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Abstract—We present a formulation of a fuzzy logic system
(FLS) that can be used to construct nonparametric models of
nonlinear processes, given only input–output data. In order to
effectively construct such models, we discuss several design meth-
ods with different properties and features. We compare and
illustrate systems designed with each one of the methods, using
an example on the predictive modeling of a nonlinear dynamic
(chaotic) system.

Index Terms—Backpropagation method, chaotic time series,
design, forecasting, fuzzy logic systems, one-pass method, RLS
method.

I. INTRODUCTION

FUZZY LOGIC SYSTEMS (FLS’s) are nonlinear systems
capable of inferring complex nonlinear relationships be-

tween input and output variables. The nonlinearity property
is particularly important when the underlying physical mech-
anism to be modeled is inherently nonlinear. The system can
“learn” the nonlinear mapping by being presented a sequence
of input signal and desired response pairs, which are used
in conjunction with an optimization algorithm to determine
the values of the system parameters. This is one of the
most commonly used learning paradigms, calledsupervised
learning. Even if the process to be modeled is nonstationary,
the system can be updated to reflect the changing statistics
of the process. Unlike conventional stochastic models used to
model such processes, FLS’s do not make any assumptions
regarding the structure of the process, nor do they invoke any
kind of probabilistic distribution model, i.e., they belong to
the general family of model-free, data driven, nonparametric
methods.

Designing a FLS can be viewed as approximating a function,
or fitting a complex surface in a (probably) high dimensional
space. Given a set of input–output pairs, the task of learning
is essentially equivalent to determining a system that provides
an optimal fit to the input–output pairs, with respect to a cost
function. In addition, the system produced by the learning
algorithm should be able to generalize to certain regions of the
multidimensional space where no training data was given, i.e.,
it should be able to interpolate the given input–output data.
Within the framework of approximation, and interpolation
theory, it is common among many approximation/interpolation
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methods to generate the desired surface using a linear combi-
nation of basis functions (typically, nonlinear transformations
of the input). As we will show in Section II, a FLS can be
expressed as a linear combination of nonlinear functions.

There exists a variety of design methods, such as [1]–[3],
[5], [7]–[9], [14], [15], [18]–[28], [30], [31], [37], [39], [41],
[45], [46], to name a few, that can be used to construct
FLS’s with different properties and characteristics. Some of
these design methods are data intensive, some are aimed at
computational simplicity, some are recursive (thus giving the
FLS an adaptive nature), some are offline, and some are
application specific. One of the most widely used methods
for constructing FLS’s, mainly because of its simplicity, is
table-lookup. The one-pass (OP) method [43], is a table-lookup
method that allows us to generate fuzzy rules from given
input–output pairs, by performing a simple OP operation on
the given numerical and/or linguistic data. The generated fuzzy
rules are collected into a common rulebase and combined using
fuzzy set theory techniques to construct a final FLS.

The backpropagation (BP) algorithm is one of the main
reasons that artificial neural networks have gained so much
in popularity. It is a powerful training technique that can
be applied to networks with feedforward structure, to turn
them into adaptive systems. Since FLS’s can be represented
as layered feedforward networks [42], the same concept of
BP can be applied, to train all design parameters of the FLS.
This can be very advantageous, especially in cases where there
exists complex interaction between the explanatory variables
of the system we are trying to model. Such systems are
sometimes referred to asneuro–fuzzysystems.

In general, adaptive FLS’s designed with recursive algo-
rithms such as BP, can have several advantages over similarly
designed nonlinear systems: 1) they can utilize information
other systems cannot (such as linguistic, or expert informa-
tion), so they can conceivably achieve a better solution; 2)
they can be initialized using relevant expert information, so
that the search space during optimization is constrained, which
leads to faster convergence; and 3) in some applications, the
parameters of a FLS have physical meaning, so that intuition
and expertise allow us to appropriately select the values of
many of these parameters, in which case only a few need to
be updated during training.

