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Abstract—We present a formulation of a fuzzy logic system methods to generate the desired surface using a linear combi-
(FLS) that can be used to construct nonparametric models of nation of basis functions (typically, nonlinear transformations
nonlinear processes, given only input—output data. In order to of the input). As we will show in Section II, a FLS can be

effectively construct such models, we discuss several design meth- . o . .
ods with different properties and features. We compare and expressed as a linear combination of nonlinear functions.

illustrate systems designed with each one of the methods, using There exists a variety of design methods, such as [1]-{3],
an example on the predictive modeling of a nonlinear dynamic [5], [7]-[9], [14], [15], [18]-[28], [30], [31], [37], [39], [41],

(chaotic) system. [45], [46], to name a few, that can be used to construct

Index Terms—Backpropagation method, chaotic time series, FLS’s with different properties and characteristics. Some of
design, forecasting, fuzzy logic systems, one-pass method, RLShese design methods are data intensive, some are aimed at

method. computational simplicity, some are recursive (thus giving the

FLS an adaptive nature), some are offline, and some are

|. INTRODUCTION application specific. One of the most widely used methods

, . for constructing FLS'’s, mainly because of its simplicity, is
UZZY LOGIC SYSTEMS (FLS's) are nonlinear SyStem%able—lookup. The one-pass (OP) method [43], is a table-lookup

capable of inferring complex nonlinear relationships be- ethod that allows us to generate fuzzy rules from given

tween input and output variables. The nonlinearity prOpenXput—output pairs, by performing a simple OP operation on

IS partlcularly |mportar_1t \_Nhen the unde_rlylng physical mect‘{he given numerical and/or linguistic data. The generated fuzzy
anism to be modeled is inherently nonlinear. The system ca

“learn” the nonlinear mapping by being presented a seque [ules are collected into acommon rulebase a_nd combined using
of input signal and desired response pairs, which are usé Zﬁ/ Sﬁt trlleory tecrtllmqu%spto c:longttrr]uct a final FI]:Sth .
in conjunction with an optimization algorithm to determine € backpropagation (BP) algorithm is one of the main
the values of the system parameters. This is one of {fasons that artificial neural networks have gained so much

most commonly used learning paradigms, cakemervised N popu!arity. It is a powgrful training technique that can
Y gp g ko e applied to networks with feedforward structure, to turn

learning Even if the process to be modeled is nonstationary, ! ) ; !
em into adaptive systems. Since FLS’s can be represented

the system can be updated to reflect the changing statis
of the process. Unlike conventional stochastic models used®d layered feedforward n-etworks ,[42]’ the same concept of
can be applied, to train all design parameters of the FLS.

model such processes, FLS’s do not make any assumptigr?s

regarding the structure of the process, nor do they invoke ah{}iS €an be very advantageous, especially in cases where there

kind of probabilistic distribution model, i.e., they belong t$Xists complex interaction between the explanatory variables

the general family of model-free, data driven, nonparamet@® the system we are trying to model. Such systems are
methods. sometimes referred to aseuro—fuzzysystems.

Designing a FLS can be viewed as approximating afunction,'n general, adaptive FLS’s designed with recursive _algo—
or fitting a complex surface in a (probably) high dimensionélthms such as_BP, can have several advantagles over S|m|.IarIy
space. Given a set of input—output pairs, the task of learnifi§Signed nonlinear systems: 1) they can utilize information
is essentially equivalent to determining a system that provid@§1€r systems cannot (such as linguistic, or expert informa-
an optimal fit to the input-output pairs, with respect to a colien), So they can conceivably achieve a better solution; 2)
function. In addition, the system produced by the learnirf§€y can be initialized using relevant expert information, so
algorithm should be able to generalize to certain regions of tHeat the search space during optimization is constrained, which
multidimensional space where no training data was given, i.keads to faster convergence; and 3) in some applications, the
it should be able to interpolate the given input—output dat@rameters of a FLS have physical meaning, so that intuition
Within the framework of approximation, and interpolationd expertise allow us to appropriately select the values of

theory, it is common among many approximation/interpolatiomany of these parameters, in which case only a few need to
be updated during training.
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Fig. 1. Structure of fuzzy logic system.

recursive least-squardg4], or orthogonal least-squared 8], variables are denoted by, £ = 1,2,---,7n, and the output
can be used to optimally select the centers of the consequiemguistic variable is denoted by.
fuzzy sets in a least-squares sense. A FLS consists of four basic elements (Fig. 1): thezifier

