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Nonsingleton Fuzzy Logic Systems:
Theory and Application

George C. Mouzouris and Jerry M. Mendel,Fellow, IEEE

Abstract—In this paper, we present a formal derivation of
general nonsingleton fuzzy logic systems (NSFLS’s) and show
how they can be efficiently computed. We give examples for
special cases of membership functions and inference and we show
how an NSFLS can be expressed as a “nonsingleton fuzzy basis
function” expansion and present an analytical comparison of
the nonsingleton and singleton fuzzy logic systems formulations.
We prove that an NSFLS can uniformly approximate any given
continuous function on a compact set and show that our NSFLS
does a much better job of predicting a noisy chaotic time series
than does a singleton fuzzy logic system (FLS).

Index Terms—Fuzzy control, uniform approximation.

I. INTRODUCTION

A fuzzy logic system processes crisp data at the input and
produces crisp data at the output. Therefore, afuzzifier

is used at the front of the system to convert crisp data
to fuzzy data, and adefuzzifier is used at the output of
the system to convert fuzzy data into crisp data. The most
widely used fuzzifier is the singleton fuzzifier [13], [35],
[37] mainly because of its simplicity and lower computational
requirements; however, this kind of fuzzifier may not always
be adequate, especially in cases where noise is present in
the training data or in the data which is later processed by
the system. A different approach is necessary to account for
uncertainty in the data, which is why we direct our attention in
this paper at thenonsingletonfuzzifier and nonsingleton fuzzy
logic systems (NSFLS’s).

Nonsingleton fuzzifiers have been used successfully in a
variety of applications [1], [10], [25], [28], [31], [33]. In neural
fuzzy systems [1], [10], vectors of fuzzy sets are used both to
train a fuzzy neural network and as inputs during processing.
In [25], an optimizing control method for optimizing the fuel
consumption rate of a marine diesel engine utilizes empirical
rules that are expressed by fuzzy numbers. Nonsingleton input
has also been used in turning process automation [31] to
represent a human operator’s actions in the fuzzy rule base,
in the design of fuzzy control algorithms [28], and fuzzy
information and decision-making [33]. These methods are
largely heuristic and provide no closed-form expressions for
fuzzy logic systems; hence, their generalizations are very
difficult.

Manuscript received July 8, 1994; revised February 26, 1996. This work
was supported by the University of Southern California under Grant MIP-
9 122 018 of the National Science Foundation.

The authors are with the Signal and Image Processing Institute, Department
of Electrical Engineering-Systems, University of Southern California, Los
Angeles, CA 90089 USA.

Publisher Item Identifier S 1063-6706(97)00038-6.

In this paper, we develop a quantitative formulation of
an NSFLS and its efficient computation. This formulation
provides a tool for accounting for uncertainty in either the
training data or the input to the system. In Section II, we give
a brief discussion on nonsingleton fuzzification. In Section III,
we derive from first principles the continuous and discrete
forms of NSFLS’s, and show how and the conditions under
which a NSFLS reduces to a singleton fuzzy logic system
(FLS). We also quantify the difference between the out-
put fuzzy sets for nonsingleton and singleton fuzzification,
show how our NSFLS can be expressed as a nonsingleton
fuzzy basis function (FBF) expansion, and, present exam-
ples for i) product and minimum inference and Gaussian
input, antecedent, and consequent fuzzy sets, and ii) minimum
inference and triangular input, with parabolic antecedents
and consequents. In Section IV, we show that our NSFLS’s
uniformly approximate any given continuous function on a
compact set. In Section V, we apply our NSFLS to the
prediction of a noisy Mackey–Glass chaotic time series and
show, by means of simulations, that the NSFLS is much more
successful in producing accurate forecasts of that series than
is a comparable singleton FLS. In Section VI, we draw our
conclusions.

II. THE NONSINGLETON FUZZIFIER

Fuzzy sets have been interpreted as membership functions
[41] that associate with each elementof the universe of

discourse , a number in the interval [0, 1]

(1)

A fuzzifier maps a crisp point into a fuzzy set

1) In the case of asingleton fuzzifier, the crisp point
is mapped into a fuzzy set with support where

for and for
i.e., thesingle point in the support of with nonzero
membership function value is

2) In the case of anonsingleton fuzzifier, the point
is mapped into a fuzzy set with support where

achieves maximum value at and decreases
while moving away from We assume that fuzzy
set is normalized so that

Nonsingleton fuzzification is especially useful in cases
where the available training data, or the input data to the
fuzzy logic system, are corrupted by noise. Conceptually, the
nonsingleton fuzzifier implies that the given input valueis
the most likely value to be the correct one from all the values
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in its immediate neighborhood; however, because the input is
corrupted by noise, neighboring points are also likely to be the
correct values, but to a lesser degree.