As we will show in Section II, FLS’s that use theheight
defuzzifierto map the final output fuzzy set to a crisp value,
can be expressed as a linear combination of nonlinear basis
functions. Since they are linear in the output space (i.e., the
space of the consequent fuzzy sets), linear methods such as
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Fig. 1. Structure of fuzzy logic system.

recursive least-squares[44], or orthogonal least-squares[18],
can be used to optimally select the centers of the consequent
fuzzy sets in a least-squares sense.

A very important issue in the design of FLS’s is deter-
mining the number of basis functions, or rules necessary to
adequately represent a given system. Given an initial set of
basis functions, one wants to select the best possible subset
of basis functions for an effective representation. The SVD-
QR design procedure [35] enables us to obtain an estimate
of the number of necessary basis functions, and then discard
basis functions that don’t have a significant contribution in the
rulebase. In addition, it produces estimates of the centers of the
consequent fuzzy sets that are optimal in a least-squares sense.

In Section II, we present an overview of general FLS’s,
and show how certain classes of FLS’s can be expressed as
a linear expansion of nonlinear basis functions. In Section III,
we describe the problem used to compare different FLS
design methods; these methods are presented in Section IV.
In Section V, we present our conclusions.

II. DESCRIPTION OF THEFLS

FLS’s are both intuitive and numerical systems, that map
crisp inputs, , into a crisp output, . Every FLS is associated
with a set of rules with meaningful linguistic interpretations,
such as

IF is and is and and is

THEN is

(note that without loss of generality, the rule is assumed to
have only a single output), which can be obtained either from
numerical data, or experts familiar with the problem at hand.
Based on this kind of statement, actions are combined with
rules in an antecedent/consequent format, and then aggregated
according to approximate reasoning theory, to produce a
nonlinear mapping from the input space
to the output space , where ,
are the antecedent membership functions, and is
the consequent membership function. The input linguistic

variables are denoted by , and the output
linguistic variable is denoted by.

A FLS consists of four basic elements (Fig. 1): thefuzzifier,
the fuzzy rulebase, the inference engine, and thedefuzzifier.
The fuzzy rulebase is a collection of rules of the form of,
which are combined in the inference engine, to produce a fuzzy
output (in essence, the inference engine produces mappings
from fuzzy sets to fuzzy sets). The fuzzifier maps the crisp
inputs into fuzzy sets, which are subsequently used as inputs
to the inference engine, whereas the defuzzifier maps the fuzzy
sets produced by the inference engine into crisp numbers.

Fuzzy sets can be interpreted as membership functions
that associate with each elementof the universe of discourse,

, a number in the interval :

(1)

The fuzzifier maps a crisp point into a fuzzy set .
In the case of asingletonfuzzifier, the crisp point is
mapped into a fuzzy set with support , where
for and for , i.e., thesingle point
in the support of with nonzero membership function value
is . In the case of anonsingletonfuzzifier, the point

is mapped into a fuzzy set with support , where
achieves maximum value at and decreases while

moving away from . We assume that fuzzy set is
normalized so that .

Nonsingleton fuzzification is especially useful in cases
where the available training data, or the input data to the
fuzzy logic system, contain any kind of uncertainty (such as
noise, or linguistic imprecision). Conceptually, the nonsingle-
ton fuzzifier implies that the given input valueis the most
likely value to be the correct one from all the values in its
immediate neighborhood; however, because of the presence
of uncertainty, neighboring points are also likely to be the
correct values, but to a lesser degree.

The shape of the membership function can be deter-
mined by the system designer, based on an estimate of the
kind and quantity of uncertainty present. It would be the logical
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choice, though, for the membership function to be symmetric
about , since the effect of noise is most likely to be equivalent
on all points. Examples of such membership functions are 1)
the Gaussian

where the variance reflects the width (spread) of ;
2) triangular

and, 3)

where and are, respectively, the mean and spread of
the fuzzy sets. Note that larger values of the spread of the
above membership functions imply that a higher degree of
uncertainty is anticipated to exist in the given data.