A very important issue in the design of FLS’s is deterthe fuzzy rulebasethe inference engineand thedefuzzifier
mining the number of basis functions, or rules necessary The fuzzy rulebase is a collection of rules of the formkst
adequately represent a given system. Given an initial setwalfiich are combined in the inference engine, to produce a fuzzy
basis functions, one wants to select the best possible sulméput (in essence, the inference engine produces mappings
of basis functions for an effective representation. The SVBrom fuzzy sets to fuzzy sets). The fuzzifier maps the crisp
QR design procedure [35] enables us to obtain an estimaiputs into fuzzy sets, which are subsequently used as inputs
of the number of necessary basis functions, and then disctwdhe inference engine, whereas the defuzzifier maps the fuzzy
basis functions that don’t have a significant contribution in treets produced by the inference engine into crisp humbers.
rulebase. In addition, it produces estimates of the centers of thé&uzzy sets can be interpreted as membership funcjigns
consequent fuzzy sets that are optimal in a least-squares setis#t.associate with each elementf the universe of discourse,

In Section Il, we present an overview of general FLS'd/, a numberux (x) in the interval[0, 1]:
and show how certain classes of FLS’s can be expressed as
a linear expansion of nonlinear basis functions. In Section I, px:U —[0,1]. 1)
we describe the problem used to compare different FLS
design methods; these methods are presented in Section e fuzzifier maps a crisp pointe U into a fuzzy setX € U.

In Section V, we present our conclusions. In the case of aingletonfuzzifier, the crisp pointc € U is
mapped into a fuzzy set with supportz;, wherepx (z;) =1

, N ) in the support ofX with nonzero membership function value
FLS’s are both intuitive and numerical systems, that mgp . _ "\ the case of aonsingletonfuzzifier, the point
crisp inputsx, into a crisp outputy. Every FLS is associatedx € U is mapped into a fuzzy seX with supportz;, where

with a set of rules with meaningful linguistic mterpretatlonsﬂX achieves maximum value at = z and decreases while

such as moving away fromz; = x. We assume that fuzzy séf is
R': IF uy is F! andu, is F} and ... andu, is F! normalized so thapix (z) = 1.
THEN v is & Nonsingleton fuzzification is especially useful in cases

where the available training data, or the input data to the
(note that without loss of generality, the rule is assumed fozzy logic system, contain any kind of uncertainty (such as
have only a single output), which can be obtained either fronoise, or linguistic imprecision). Conceptually, the nonsingle-
numerical data, or experts familiar with the problem at hantbn fuzzifier implies that the given input valueis the most
Based on this kind of statement, actions are combined witkely value to be the correct one from all the values in its
rules in an antecedent/consequent format, and then aggregatedediate neighborhood; however, because of the presence
according to approximate reasoning theory, to produce o uncertainty, neighboring points are also likely to be the
nonlinear mapping from the input spalde= U, xU, x---xU,,  correct values, but to a lesser degree.
to the output spacéd’, where F,f C Uy, k=12---n, The shape of the membership functipr; can be deter-
are the antecedent membership functions, 6ddc V is mined by the system designer, based on an estimate of the
the consequent membership function. The input linguistiénd and quantity of uncertainty present. It would be the logical
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choice, though, for the membership function to be symmetricIn the special case of thmodified Height defuzzifie([32],
aboutz, since the effect of noise is most likely to be equivalerj83]) (4) can be expressed asfazzy basis functiorfFBF)
on all points. Examples of such membership functions are &ypansion

the Gaussian

2 _ M 11 _ E;\il gl [Q;xnzll“LQi (‘/L'gc,sup)] /(61)2
N\ — (.’L’ - xl) fns(x) - Zy pns(x) - M 1 7

px (i) = exp[— 252 ] =1 2= [7?:1“@2 (xk,sul))]/(é )?
where the variance? reflects the width (spread) ofx (z;); ®)
2) triangular wherez' denotes the center of thith consequent fuzzy s&t
R andé' is a constant proportional to the uncertaintyGh (e.g.,
px(z;) = max(0,1 — | ‘1) ' could be chosen equal to the spread@). Equation (5)
is recognized as aonsingleton fuzzy logic systefNSFLS),

and, 3) where
T o (2 8?2
el = s phio = e kL) ©
(1 + |T ) =1 [77&7;1”@2 (xgc,sul))]/(él)Q

where z and ¢ are, respectively, the mean and spread @fe the nonsingleton FBF's. In the absence of uncertainty (i.e.,

the fuzzy sets. Note that larger values of the spread of {fifen the input fuzzy set becomes a single point), the NSFLS
above membership functions imply that a higher degree pf (5) reduces to the singleton FLS

uncertainty is anticipated to exist in the given data.
Each input to the FLS, after having been processed through M N E;\il 7 [TIZL:MF;, (xk)]/(‘sl)Q
the fuzzifier, will activate each rule in the rulebase to a (possi- f(x) = Zy px)=—x 7 ()] /(692 (7)
bly) different degree. The fuzzy ruld®’, I = 1,2, .-, M will =1 (=1 [Pr=tHE TR
produce output fuzzy sefg’ which will then be aggregated, where the FBF's are now given by
typically usingt-conorm operations, to produce the total output . o
fuzzy set pl(x) = [Tze=1NF,i (x1)] /(8"
oy [Ty (@0)] /(892