It is up to the system designer to determine the shape of
the membership function based on an estimate of the kind
and quantity of noise present. It would be the logical choice,
though, for the membership function to be symmetric about

since the effect of noise is most likely to be equivalent
on all points. Examples of such membership functions are:
1) the Gaussian where the
variance reflects the width (spread) of , 2) triangular

, and 3)
where and are, respectively, the

mean and spread of the fuzzy sets. Note that larger values of
the spread of the above membership functions imply that more
noise is anticipated to exist in the given data.

III. N ONSINGLETON FUZZY LOGIC SYSTEM FORMULATION

A. General Results

Consider a fuzzy logic system with a rule base ofrules,
and let the th rule be denoted by Let each rule have
antecedents and one consequent (as is well known, a rule with

consequents can be decomposed intorules, each having
the same antecedents and one different consequent), i.e., it is
of the general form

IF is and is and and is

THEN is

where and are the input and output
linguistic variables, respectively. Each and are subsets
of possibly different universes of discourse. Let and

Each rule can be viewed as a fuzzy relation
[42] from a set to a set where is the Cartesian product

itself is a subset of the Cartesian product
where

and and are the points in the universes of discourse
and of and

First, we present a system formulation for the continuous
case, and then for the discrete case. We also demonstrate
that in the case of theheight defuzzifier, the continuous and
discrete cases produce identical systems.is characterized
by a continuous multivariate membership function
and can be described by the following:

(2)

where denotes a-norm. denotes the union of individual
points of each set in the continuum [44].

Let the input to be denoted by where is a subset
of a -dimensional Cartesian product space and is given by

(3)

where are the fuzzy sets describing
the inputs.

Up to this point, the formulation is identical to that of the
singleton case. In the singleton case, though, it is assumed
that each input fuzzy set has nonzero membership value
only at a single point, which reduces to a set with a
single point In our treatment here we do not make
this assumption. Each input fuzzy set is represented by the
more general nonsingleton form in (3), thereby allowing any
uncertainty in the input to be represented in the system.

According to thecompositional rule of inference, the fuzzy
subset of induced by is given by the composition
of and

(4)

Note that all unions (denoted by in and over
are over the same spaces; therefore, we

can write as

(5)

Since the supremum is only over , then, by the
commutativity and monotonicity properties of a t-norm we
can rewrite as

(6)

Next, we recall that by definition, a-norm is a two-
place function from [44]; thus, we can consider
every -norm in (6) to be acting on a pair of membership
functions. The calculation of the-norm over all the points in
the corresponding spaces of the two membership functions is
easier to visualize if the membership functions are in the same
space. Therefore, we rewrite (6) in the following manner:

(7)

Note that the supremum in (7) is over all pointsin (in a
-dimensional Cartesian product space). By the monotonicity

property of a -norm [44], that supremum is attained when
each term in brackets attains its supremum. Let

(8)
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where Assuming that produced by
(8) is a function whose supremum can be evaluated, let
denote the point in where that supremum is attained; then
(7) becomes

(9)

where denotes a sequence of -norm operations.
Using the same procedure and rationale as in the con-

tinuous case, we can derive corresponding expressions for
discrete NSFLS’s. Each and are finite
(and, thus, countable), and theth antecedent membership
function, and consequent membership function have
nonzero membership values at discrete points
and respectively. The th rule is, therefore,
given by

(10)

where denotes the union of the individual points of each
set. The -dimensional input to is given by

where now Using the composi-
tional rule of inference and the commutativity and monotonic-
ity properties of a -norm, we can write the discrete output
fuzzy set as

(11)

From the finiteness of each universe of discourse the
supremum is the same as the maximum; therefore, we need
to calculate the maximum over all of the parenthetical
term in (11). That term will be maximized when every term

(12)

is maximized. If the global maximum of each
can be evaluated, then

(13)

which is the discrete counterpart to (9).
Because our FLS has rules, the final output fuzzy set

is obtained by -conorm aggregation of the individual outputs
of each rule, i.e.,

(14)

where denotes -conorm -norm) [18], [44].

Kosko [13] has utilized arithmetic addition as a means of
aggregation instead of a-conorm. In most cases, this produces
a central-limit-theorem effect that approximates a unimodal
fuzzy set. The smaller the spread of this set, the higher the
probability that the defuzzified value is the correct one. This
additive structure is encountered in many-conorms, which
impose certain conditions (i.e., bounded sum) or normalization
to keep the result in [0, 1] (e.g., Einstein sum, algebraic sum,
Hamacher sum [44]).