Each input to the FLS, after having been processed through
the fuzzifier, will activate each rule in the rulebase to a (possi-
bly) different degree. The fuzzy rules will
produce output fuzzy sets which will then be aggregated,
typically using -conorm operations, to produce the total output
fuzzy set

(2)

where denotes a sequence of-conorm operations.
Most engineering applications of FLS’s require a crisp

output, therefore the fuzzy set is mapped to a single point,
, using a defuzzification operation:

(3)

Comparisons of several defuzzification methods based on
their computational complexity, weight counting, plausibility,
disambiguity, and continuity properties have been performed
in [10] and [17]. In those studies, it was determined that
the center-of-sums and height methods have more desirable
overall properties than the remaining methods.

A general way to express an-input single-output FLS with
rules in its rulebase is as follows:

(4)

where denotes-norm operation; denotes a sequence of
-norm operations; denotes union of points in the continuum;

is a general defuzzifier that maps fuzzy sets in the output
space to crisp points in ;

is the membership function for the
th antecedent of theth rule; is the membership

function for the th input fuzzy set; and is the point
that maximizes .

In the special case of themodified Height defuzzifier, ([32],
[33]) (4) can be expressed as afuzzy basis function(FBF)
expansion

(5)

where denotes the center of theth consequent fuzzy set
and is a constant proportional to the uncertainty in(e.g.,

could be chosen equal to the spread of). Equation (5)
is recognized as anonsingleton fuzzy logic system(NSFLS),
where

(6)

are the nonsingleton FBF’s. In the absence of uncertainty (i.e.,
when the input fuzzy set becomes a single point), the NSFLS
in (5) reduces to the singleton FLS

(7)

where the FBF’s are now given by

(8)

In our treatment here, we will focus on the singleton FLS (7).
For further details on NSFLS’s and comparisons with singleton
FLS’s, see [29] and [32]–[35].

III. PREDICTIVE MODELING OF CHAOTIC TIME SERIES

Many dynamical systems displaying the phenomenon of
chaos fall under the classification of nonlinear oscillators [38].
The Van der Pol oscillator and the Duffing oscillator are some
very well-known examples, whose dynamics have been widely
studied. In the following sections, we will construct predictive
models of a chaotic time series obtained as the solution of
Duffing’s equation [36]

(9)

The approach we adopt here is based on determining a FLS
as a model of the chaotic system (9), given past time-series
data. The problem of constructing predictive models of chaotic
systems is a challenging one, because of the low degree of
correlation among consecutive time-series points. The solution
of this problem is illustrative of how someone can utilize a
nonparametric method such as a FLS to model an unknown
system (e.g., a complicated “RC” circuit) treated as a black
box. Fig. 2 depicts phase plane plots and amplitude spectra,
as well as trajectories of the solution of (9), before and after
transition to chaos. It is evident from these plots that after
transition to chaos (i.e., when 0.15, 0.30, and 1)
there is no apparent structure in the time-series data, in terms
of periodic behavior.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. (a)–(c) Phase plane plots of Duffing oscillator. (d)–(f)x-component time-history of Duffing oscillator. (g)–(i)y-component time-history of Duffing
oscillator. (j)–(l) Amplitude spectrum ofy-component of Duffing oscillator. The leftmost and center columns demonstrate the behavior of system (9) while
it is still periodic. The rightmost column depicts the system’s behavior after transition to chaos.

IV. TRAINING METHODS

In this section, we give descriptions of a representative
subset of methods for designing FLS’s, and discuss the char-
acteristics of each one. We apply all methods to the same
problem, and compare their performance. We also examine
how some design methods can be used in conjunction with
others.

A. OP Method

The OP method (also known as the “Wang-Mendel Method”
[6]) is a simple design method that generates a set of IF–THEN

rules by performing a OP operation on the given input–output
data, and then combines the rules in a common rulebase, to
construct a final FLS. Given a set of input–output pairs

(10)

where are inputs and is the output, we proceed
as follows to construct a FLS:

1) Let
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be the domain intervals of the input and output variables,
respectively, where domain interval implies the interval
a variable is most likely to lie in. We divide each domain
interval into regions, where can be different
for each variable. Then, we assign membership functions
to the regions, labeled as (Small ) (Small
1), (Center), (Big 1) (Big ).

2) We evaluate the membership of each input–output point
in regions where it may occur, and assign the given

, or to the region with maximum
membership.