In our treatment here, we will focus on the singleton FLS (7).
For further details on NSFLS’s and comparisons with singleton

whereld;~, denotes a sequence ttonorm operations. FLS's, see [29] and [32]-{35].
Most engineering applications of FLS’s require a crisp
output, therefore the fuzzy sét is mapped to a single point,

(8)

M
T=Y )
=1

I1l. PREDICTIVE MODELING OF CHAOTIC TIME SERIES

f, using a defuzzification operatich: Many dynamical systems displaying the phenomenon of
chaos fall under the classification of nonlinear oscillators [38].
f=D(1). (3) The Van der Pol oscillator and the Duffing oscillator are some

_ o very well-known examples, whose dynamics have been widely
Comparisons of several defuzzification methods based @fdied. In the following sections, we will construct predictive

their computational complexity, weight counting, plausibilitymodels of a chaotic time series obtained as the solution of
disambiguity, and continuity properties have been performesiiffing’s equation [36]

in [10] and [17]. In those studies, it was determined that

the center-of-sums and height methods have more desirable T=y ©)
overall properties than the remaining methods. i =z —2° — ey + ycos(wt).

A general way to express aninput single-output FLS with . .
M rules in its rulebase is as follows: The approach we adopt here is based on determining a FLS

as a model of the chaotic system (9), given past time-series

M . . data. The problem of constructing predictive models of chaotic
=D L‘U A 1Y) * TiLing) (Thsup) /() (4)  systems is a challenging one, because of the low degree of

=1 correlation among consecutive time-series points. The solution

wherex denoteg-norm operationg’kn_l denotes a sequence OfOf this problem is illustrative of how someone can utilize a
t-norm operations{ denotes union of points in the continuumfionparametric method such as a FLS to model an unknown

D is a general defuzzifier that maps fuzzy sets in the outpeistem (e.g., a complicatedRC" circuit) treated as a black

spaceV to crisp points inV; e (‘/Ei‘,sup) = gt (‘/Egc,sup)* box. Fig. 2 dgpmts_phase plane p_Iots and amplitude spectra,
1x, (‘/Egc,sup); - (‘/Ei‘,sup) is the membership function for the@s well as trajectories of the solution of (9), before and after

kh antecedent of thth rule; six, (%MP) is the membership transition to chaos. It is evident from these plots that after

. . . . transition to chaos (i.e., when= 0.15,y = 0.30, andw = 1)
. l l l ]
function 1_‘or' thekth input fuzzy set; ands;, is the point there is no apparent structure in the time-series data, in terms
that maximizesyc: .

of periodic behavior.

,sup
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Fig. 2. (a)-(c) Phase plane plots of Duffing oscillator. (d)«{fomponent time-history of Duffing oscillator. (g)—@}component time-history of Duffing
oscillator. (j)—(I) Amplitude spectrum of-component of Duffing oscillator. The leftmost and center columns demonstrate the behavior of system (9) while
it is still periodic. The rightmost column depicts the system’s behavior after transition to chaos.

IV. TRAINING METHODS rules by performing a OP operation on the given input—output

In this section, we give descriptions of a representatift@ and then combines the rules in a common rulebase, to
subset of methods for designing FLS'’s, and discuss the chgpnstruct a final FLS. Given a set of input-output pairs

acteristics of each one. We apply all methods to the same(x(l)wgl)’___737511);?;(1))’ (a:§2),a:§2),---,a:ﬁf);y@)),---
problem, and compare their performance. We also examine (10)
how some design methods can be used in conjunction with
others. wherezy, z2, - - -, x,, are inputs ang is the output, we proceed
A. OP Method as follows to construct a FLS:

1) Let

The OP method (also known as the “Wang-Mendel Method”
[6]) is a simple design method that generates a set of IF-THEN [0, 2], (25, 23], [z, 2t ] [y vt
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be the domain intervals of the input and output variables, os r———————— . ' —r
respectively, where domain interval implies the interval
a variable is most likely to lie in. We divide each domain s}
interval into2NV + 1 regions, whereV can be different y
for each variable. Then, we assign membership functions 04t |;
to the regions, labeled &V (Small N),---, S1 (Small !
1), CFE (Center),B1 (Big 1),---, BN (Big N). 021 f;
2) We evaluate the membership of each input—output point
in regions where it may occur, and assign the given  9[fi

2 280 2% or @ to the region with maximum i
membership. 02

3) In order to resolve conflicting rules, i.e., rules with
the same antecedent membership functions and different o4
consequent membership functions, we assign a degree to
each rule as follows: lgix, (x}) denote the membership
of the kth input variable in the regioX’;, with maximum 5 . L ) .
membership, angsy-(y) the membership of the output 0 20 40 60 B0 100 120 140 160 180 200
variable in the regior” with maximum membership, ¥-component
whereX;, andY are labels from their corresponding sets @
SN,..-.51,CE,B1,.-.,BN. Then, the degree for the 08 ————
Ith rule, R!, is defined as

0.6f

D(RY) = ] px, (zr)iy (). (11)

k=1 041

In the event of conflicting rules, the rule with the
highest degree (11) is kept in the rulebase, and all other
conflicting rules are discarded.

