a+b)3 A=
2 2 , ,
z (b* - &l6a = 3, — A0, +34%)
8Ax
x Valid when x[,, > Ax/2
a b ¢ (b-a)3
TABLE I

SYMMETRICAL INTERVAL TYPE-2 Fuzzy SET CHARACTERIZED BY TWO PARAMETERS, WHOSE LMF AND UMF ARE TRAPEZOIDAL

Special case 2 wherea =c =d

Aunge b+e _ 3@2x), +TAN)2x], — Av)
4Ax(6x],, +5A%)
A 2 X (2x,,, + Ax)
Cnrou (b+20)/3 32, — AV (2x),, + AY)
T 4Ax(6x), +5Ax)
X |q (b=c)(b +2c)/12¢
¢ b Valid when x/,, > Av/2
c, (b —c)(b +2¢)3(b +3)
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TABLE III
SYMMETRICAL INTERVAL TYPE-2 FUZZY SETS CHARACTERIZED BY TWO PARAMETERS, WHOSE LMF AND UMF ARE BASED ON GAUSSIAN FUNCTIONS

Special case 1 where 1L = 0 so that the MF is Gaussian
with uncertain standard deviation € [0, G,]

A 270, 2m(2x, - Ax)?
= Tew
16Ax
G A \2no,
cwor \F(0,+0) 5 PEC, -~ a0
. 16Ax
G ol(c, /6, - 11/\2n X (2x7,, + 3Ax)
Valid when x;,, > Ax/2

¢ oo, lop-1]

Special case 2 where ¢, = 0, =0 so that the MF is Gaussian with uncertain mean € [—L, 1]
and standard deviation o . # is the solution of the equation

D(t,) = (2, — A0)(21, +327) /24272, + 3Ax) , where ®(x) = 7= r exp(=417)dr .
Auvmr 2U+A2mo
A 242700 (1 / o)

W +20° +2n o - 26° exp{—%(u/0)2}+2x/ﬁuofb(y/0')

2u+210 - 22100 (1 / )

Curou

cr[(,u/o)2 +2+~/E(,u/cr)—2exp{—{(y /G)ZH 0[25(/,1/0')4)(;1/0')]
< Wara(ulo) T A mauo)

0'[(;1/0')2 +2+\/E(,u/0')—2exp{—%(,u/o)2}+2\/ﬂ(u /O')(I)(/J/O'):|
2(u/ 0)+2m +2270(pu/ 0)
2V270(1,)(2x,, + Ax)

12+ 2+ 2wt — 2exp(=12 /2) + 24271, ®(1,)

u=t,o and o=

Symmetrical interval type-2 fuzzy set A whose UMF is Gaussian
and whose LMF is the scaled UMF (as in Example 4)

Aum V2rwo 5= M
2x],, +3Ax
Apvr s\2mo
Curou oN2/rm o= v 2n(2xmw — AX)(ZX[",R +A)
& 8Ax
cC, o(l-s)/\2rs
x Cal) Valid when x;,, > Ax/2
. ¢ ofEl-9)/(+s) ‘

Example 3: Symmetric FOU—Gaussian Cases: Examining this case are y and o. From [9, Table III], for Special Case 2,
Table III in [9], we see that only its Special Cases 1 and 2 (for observe that when 09 = 09 = o
which o1 = 03), as well as its Example 4, are for a FOU that is
specified by two parameters. Because it is very straightforward

to solve the inverse problems for Special Case 1 and Example z 20/ o
- + V27 +2V27® (/o
4, we leave those derivations to the reader. Solutions are sum- — = m (n/9) (24)

c 421 ®(pfo)

marized in our Table III. Note in Special Case 1 and Example =
4 that o > 0y and s < 1, respectively. These inequalities are from which we obtain the following nonlinear equation for
A
ulo =t

satisfied if ., > Az(a,v)/2, which will always be true be-
cause of (10).

Here, we provide the details for Special Case 2. When 01 =
03, the LMF and UMF of A are given by (49) and (50) in Part

1, in which we set 07 = o9 = 0. The two FOU parameters for 2V2r(2e, — ¢, )®(t) = ¢, (2t + V2m) (25)
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o

Fig. 1. Left- and right-hand sides of (26) as functions of ¢ so that ¢, is deter-
mined at the intersection of both sides.

which can be written as

_ (2t +v2n)
0= 2o — e,

This is a transcendental equation that has no closed-form solu-
tion for ¢. Let tg > 0 be the unique solution to (26) (we discuss
this further later). Once ¢y has been computed, o can be com-
puted by solving the equation in Table III of [9] for ¢, as

(26)

421 ®0(tg)e,

o= 27
t% + 2+ 27ty — 26Xp(—t(2]/2) + 2v/ 27rt0<1)(t0) )

after which p can be computed as
W= tgo. (28)

Substituting (8) and (9) into (26) and (27), we obtain the for-
mulas for ®(¢g) and o that are given Table III.