3) In order to resolve conflicting rules, i.e., rules with
the same antecedent membership functions and different
consequent membership functions, we assign a degree to
each rule as follows: let denote the membership
of the th input variable in the region with maximum
membership, and the membership of the output
variable in the region with maximum membership,
where and are labels from their corresponding sets

. Then, the degree for the
th rule, , is defined as

(11)

In the event of conflicting rules, the rule with the
highest degree (11) is kept in the rulebase, and all other
conflicting rules are discarded.

4) We generate a combined rulebase comprised both of
numerically generated fuzzy rules (as described above)
and linguistic information provided by experts.

5) After the combined rulebase is generated, we employ a
defuzzification method (such as Center-of-Area, Center-
of-Sums, Height defuzzifier), to obtain the crisp output
of the FLS.

We used the OP method to construct a FLS as a single step
predictive model of the -component of the Duffing equation
[see Fig. 3(a)]. We solved (9) using a Runge–Kutta integration
routine, and allowed 2000 points of the-component time-
series to elapse, for the transients to die out. Then, we used
the next 400 points to design our system, and tested it
on 200 out-of-sample points following the training segment.
The OP designed system had 100 rules (obtained from
the training segment), each with three input variables, (i.e.,
antecedents), 1, 2, 3, and one output
(i.e., consequent) . The output of the system was the
predicted value of . The rules related ( 1, 2, 3)
to at time points 1, 2, , from the
400 hundred training points. The out-of-sample mean-squared
error, , was 0.0218, and the standard deviation of the
out-of-sample residuals was 0.1474. The OP FLS gives
reasonably good results; but, as is evident from Fig. 3(a), it
is not that accurate.

B. Recursive Least Squares

In order to achieve fast convergence rate while maintaining
good approximation capability, we can design arecursive
least-squares(RLS) FLS based on the general formulation (7)

(a)

(b)

Fig. 3. (a) Single step prediction of they-component of the Duffing equation
(dash–dotted line) with a OP Method designed FLS. (b) Single step prediction
of the y-component of the Duffing equation (dash–dotted line) with an
RLS-designed FLS.

of a FLS as a linear expansion of nonlinear FBF’s. The RLS-
designed FLS only updates the centers,, of the consequent
fuzzy sets; therefore, overall performance depends on the
successful selection of and , which remain constant
during the adaptation procedure.

Let , and
denote real-valued sequences. Let

. Given the input–output
pairs , the problem is to design a FLS
such that

(12)

is minimized, where is a forgetting factor.
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Fig. 4. Residual errors produced by the OP Method designed FLS
(dash–dotted line), and residual errors produced by the RLS-designed FLS
(solid line).

Using a method such as the OP (see, also, [42]), we
construct a set of fuzzy rules of the same form as in Section II,
and subsequently a FLS of the form of (7). Collecting allin
an -dimensional vector , and all in an -dimensional
vector , we can write (7) in a vector form as

(13)

Since is linear in , the RLS algorithm [16] can be used to
update the centers of the consequent fuzzy sets. The recursions
for can be obtained by minimizing in (12), given
that is of the form in (7). If we let denote
the FBF vector at time instant, the recursions are given by
[34], [42]

(14)

(15)

(16)

for Matrix is initialized to , where
is an identity matrix, and is a small positive constant.
The initial value of , and the values of the fixed system
parameters, can be selected from linguistic information, or
from the OP method, so that the supports of the resulting
membership functions cover the corresponding universes of
discourse.

We employed an RLS-designed system with 100 rules
(initially obtained from the OP method) and three inputs,

, to produce single step forecasts
of the -component of the Duffing equation (see Fig. 3(b)).
The out-of-sample mean-squared error for the RLS-designed
system was , and the standard deviation
of the residuals was . Fig. 4 depicts the
pointwise residual errors produced by the OP designed FLS
(dash–dotted line), and the pointwise residual errors produced
by the RLS designed FLS. Clearly, performance of the RLS
FL forecaster is better than that of the OP forecaster.