4) We generate a combined rulebase comprised both of
numerically generated fuzzy rules (as described above) ,l
and linguistic information provided by experts.

5) After the combined rulebase is generated, we employ a _g4t
defuzzification method (such as Center-of-Area, Center-
of-Sums, Height defuzzifier), to obtain the crisp output _ps}
of the FLS.

We used the OP method to construct a FLS as a single step 080 100 120 140 160 160 200
predictive model of the;-component of the Duffing equation y-component
[see Fig. 3(a)]. We solved (9) using a Runge—Kutta integration (b)
routine, and allowed 2000 points of thecomponent time- Fig. 3. (&) Single step prediction of tilecomponent of the Duffing equation
series to elapse, for the transients to die out. Then, we ugegbh—dotted line) with a OP Method designed FLS. (b) Single step prediction
the next@ = 400 points to design our system, and tested §f the y-component of the Duffing equation (dash—dotted line) with an

. . . RLS-designed FLS.

on 200 out-of-sample points following the training segment.
The OP designed system had = 100 rules (obtained from
the training segment), each with three input variables, (i.@f a FLS as a linear expansion of nonlinear FBF's. The RLS-
antecedents)y(t) = y(t — k), k = 1, 2, 3, and one output designed FLS only updates the center's,of the consequent
(i.e., consequent)(t). The output of the systerfi(t) was the fuzzy sets; therefore, overall performance depends on the
predicted value ofi(¢). The rules relateg(t— k&) (k =1, 2, 3) successful selection Qka; and Mt which remain constant
to y(¢) at time point G/M)-1—k,1 =1, 2,---,M, from the during the adaptation procedure.
400 hundred training points. The out-of-sample mean-squared.et {zx(¢)} ¢ Ui,k = 1,2,---,n, and {d(t)} €
error, mseop, was 0.0218, and the standard deviation of thB,¢ = 0,1,---, denote real-valued sequences. K&{t)} =
out-of-sample residualgdop was 0.1474. The OP FLS gives{[z(t),z2(t), -+, z,(t)]¥} € U. Given the input—output
reasonably good results; but, as is evident from Fig. 3(a),p#irs [x(¢); d(¢)], the problem is to design a FLEU — R

is not that accurate. such that
. t
B. Recursive Least Squares ity )
> N Jris(t) = SN - FxE@)E (12)
In order to achieve fast convergence rate while maintaining im1

good approximation capability, we can designrexursive
least-square¢RLS) FLS based on the general formulation (75 minimized, where\ € (0, 1] is a forgetting factor.
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0.15 — C. Back-Propagation (BP) Method
For the development of the BP training algorithm for
o1l ) o updating the design parameters of a FLS, we focus on a
. H] ) 5,', system with Gaussian antecedent and consequent membership
| -‘?, : ;ill functions, product inference, and height defuzzification, for
g i j 1P which:
" i M —1n
i PR f(x) = 2z 7 e HF (k)
- M n
>i=1 =t HEt (k)
2
M o n (ack—ran')
Yo T ey exp <—Tﬂk>
= ( k)z a7)
M 1n Tr =M pl
=1 k=1 eXp <_TZZA—>
P
. , M
B0 w e 8 10 10 Mo 160 180 200 = Zglpl(x). (18)
=1

Fig. 4. Residual errors produced by the OP Method designed FLS . . . o )
(dash—dotted line), and residual errors produced by the RLS-designed FLSGIVeEN an input—output training pafx”, d"), x” € R™ and

(solid line). d” € R, we wish to design a FLS in the form of (17) such
that the following error function is minimized:
Using a method such as the OP (see, also, [42]), we , 1 - 2
construct a set of fuzzy rules of the same form as in Section I, ¢ = §[f(x )—dT (19)

and subsequently a FLS of the form of (7). Collectingiélin It is evident from (17), thatf is completely characterized
an M-dimensional vectog, and allp! in an M-dimensional by gjl,mpi, and a%l. Using a steepest descent algorithm to

vectorp(x(t)), we can write (7) in a vector form as minimize ¢, it is §traight forward to obtain the following
Fx(t) = px(t)Ty. (13) recursions to update all design parameters of a FLS:
T — Mgt
Sincef is linear ing, the RLS algorithm [16] can be used to mp(q+1) = mpi(q) — a(f - d)Tk(?jl - N’
update the centers of the consequent fuzzy sets. The recursions Fy
for ¥ can be obtained by minimizindgrs(t) in (12), given (20)
that f is of the form in (7). If we letP(t) = p(x(t)) denote T(g+1) =7 (q) — a(f — d)p’ (21)
the FBF vector at time instartt the recursions are given by (z1 — mp)?
[34], [42] gt 1) =op() = alf = d)——5—=(7" - /)y
1 F
o(t) = T[0(t— 1) — e(t - PO+ PT() 22)
x O(t — 1)P)) L PT(H)d(t - 1)] (14) wherep! denotes thdth basis function. Equations (20)—(22)