Regarding the solution of (26) for ¢y, observe the following.

* Function ®(z), defined in (52) of Part 1 (see, also, Table III
in this paper), is a monotonically decreasing function of x
that equals 1/2 when z = 0.

* The right-hand side of (26) is a monotonically increasing
function of ¢ that equals ¢,./2(2¢, — ¢,.) whent = 0. Fig. 1
depicts an example showing the left- and right-hand sides
of (26) when ¢, = 1.031 and ¢, = 2.469. Observe that £,
occurs at the intersection of the two curves.

¢ It therefore follows that, for a solution of (26) to exist,

Sr

1
= <o 2
226, —c,) 2 29)

This is satisfied as long as ¢, = ¢,., which is always true
as long as x5, > Ax(a,)/2, and this is always satisfied

by virtue of (10). [ ]

Example 4: From Data to FOU: Assume that we have
a (hypothetical) sample of data, X}, X1, ..., Xt and

’ ’
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TABLE 1V
TOLERANCE FACTOR k& FOR A NUMBER OF COLLECTED DATA (n), A
PROPORTION OF THE DATA (1 — o) AND A CONFIDENCE LEVEL (1 — )

1-y=095 1-7y=0.99
- l-o
n 0.90 0.95 0.90 0.95
30 2.140 2.549 2.358 2.841
50 1.996 2.379 2.162 2.576
100 1.874 2.233 1.977 2.355
1000 1.709 2.036 1.736 2.718
oo 1.645 1.960 1.645 1.960

X7, X5,..., X%, collected from a group of 50 subjects
for the left and right end-points of an interval that are asso-
ciated with a word. Assume also that from this data we have
established that %, = 3.250, z7,, = 6.750 (so that m = 5),
and ¢! ~ o" = s = 0.2705. The latter lets us conclude that
the data are second-order symmetric; hence, that the word can
be modeled using a symmetrical T2 FS. The data and their
associated average values are then shifted to the origin using
(1)~(4), so that z%,, = 1.750 and 2}, = —1.750. For the
purposes of this example, we also assume that the collected data
are normally distributed with unknown mean, y, and standard

deviation, o. Finally, we set

pE (30)

avg
Ax(a,vy) £ 2sk = 0.541 k (31)

where k is determined using the following well-known result
from statistics (e.g., [10, p. 244]): For a normal distribution of
measurements with unknown mean x4 and unknown standard
deviation o, tolerance limits are given by x;ﬁ,g =+ ks, where k is
determined so that one can assert with 100(1 — )% confidence
that the given limits contain at least the proportion 1 — « of the
measurements.

Table IV (adapted from® [10, Table A.7]) gives values of &k
for five values of n (including n = 50), two values of 1 —~ and
two values of 1 — . Whenn = 50 andboth 1 — vy and 1 — «
equal 0.95, then examining Table IV, we see that k = 2.379.
Knowing k, Az(c,~y) can be computed using (31).

Numerical solutions are given in Table V for the two param-
eters of nine FOUs. To obtain these results we have used the in-
verse solution parameter formulas that are given in Tables I-III,
x;’;g = 1.750, and Az(«a,v) = 1.287. Note that all of the pa-
rameter values in that table are for A’. In order to obtain the pa-
rameter values for fi, according to our three rules in Section III,
we would add m = 5 to the parameters a, b, ¢ and p and leave
all other parameters unchanged.

Table V also contains numerical values for ¢,. These values
were computed in order to validate that they fall in the uncer-
tainty interval [c, (A’), &(A’)], and were obtained by using the
just-computed FOU parameters and the Karnik—Mendel [3], [5]
iterative procedure. Values for ¢, and ¢, were computed using
(30), (31), (8) and (9) [see also (32)], and are ¢, = 1.106 and
¢ = 2.394.

5We do not know if a comparable result exists for non-normal measurements.