C. Back-Propagation (BP) Method

For the development of the BP training algorithm for
updating the design parameters of a FLS, we focus on a
system with Gaussian antecedent and consequent membership
functions, product inference, and height defuzzification, for
which:

(17)

(18)

Given an input–output training pair and
, we wish to design a FLS in the form of (17) such

that the following error function is minimized:

(19)

It is evident from (17), that is completely characterized
by , and . Using a steepest descent algorithm to
minimize , it is straight forward to obtain the following
recursions to update all design parameters of a FLS:

(20)

(21)

(22)

where denotes theth basis function. Equations (20)–(22)
are referred to as a backpropagation algorithm because of their
dependence on error .

Singleton FLS’s, and the BP update recursions can be
generalized to the nonsingleton FLS case [34]; nonsingleton
FLS’s can also be trained to account for uncertainty at the
input, by training for a parameter proportional to the spread
(or width) of the input fuzzy sets.

A 100-rule, three input BP-trained FLS, designed as a single
step predictor of the -component of the Duffing equation
[see Fig. 5(a)], had out-of-sample mean-square error
0.000 48, and residual standard deviation 0.0219. The
input and output variables were the same as the OP- and RLS-
trained FLS’s, and the initial parameter values used in the BP
algorithm were determined using the OP method. A total of
700 parameters [(2 per input3 inputs 1 consequent center)

100 rules] were updated using the BP algorithm.
For this data, the RLS FL forecaster outperformed the BP FL

forecaster. This is not a surprising result, because even though
all the design parameters of the BP trained FLS are updated,
the BP algorithm converges (typically to a local minimum)
much slower than the RLS algorithm.
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(a)

(b)

Fig. 5. (a) Single step prediction of they-component of the Duffing equation
(dash–dotted line) with a back-propagation designed FLS. (b) Single step
prediction of they-component of the Duffing equation (dash–dotted line)
with an SVD-QR designed FLS.

D. Singular-Value-QR Decomposition Method

In this section, we show that, by appropriate analysis of
a FBF matrix , we can extract useful information about
the FLS, so as to design systems with optimally selected

’s that have minimal redundancy in their rulebase. The
FBF matrix can be formed by evaluating each FBF

, at points and then ordering them in an
matrix

...
(23)

where , , .

It is well known that if the rank of is less than , then
the least-squares problem

(24)

has no unique solution. Several orthogonalization algorithms
can be adapted to handle this [4], but the only reliable way
to treat rank deficiency is by the computation of thesingular
value decomposition(SVD) of [13]. Furthermore, the SVD
provides a natural way to separate a space into dominant and
subdominant subspaces. If we view the FBF matrixas a
span of the input subspace, then the SVD decomposes the
span into an equivalent orthogonal span, from which we can
identify the dominant and subdominant spans [40], i.e., we
can identify which FBF’s contribute the most to the system,
and how many of them are needed to effectively represent the
system. The FBF’s that contribute the least can be discarded,
and a reduced, parsimonious system can be designed. Note that
the SVD approach only reorders the original FBF’s to form
a set of independent FBF’s; thus, it preserves the meaning of
linguistic information initially incorporated into the system.

Let , and denote the rank of .
The SVD of is given by [16]

(25)

where is an matrix of orthonormalized eigenvectors
of is an matrix of orthonormalized eigenvec-
tors of and denote the column vectors of and ,
respectively, and is the diagonal matrix

, where denotes theth singular value of , and
.

The pseudoinverse of is given by [16]

(26)

where . The optimal centers of
the consequent fuzzy sets which represent the solution to (24),
can then be calculated, as

(27)

Out of the many vectors that solve the least-squares problem
in the rank deficient case, the one defined by (27) is unique
in that it simultaneously satisfies two requirements [12]: 1) it
is optimal in a least-squares sense and 2) it has the smallest
Euclidean norm.

Assuming that thenumerical rankof is given by , the
minimum norm solution for can be approximated by

(28)

where minimizes

(29)

and . Replacing with can be
viewed as filtering out very small singular values, which is
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especially useful in cases where the FBF matrix is formed
using noisy data. Small singular values are also associated
with redundant factors with singular values larger than the
ones due to noise, but considerably smaller than the largest
singular value, . In such a case, it would not be desirable to
construct a system such as which includes all redundant
factors; instead, a system can be designed, where has

nonzero components (i.e., may have less than
components). The system can be viewed as reducing
(or eliminating) the redundancy among the factors (FBF’s)
comprising the underlying model, as reflected in the initial FBF
matrix determination. The location of the nonzero components
of can be used to determine a subset of theinitial FBF’s,
which are used to approximate the desired response.