K(t) = &t — VPO + PTY(#)@(t — )P (15) Zre refgrred toasa g?ckpcrl())pagation algorithm because of their
= T /oo ependence on errdif — d).
v =yt -1+ KO - Py -1 (16) Singleton FLS’s, and the BP update recursions can be
fort =1,2,---. Matrix @ is initialized to®(0) = 81, wherel  generalized to the nonsingleton FLS case [34]; nonsingleton
is anM x M identity matrix, and3 is a small positive constant. FLS’s can also be trained to account for uncertainty at the
The initial value ofy, §(0), and the values of the fixed systeninput, by training for a parameter proportional to the spread
parameters, can be selected from linguistic information, ¢or width) of the input fuzzy sets.
from the OP method, so that the supports of the resultingA 100-rule, three input BP-trained FLS, designed as a single
membership functions cover the corresponding universesstép predictor of they-component of the Duffing equation
discourse. [see Fig. 5(a)], had out-of-sample mean-square enc@xp =

We employed an RLS-designed system with 100 rulés000 48, and residual standard deviatodizp = 0.0219. The
(initially obtained from the OP method) and three inputsnput and output variables were the same as the OP- and RLS-
zp(t) =y(t—k), k= 1,2, 3, to produce single step forecastdrained FLS's, and the initial parameter values used in the BP
of the y-component of the Duffing equation (see Fig. 3(b)rlgorithm were determined using the OP method. A total of
The out-of-sample mean-squared error for the RLS-designé@d parameters [(2 per input 3 inputs+ 1 consequent center)
system wasnsegrs = 0.00031, and the standard deviationx 100 rules] were updated using the BP algorithm.
of the residuals wastdrrs = 0.0175. Fig. 4 depicts the  For this data, the RLS FL forecaster outperformed the BP FL
pointwise residual errors produced by the OP designed FESecaster. This is not a surprising result, because even though
(dash—dotted line), and the pointwise residual errors producatithe design parameters of the BP trained FLS are updated,
by the RLS designed FLS. Clearly, performance of the RLiie BP algorithm converges (typically to a local minimum)
FL forecaster is better than that of the OP forecaster. much slower than the RLS algorithm.
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It is well known that if the rank of? is less thanM/, then
the least-squares problem

min [Py — £ (24)
y

has no unique solution. Several orthogonalization algorithms
can be adapted to handle this [4], but the only reliable way
to treat rank deficiency is by the computation of giegular
value decompositio(SVD) of P [13]. Furthermore, the SVD
provides a natural way to separate a space into dominant and
subdominant subspaces. If we view the FBF malas a
span of the input subspace, then the SVD decomposes the
span into an equivalent orthogonal span, from which we can
identify the dominant and subdominant spans [40], i.e., we
can identify which FBF’s contribute the most to the system,
and how many of them are needed to effectively represent the
system. The FBF’s that contribute the least can be discarded,
and a reduced, parsimonious system can be designed. Note that
the SVD approach only reorders the original FBF's to form
a set of independent FBF'’s; thus, it preserves the meaning of
linguistic information initially incorporated into the system.

Let N > M, andrank(P) = r < M denote the rank oP.
The SVD of P is given by [16]

P-uly |V~ Sownt @9

whereU is anN x N matrix of orthonormalized eigenvectors
of PP?, V is anM x M matrix of orthonormalized eigenvec-
tors of PTP, v; andu; denote the column vectors ¥ andU,
respectively, and is the diagonal matri® = diag(oq, o2,
--+,0.), Whereg; denotes theth singular value ofP, and
01202 22 0. >0

The pseudoinverse d is given by [16]

pt = VFO ' 8} U= vl (29)
0820 40 80 s 10 120 o 180 180 200 i=1 7
yoomponert where =1 = diag (o7,---,0;71). The optimal centers of
®) the consequent fuzzy sets which represent the solution to (24),

Fig. 5. (a) Single step prediction of thecomponent of the Duffing equation cgn then be calculated. as
(dash—dotted line) with a back-propagation designed FLS. (b) Single step ’

rediction of they-component of the Duffin ion h— lin -1
il an SVD-OR dosigned FLs, | o0 cauaon (Gashedoted N oy pp vﬁ) g}qu =Y Lvalt. @
i=1 *