We will use a special case of an additive fuzzy logic
system, one that uses a weighted additive combination of
the points where each output fuzzy set becomes a maximum;
it is the modifiedheight defuzzifier of [11] which was also
proposed by Wang [35], [36]. Let denote the point in each
individual output fuzzy set such that and let be
proportional to the spread of Then, the modified height
defuzzifier leads to the following output for our nonsingleton
system

(15)

The spread of the output fuzzy set is proportional to the
amount of uncertainty that is close to the point where

(e.g., in the case of Gaussian consequent fuzzy
sets could be chosen to be the standard deviation); thus,
if is very small (high degree of confidence), then the
corresponding point is more heavily weighted than if is
very large. For the case of the modified height defuzzifier, the
discrete nonsingleton fuzzy logic system (with rules in its
rulebase), has the form of (15) with replaced by
and, assuming fine enough discretization, will give identical
results as the continuous system.

By defining the following nonsingleton FBF’s

(16)

we can express our nonsingleton system in (15) as the follow-
ing fuzzy basis function expansion

(17)

The modified height defuzzifier is a simple and fast method
to implement a general FLS; however, other defuzzification
methods that have different properties can also be used, e.g.,
center-of-area, center-of-sums, and first-of-maxima(see [11]
for an overview and comparison of different defuzzification
methods).

To contrast the nonsingleton and singleton discrete cases,
and also to show that the singleton case is a special case of
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(11), we assume (as mentioned before) that the input fuzzy
sets are normalized. Consequently, for each input fuzzy set

there exists at least one point such that
In addition, we assume that

is unique in (extension to multiple such points is easy);
then, and

which is true for all -norms. Consequently,
the general nonsingleton case in (11) can be decomposed into
contributions of the singleton components and the remaining
components with membership values less than unity

(18)

where “ ” denotes union. If the inputs are indeed singletons,
then the term on the right-hand side of “” becomes zero
and the supremum is no longer necessary, in which case (18)
reduces to the familiar singleton case, namely

(19)

Equations (18) and (19) show that in the nonsingleton system
the scaling of the output fuzzy set for each rule will, in general,
be different than in the case of a singleton system.

A general expression for quantifying the scale factor differ-
ence can be found as a direct consequence of
(18) and (19), i.e.,

(20)

where, again “ ” denotes union, but “ ” denotes arithmetic
subtraction.

The most widely used subclasses of FLS’s are those with
product or minimum inference as a-norm and with Gaussian
or triangular membership functions. These subclasses are
considered next.

B. Product Inference

The th input fuzzy set and the correspondingth an-
tecedent are assumed to have the following forms:

(21)

and “ ” in (11) denotes algebraic product, i.e.,

(22)

By maximizing the function

(23)

we find that it is maximum at

(24)

Substituting (24) into (22), the latter becomes

(25)

An important special case occurs when all input points
for each input variable have the same level of uncertainty
(after they are fuzzified using the nonsingleton fuzzifier) so

In this case, we also set and, therefore

(26)

For the special case of product inference, Gaussian mem-
bership functions, and equal uncertainty on all inputs, the
nonsingleton FBF’s given by (16) become

(27)

When the uncertainty of the input is zero, and (26)
reduces to the singleton case, i.e., In this case,
each is unity [see (21)] and,
therefore, so (25) reduces to

(28)
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(a) (b)

Fig. 1. (a) SISO FLS: composition of rule with singleton input and corresponding output. (b) SISO NSFLS: composition of rule with Gaussian input and
corresponding output. This figure also illustrates (25) and (26) for a one-rule system(p = 1;m

F
= 40, �

F
= 10, x0

1
= 25, �X = 7;m

G
= 50, and

�
G

= 15) for Gaussian membership functions. Equation (25) reduces to (19) if the input is singleton with “�” replaced by product.

and the NSFLS in (15) reduces to the following singleton FLS:

(29)

Observe that we could have relabeled to Com-
paring (15) and (29), we see that nonsingleton and singleton
FLS’s are structurally the same.

To illustrate the differences between a NSFLS and a single-
ton FLS, we present the case of a one-rule single-
input single-output (SISO) FLS with Gaussian membership
functions and product inference. For the nonsingleton system,
the input is also fuzzified using a Gaussian membership
function. Fig. 1 shows the output fuzzy sets corresponding
to each system. Observe the Gaussian nature in Fig. 1(b) of
the product function and the location of its maximum
value at In this case, the output membership
function for the NSFLS is of greater maximum height than
that of the singleton FLS.