Although several subset selection methods exist [4], a
singular value decomposition method is preferable in rank
deficient problems [13]. Here, we use the following algorithm
that is similar to the one in [11], [13] to select a set of
independent FBF’s that minimize the residual error in a least-
squares sense.

(1) Determine a numerical estimate of the rank of
the FBF matrix by calculating the singular value

decomposition , and select .

(2) Calculate a permutation matrix such that the columns
of the matrix in

(30)

are independent. The permutation matrixis obtained
from the QR decomposition of the submatrix comprised
of the right singular vectors, which correspond to the
orderedmost-significantsingular values.

(3) Approximate with where

(31)

so that , and minimizes

(32)

Given , and , the following algorithm
computes a permutation matrix and a vector such
that the first columns of are independent and

(33)

is minimized.

• Calculate the SVD of and save .
• Estimate numerical and partition

(34)

where
, and . In many practical

cases, is much larger than ; thus, can be chosen
much smaller than the estimateof .

TABLE I
MEAN-SQUARED ERROR AND STANDARD DEVIATION OF OUT-OF-SAMPLE

RESIDUALS FOR THEPREDICTIVE MODELING OF THE DUFFING

CHAOTIC ATTRACTOR, USING THE SVD-QR DESIGN METHOD.

THE INITIAL FLS HAD M = 100 RULES IN ITS RULEBASE,

AND ANTECEDENT STANDARD DEVIATION EQUAL TO �F = 0.5

TABLE II
MEAN-SQUARED ERROR AND STANDARD DEVIATION OF OUT-OF-SAMPLE

RESIDUALS FOR THEPREDICTIVE MODELING OF THE DUFFING

CHAOTIC ATTRACTOR USING THE SVD-QR DESIGN METHOD.

THE INITIAL FLS HAD M = 100 RULES IN ITS RULEBASE AND

ANTECEDENT STANDARD DEVIATION EQUAL TO �F = 1

• Using QR decomposition with column pivoting, deter-
mine such that

where is a unitary matrix, and and form an
upper triangular matrix; then form , where

and .
• Determine such that is minimized.

Although the SVD-QR design method provides optimal
estimates of in a least-squares sense, it does not provide
any estimates for the remaining parameters of a FLS. The
backpropagation algorithm described in Section IV-C allows
us to do that. Once backpropagation training is completed,
the SVD-QR method can be used again with the updated
parameters, to recalculate.

We employed the SVD-QR method to produce single step
predictions of the -component of the Duffing equation [see
Fig. 5(b)]. We initially designed a FLS with 100 rules obtained
from the OP method as in Section IV-A, and three input
variables ; then, we used the
SVD-QR design method to reduce the number of rules. The
results are given in Tables I and II, for two different values
of antecedent standard deviation. Observe, from Table I, that
a 40-rule FLS achieves about the same performance as 100-
rule FLS (when 0.5), and, from Table II, that a 20-rule
FLS achieves about the same performance as a 100-rule FLS
(when 1).

Given the means of the antecedent membership functions,
the antecedent standard deviations determine the overlap be-
tween consecutive antecedents. They therefore determine the
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TABLE III
MEAN-SQUARED ERROR AND STANDARD DEVIATION OF OUT-OF-SAMPLE

RESIDUALS FOR THEPREDICTIVE MODELING OF THE DUFFING CHAOTIC

ATTRACTOR USING THE SVD-QR DESIGN METHOD AFTER THESYSTEM WAS

FIRST INITIALIZED USING THE BP METHOD. THE INITIAL FLS HAD

M = 100 RULES IN ITS RULEBASE AND ANTECEDENT STANDARD

DEVIATION PRIOR TO RUNNING THE BP METHOD, EQUAL TO �F = 1

smoothness of the interpolation, or approximation surface
generated by the fuzzy system, and how well the antecedents
cover their corresponding input space. From Tables I and II, we
observe that for 100 rules, the system with smaller antecedent
standard deviation, , performs better than the system with
larger one, . But when the number of rules is reduced
to five, the performance of degrades abruptly, whereas

performs reasonably well, in comparison to the initial
systems with all the rules included. This is due to the fact that
for a small number of rules, the input space of is not
sufficiently covered, whereas is still able to generate a
smooth approximation surface.