Out of the many vectors that solve the least-squares problem

In this section, we show that, by appropriate analysis af the rank deficient case, the one defined by (27) is unique
a FBF matrix P, we can extract useful information abouin that it simultaneously satisfies two requirements [12]: 1) it
the FLS, so as to design systems with optimally selectésloptimal in a least-squares sense and 2) it has the smallest
¥'s that have minimal redundancy in their rulebase. ThEuclidean norm.
FBF matrix can be formed by evaluating each FBEx(t)), Assuming that theaumerical rankof P is given by+’, the
l=1,2,---,M, at N points and then ordering them in arminimum norm solution fory’ can be approximated by
N x M matrix y

r

D. Singular-Value-QR Decomposition Method

p(x(1) yr=> %Viu?f (28)
i=1 "
P= p(x.(2)) (23) Wherey,, minimizes
P(x(N) 1P, — (29)

and P, = E;’;l o;w;vi. ReplacingP with P, can be
wherep(x(t)) = [p(x(t)), p?(x(t)),- - - p™ (x(1))]. viewed as filtering out very small singular values, which is
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especially useful in cases where the FBF matrix is formed TABLE |

using noisy data. Small singular values are also associated/'EANéig&iELz EEEOFHQEE;ESJQRA;EAgggﬂﬁéogpo;céu&?;fghﬂPLE
with redundant factors with singular values larger than the  ¢,.o7c AtrracTor, Using THE SVD-QR Desion MeTHOD.
ones due to noise, but considerably smaller than the largest  THe InmiaL FLS Hap M = 100 RULES IN ITS RULEBASE,

singular valueg; . In such a case, it would not be desirable to AND ANTECEDENT STANDARD DEVIATION EQUAL TO o = 0.5
construct a system suchBs.¥,~ which includes all redundant Number of rules || mseue | stdou
factors; instead, a systeildy can be designed, whefe has 100 3.625x10~° | 0.006017

7 < r’ nonzero components (i.ey, may have less than’ 80 3.687x10~° | 0.006051
components). The systef®y can be viewed as reducing 60 3.852x10° | 0.006186

(or eliminating) the redundancy among the factors (FBF's) 40 5.162x10~° | 0.007181
comprising the underlying model, as reflected in the initial FBF 20 1.485x10~* | 0.012150
matrix determination. The location of the nonzero components 10 3'07‘“‘10_: 0.017470

of ¥ can be used to determine a subset of tiénitial FBF's, 5 1.953x107" | 0.139750

which are used to approximate the desired respdnse
Although several subset selection methods exist [4], a TABLE I
singular value decomposition method is preferable in rank MEANéSQUARED ERROR A“F‘)';STANDAREA DEeviATION OF OUI;-OF'SAMPLE
s . . ESIDUALS FOR THE EDICTIVE IVIODELING OF THE DUFFING
def|C|.ent prgblems [13]. Her(_e, we use the following algorithm CHAOTIC ATTRACTOR USING THE SVD-QR DESIGN METHOD.
that is similar to the one in [11], [13] to select a set of THE INITIAL FLS Hap M = 100 RULES IN ITS RULEBASE AND

independent FBF's that minimize the residual error in a least- ANTECEDENT STANDARD DEVIATION EQUAL TO 0 = 1
squares sense. Number of rules H mseoyt l std,yt

(1) Determine a numerical estimaté of the rank of 100 3.676x10~° | 0.006050
the FBF matrix P by calculating the singular value 80 3-678><10‘: 0.006051
decompositiorP = U[? E]VT, and select < r'. 28 Z:?ggzig—f’ g:gggigz
(2) Calculate a permutation matX such that the columns 20 4.814x10~° | 0.006937
of the matrixI'; € RY*" in 10 3.172x10~% | 0.017760
5 4.524x10™* | 0.021250

PII = [I', T (30)

¢ Using QR decomposition with column pivoting, deter-

are independent. The permutation maiflxs obtained mine II such that

from the QR decomposition of the submatrix comprised
of the right singular vectors, which correspond to the Q' [V}, V3, I = [Ru1, Ruo]
orderedmost-significansingular values.

(3) Approximatef with Py where whereQ is a unitary matrix, andR,; andR, form an

upper triangular matrix; then for®II = [I';, I'z], where

Z I, RN and I, e RNX(]w_f’).
y= H[O} (31) « Determinez € R" such that||T';z — £||, is minimized.
Although the SVD-QR design method provides optimal
so thatPy = I';z, andz € R minimizes estimates ofy in a least-squares sense, it does not provide
any estimates for the remaining parameters of a FLS. The
Tz — £][2. (32) backpropagation algorithm described in Section IV-C allows

us to do that. Once backpropagation training is completed,
the SVD-QR method can be used again with the updated
parameters, to recalculage