OTheir table is in turn adapted from [2], and contains entries for 47 values of
n, beginning with n = 2.
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TABLE V
SOLUTIONS OF INVERSE PROBLEMS FOR THOSE SYMMETRIC INTERVAL
T,2 FSs THAT CAN BE CHARACTERIZED BY TWO PARAMETERS, WHEN
@ n. = 1.750, Ax(a,y) = 0.541 k,n = 50,1 — v = 0.95, AND
1 — «a = 0.95,80 THAT &k = 2.379.c¢, 1S COMPUTED BY USING THE
SOLUTIONS TO THE INVERSE PROBLEMS AND THE KARNIK—MENDEL ITERATIVE

PROCEDURES, AND IN ALL CASES ¢, = 1.106 AND ¢, = 2.394

Model Model Parameters c,

Special case 1 of Table I No solution because x,,, < 5Ax/2

Special case 3 of Table I b=5.114 and ¢ =3.319 ¢, =1.158
Special case 4 of Table I a=1.856and b=4.317 ¢, =1.140
Special case 5 of Table I h=0.301and b=6.173 ¢, =1.229
Special case 6 of Table I a=1.427 and b =4.746 ¢, =1.146
Special case 2 of Table II b=4.560and c=0.807 ¢, =1.120
Special case 1 of Table III 0;=0.596and 6, =1.983 ¢, =1.146
Special case 2 of Table III p=1.125and 6=1.568 ¢, =1.807
Scaled Gaussian of Table IIl | s=0.301 and 6=2.579 ¢, =1.230

From these discussions and Table V, we observe that for each
FOU model.
* Our computed value of ¢, satisfies the requirement

Cr € [0r ] = [Tavg — Aa(01,7)/2, Tavg
+ Ax(a,7)/2]
= [1.106, 2.394] (32)
which validates our solutions for both the forward and in-
verse problems for the given data.

* ¢, is much closer to ¢, then itis to ¢,, suggesting that c,. is
a better approximation to ¢, than is ¢,. This is consistent
with our discussions in [9, Sec. D, App. A] about there
being a tighter bound for ¢,., given by the right-hand side
of (A-24), and suggesting that more work should be done
to establish such a bound and how to then use it to solve
inverse problems. [ |

V. CONCLUSION

Using the results in this paper, it is possible to examine “in-
verse” problems, i.e., given interval data collected from people
about a phrase, and the inherent uncertainties associated with
that data (which can be described statistically), we have estab-
lished parametric FOUs such that their uncertainty bounds are
directly connected to statistical uncertainty bounds, and have
provided many such solutions in Tables I-III, but only for a FOU
that is completely characterized by two parameters, and only
using the first- and second-order statistics about the end-point
data. How to solve an inverse problem for a FOU that is de-
scribed by more than two parameters and in an optimal manner
are open questions.

How to generalize the results in this paper to a non-sym-
metrical FOU is currently under study and will be reported on.
Some results for this case have already appeared in [8]. This
case is very important because interval end-point data that have
already been collected for words (see [5, Ch. 2]) demonstrate
that for most words uncertainties about the two end-points are
not equal. Preliminary results indicate that it is unlikely that

closed-form solutions for inverse problems for a nonsymmet-
rical FOU will be possible, so, the solutions to such problems
will have to be approached differently from the way in which
they have been approached in this paper.

It is also likely that we will need more quantitative infor-
mation about some FOUs than just their centroid uncertainty
bounds. This suggests that higher-order moments be established
for an interval T2 FS, e.g., dispersion, skewness, and kurtosis.
What will be needed for these new uncertainty measures are
iterative methods for their computation (analogous to the
Karnik—Mendel iterative methods for computing the interval
end-points for the centroid of a T2 FS) and quantitative uncer-
tainty bounds for them (analogous to the results presented in
[9] for the centroid of an interval T2 FS). Once these additional
results have been developed, then we will be able to establish
whether or not it is indeed possible to go from interval end-point
data to a multiple-parameter FOU and if so how to do this.

In summary, connecting data and their uncertainties to a para-
metric FOU for an interval T2 FS is analogous to estimating pa-
rameters in a probability model, and, as is well known, the latter
provides a bridge between probability and statistics. We hope
that the material in this paper will be the start of much research
in providing a bridge between interval T2 FS models and sta-
tistics—type-2 fuzzistics—something that we believe is needed
if computing with words is to become a reality (e.g., [11]-[13],
(4], [6], and [7]).
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