Fig. 6(a) and (b) depicts the normalized sum of singular
values corresponding to and , respectively. Because
of the greater antecedent standard deviation, there exists a
higher degree of overlap, and thus more redundancy in the
rulebase of . Observe that after the fifth singular value, the
contribution of the remaining singular values to the normalized
sum is very small, whereas in the case of there still exist
significant singular values after the fifth one. This implies that
we can find a smaller subset of rules that could represent
rather than .

In another experiment, we designed an initial FLS with 100
rules and three inputs, again using the OP method, which was
then updated using the BP method, and then further refined
using the SVD-QR method. Table III summarizes the results
for different number of rules, after employing the SVD-QR
method. Observe, by comparing Table III to Tables I and II,
that performance is usually better for a combined design than
for just the SVD-QR design.

V. CONCLUSION

The ability of FLS’s to produce accurate models of com-
plicated systems is not surprising, since they can uniformly
approximate any real continuous function on a compact set
[33]. The uniform approximation theorem guarantees the ex-
istence of a FLS capable of approximating a given function to
any degree of accuracy, but does not tell us how to obtain that
system. However, since FLS’s are trainable, we can begin with
an initial system, which can be updated to come very close to
the desired FLS. We have given a sample of the many training
methods available for designing FLS’s, and have shown that
some of them can be used in conjunction with each other, to
produce improved results.

(a)

(b)

Fig. 6. (a) Normalized sum of singular values for SVD-QR designed system,
with �F = 0.5. (b) Normalized sum of singular values for SVD-QR designed
system, with�F = 1.

Selection of which design method to use should be based
on the particular problem to be solved, and the advantages
and disadvantages of each method. The OP method is a quick
and simple way to design a FLS, when a very high degree of
accuracy is not critical. It does however provide good insight
about how a FLS can be set up, and it can be used to initialize
more sophisticated design methods. When the system designer
can provide fairly good choices for the antecedent parameters,
the RLS design method can be used to estimate the centers of
the consequent fuzzy sets. The RLS method converges very
fast, and can be used to update a FLS in slowly varying
nonstationary environments. In general, it can be viewed as
an effective tool for designing very accurate fuzzy systems,
especially when compared to the OP method.
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Backpropagation trained FLS’s also belong to the family
of adaptive systems. They can be particularly useful in cases
where complex interaction among independent variables ne-
cessitates training for all system parameters. Solutions arrived
at by BP training can be conceivably better than solutions
produced by other methods, but more often than not, they
are only locally optimal (i.e., the algorithm becomes trapped
at a local minimum on the error curve, and can never reach
the global minimum). BP trained FLS’s are typically slow to
converge, and their overall performance depends on the initial
values of the system parameters. However, as is evidenced by
the examples presented in this paper, they can still be very
useful in producing good models of complicated processes,
or even in providing improved initial parameter values for
another design method used in conjunction with BP.

The SVD-QR method is a very powerful method that allows
us to design highly accurate and parsimonious FLS’s, given
little training data. Unlike the other training methods, the SVD-
QR method can be used to: 1) obtain an estimate of the number
of rules that have a significant contribution in the fuzzy model,
given an initial set of rules; 2) select the best possible subset
of rules from the initial set of rules; and 3) obtain an estimate
of the vector containing the centers of the consequent fuzzy
sets that is both optimal in a least-squares sense, and has the
smallest Euclidean norm. The disadvantage of the SVD-QR
method is that it cannot be used to adaptively update parameter
estimates as new information becomes available.

It should also be noted that these training methods can be
extended to design and train nonsingleton FLS’s, which are a
generalization of singleton FLS’s.
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