We employed the SVD-QR method to produce single step

GivenP ¢ RVM*M £ ¢ RN, and#, the following algorithm
computes a permutation matril and a vectozz € R” such
that the first? columns of PII are independent and

z predictions of they-component of the Duffing equation [see
HPH [0} -1 (33)  Fig. 5(b)]. We initially designed a FLS with 100 rules obtained
2 from the OP method as in Section IV-A, and three input
is minimized. variableszy(t) = y(t — k), £ = 1,2,3; then, we used the
« Calculate the SVD of® and saveV. SVD-QR design method to reduce the number of rules. The
« Estimatei < numericalrank(P) and partition results are given in Tables | and Il, for two different values
- of antecedent standard deviation. Observe, from Table I, that
V= {Vn V12:| (34) a 40-rule FLS achieves about the same performance as 100-
T |Var Val’ rule FLS (whensr = 0.5), and, from Table Il, that a 20-rule

FLS achieves about the same performance as a 100-rule FLS
where V{1 € RﬁXf, Vi € Rﬁx(lw_ﬁ), Vo1 € (Whenop = 1).
RM=F)X7 andVyy € RM=7)X(M=%) |n many practical ~ Given the means of the antecedent membership functions,
casesg; is much larger tham,.; thus,# can be chosen the antecedent standard deviations determine the overlap be-
much smaller than the estimaté of rank(P). tween consecutive antecedents. They therefore determine the
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TABLE 111 1
MEAN-SQUARED ERROR AND STANDARD DEVIATION OF OuT-OF-SAMPLE
RESIDUALS FOR THE PREDICTIVE MODELING OF THE DUFFING CHAOTIC
ATTRACTOR UsING THE SVD-QR DesIGN METHOD AFTER THE SYSTEM WAS 09
FIRsT INITIALIZED USING THE BP METHOD. THE INITIAL FLS HAD
M = 100 RULES IN ITS RULEBASE AND ANTECEDENT STANDARD

DEVIATION PRrRIOR TO RUNNING THE BP METHOD, EQUAL TO o = 1 08
Number of rules ” MS€oyt I std oyt
100 2.560x10~° | 0.005030 07}
80 3.133x10~> | 0.005587
60 3.756x107° | 0.006112
40 4.421x10~° | 0.006649 06
20 4.987x10~° | 0.007056
10 3.103x10~4 | 0.017570 05f
5 3.803x10~* | 0.019470

smoothness of the interpolation, or approximation surface o4

generated by the fuzzy system, and how well the antecedents
cover their corresponding input space. From Tables | and Il, we 03 2 3 . s
observe that for 100 rules, the system with smaller antecedent Number of eiganvakues
standard deviationf(!), performs better than the system with @)
larger one,f®. But when the number of rules is reduced
to five, the performance of () degrades abruptly, whereas
@ performs reasonably well, in comparison to the initial
systems with all the rules included. This is due to the fact that 0%f
for a small number of rules, the input space Bt is not
sufficiently covered, whereag®) is still able to generate a osf
smooth approximation surface.

Fig. 6(a) and (b) depicts the normalized sum of singular
values corresponding t¢(1) and f(?), respectively. Because
of the greater antecedent standard deviation, there exists a
higher degree of overlap, and thus more redundancy in the °&
rulebase off(?. Observe that after the fifth singular value, the
contribution of the remaining singular values to the normalized o}
sum is very small, whereas in the caseféf there still exist
significant singular values after the fifth one. This implies that
we can find a smaller subset of rules that could repreg&nt
rather thanf(1),

In another experiment, we designed an initial FLS with 100 *® > 3 4« s & 7 8 9 10
rules and three inputs, again using the OP method, which was Number of digenvatuas
then updated using the BP method, and then further refined (b)
using the SVD-QR method. Table Ill summarizes the resultg). 6. (a) Normalized sum of singular values for SVD-QR designed system,
for different number of rules, after employing the SVD-QFYVith or = 0.5. (b) Normalized sum of singular values for SVD-QR designed
method. Observe, by comparing Table Il to Tables | and St Withor = 1.
that performance is usually better for a combined design than

for just the SVD-QR design. Selection of which design method to use should be based
V. CONCLUSION on the particular problem to be solved, and the advantages
and disadvantages of each method. The OP method is a quick

The ability of FLS’s to produce accurate models of com- d simol o desi FLS. wh hiah d ¢
plicated systems is not surprising, since they can uniform jid simple way fo design a » When a very high degree o
curacy is not critical. It does however provide good insight

approximate any real continuous function on a compact ) oo
[33]. The uniform approximation theorem guarantees the ¢%20ut how a FLS can be set up, and it can be used to initialize
istence of a FLS capable of approximating a given function 8¢ sophlstlgated design methods. When the system designer
any degree of accuracy, but does not tell us how to obtain ti&" provide fairly good choices for the antecedent parameters,
system. However, since FLS's are trainable, we can begin wifie RLS design method can be used to estimate the centers of
an initial system, which can be updated to come very closetfte consequent fuzzy sets. The RLS method converges very
the desired FLS. We have given a sample of the many trainif@gt, and can be used to update a FLS in slowly varying
methods available for designing FLS's, and have shown thenstationary environments. In general, it can be viewed as
some of them can be used in conjunction with each other,ao effective tool for designing very accurate fuzzy systems,
produce improved results. especially when compared to the OP method.

07
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Backpropagation trained FLS’s also belong to the familp2] G. H. Golub and C. Reinsch, “Singular value decomposition and least

of ada t|Ve systems. The can be ar“cularl useful |n cas squares SolutionsNumerische Mathematlho 14, pp. 403-420, 1970.
P y . . y p y . ] G. H. Golub and C. F. Van LoarMatrix Computations Baltimore,
where complex interaction among independent variables re-" yp. jonns Hopkins Univ. Press, 1983.

cessitates training for all system parameters. Solutions arrivied] A. Gonzalez and R. Perez, “Structural learing of fuzzy rules from

ini ; ; noised examples,” ifProc. Fourth IEEE Conf. Fuzzy Sys¥okohama,
at by BP training can be conceivably better than solutions Japan, 1995, vol. 3, pp. 1323-1330.
produced by other methods, but more often than not, thel) A 'R. Hasan, T. S. Martis, and A. H. M. S. Ula, “Design and

are only locally optimal (i.e., the algorithm becomes trapped implementation of a fuzzy controller based automatic voltage regulator
at a local minimum on the error curve, and can never reach f;g;;g;"‘{;‘;’fus generatorlEEE Trans. Energy Convvol. 9, pp.

the global minimum). BP trained FLS’s are typically slow tqig] s. Haykin, Adaptive Filter Theory Englewood Cliffs, NJ: Prentice-
converge, and their overall performance depends on the initial Hall, 1991.

values of the system parameters. However, as is evidenced Yy JH I':fe'l'lensdos‘:”\}o?”‘i c. Thl%rgi‘i’zfifggg”ma“"” in fuzzy controllers,”
the examples presented in this paper, they can still be very) J. Hohéns)(/)hh and JpFl)\/I Mendel, “Two-pass orthogonal least-squares

useful in producing good models of complicated processes, algorithm to train and reduce fuzzy logic systems, Firoc. Third IEEE

; i i ; it Conf. Fuzzy SystOrlando, FL, 1994, vol. 1, pp. 696-700.
or even in providing improved initial parameter values foflg] Y.-Y. Hsu and C.-H. Chen, “Design of fuzzy power system stabilisers

another design method used in conjunction with BP. for multimachine power systems,Proc. Inst. Elect. Eng. Part C,
The SVD-QR method is a very powerful method that allows  Generation, Transmission and DistributioMay 1990, vol. 137, pp.

B . : : , f 233-238.
us to deS|gn h'ghly accurate and parsimonious FLS's, g'v%] J.-S. R. Jang, “Self-learning fuzzy controllers based on temporal back-

little training data. Unlike the other training methods, the SVD- ~ propagation,”IEEE Trans. Neural Networksol. 3, pp. 714-723, Sept.
QR method can be used to: 1) obtain an estimate of the number 1992.

L e 1] R.J.Jangand C. Sun, “Neuro—fuzzy modeling and contRibt. IEEE
of rules that have a significant contribution in the fuzzy modef? vol. 83, pp. 378-406, Mar. 1995.

given an initial set of rules; 2) select the best possible subs$gt] R. Langari and L. Wang, “Fuzzy models, modular networks, and hybrid
of rules from the initial set of rules; and 3) obtain an estimate learning,” in Proc. Fourth IEEE Conf. Fuzzy Sys¥okohama, Japan,

. 1995, vol. 3, pp. 1291-1298.
of the vector containing the centers of the consequent fUZ@g] L. I. Larkin, “A fuzzy logic controller for aircraft flight control,” in

sets that is both optimal in a least-squares sense, and has theindustrial Applications of Fuzzy ControM. Sugeno, Ed. Amsterdam,
smallest Euclidean norm. The disadvantage of the SVD-QR The Netherlands: Elsevier Science (North-Holland), 1985.

. . . 4] C. J. Lin and C. T. Lin, “Reinforcement learning for art-based fuzzy
method is that it cannot be used to adaptively update param %e} adaptive learning control networks,” Proc. Fourth IEEE Conf. Fuzzy

estimates as new information becomes available. Syst, Yokohama, Japan, 1995, vol. 3, pp. 1299-1306.

It should also be noted that these training methods can Bel D- A- Linkens and H. O. Nyongesa, “Genetic algorithms for fuzzy
control. Part 1: Offline system development and applicatitrst. Elect.

extended to design and train nonsingleton FLS's, which are a g, proc. contr. Theory Applicat1995, vol. 142, pp. 161-176.
generalization of singleton FLS’s. [26] , “Genetic algorithms for fuzzy control. Part 2: Online system
development and applicationJhst. Elect. Eng. Proc. Contr. Theory
Applicat, 1995, vol. 142, pp. 177-185.
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