Fig. 2(a) demonstrates (20) for product inference and Gauss-
ian membership functions. Fig. 2(b) demonstrates (20) for
parabolic antecedent
and triangular input membership functions, for both minimum
(“ ”, “ ”) and product (“ ”, “ ”) inference. The bimodal
curves in Fig. 2 indicate the scale factor difference between
the two systems as the input sweeps over the entire universe
of discourse of the antecedent membership function. The
larger amplitude scale factor difference curves correspond to
a nonsingleton input with higher level of uncertainty

whereas the smaller amplitute difference curves cor-
respond to nonsingleton input with lower level of uncertainty

When the input singleton and the mean of
the corresponding nonsingleton input are at the mean of the

antecedent [i.e., so that (see (24)],
the difference in the scale factor is zero.

Figs. 1 and 2 clearly imply that (especially in the cases of
more complex systems with more than one rule and multiple
inputs) the defuzzified nonsingleton system output may be
significantly different than the corresponding singleton system
output.

Fig. 3(a), which is a direct implementation of (27) (with
, , and

for compares the fuzzy basis
functions in a singleton system versus the fuzzy basis functions
in a nonsingleton system. When the degree of uncertainty in
the Gaussian input is large, the basis functions of (27) (shown
in Fig. 3(a) by the dash-dotted line) are significantly different
than in the singleton case (solid line). Note that, when the
uncertainty at the input is small, then the nonsingleton case is
essentially identical to the singleton case, and the nonsingleton
(NS) FBF’s plotted in Fig. 3 are indistinguishable from the
singleton FBF’s. For the example presented here, the higher
uncertainty input had variance of the order of the variance
of the antecedents, whereas the lower uncertainty input had
variance about one twentieth of the variance of the antecedents.
Fig. 3(b) depicts the fuzzy basis functions for a singleton
(solid line) and a nonsingleton FLS with four rules, product
inference, and triangular membership functions. Observe that
the two exterior FBF’s saturate at unity.

It should be noted that the FBF’s given in these examples
are symmetric because the centers of the antecedent mem-
bership functions were equispaced. In general, FBF’s are not
symmetric.

Greater uncertainty in the input not only “fires” rules at a
higher level than a singleton system [(20) and Figs. 1 and 2],
but it also usually fires more rules than a singleton system
would. This is due to the fact that a nonsingleton input
may have membership (or nonzero subsethood [12]) in more
antecedent fuzzy regions than a singleton input. For example,
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(a) (b)

Fig. 2. (a) Scale-factor difference between SISO singleton and nonsingleton systems over the entire input range for one antecedent. For higher levels
of uncertainty in the input (represented by larger variance in the Gaussian nonsingleton input), the scale factor difference is larger. This difference in
scale factors is also evident in Fig. 1 for one particular case of singleton and nonsingleton inputs. The horizontal axis represents the means of the
Gaussian input in the nonsingleton case and the location of the singleton input in the singleton case. (b) Scale-factor difference between SISO singleton
and nonsingleton systems over the entire input range for one parabolic antecedent and triangular input (“�:” and “��” represent minimum inference
and “�” and “+” represent product inference).

a vertical line at in Fig. 3(a) intersects three singleton
FBF’s and four nonsingleton FBF’s.

During the review process, one of the reviewers observed
that in the special case of Gaussian membership functions and
product inference, it is sometimes possible to interpret the
NSFLS as a SFLS. This can be easily seen by substituting (26)
into (23) and carrying out some simple algebraic calculations.
Of course, even then that system contains the same information
about the nonsingleton input set. This observation, however, is
not true in general, e.g., the case of parabolic antecedent and
triangular membership functions with any of the commonly
used -norms. One of the strengths of fuzzy logic is that fuzzy
system formulas can be described by meaningful linguistic
rules, and the rules can be described by an underlying logic.
Shifting fuzziness from the input into rule antecedents changes
the meaning of rules and in many applications this does not
make alot of sense (see, for example, [44, pp. 185–189]). In
many other applications, the input can only be defined as a set
or an interval [21], [23], [43].

C. Minimum Inference

Now, we let “ ” in (11) be the -norm ‘min’, in which case
in (12) is

(30)

for finite universes of discourse. As in the case of the algebraic
product -norm, the term in the parenthesis in (11) is maxi-
mized when every grouped pair is a maximum, i.e.,
must be maximized over all and all

For the input fuzzy set to activate the fuzzy rule
at some of the points in the support of must

coincide with some points in the support of Let this
set of points define the closed interval such that

and (Fig. 4). Without loss of

generality, let be strictly increasing and
be strictly decreasing on the interval and, conse-
quently, on any closed subintervals [In the
case of being a proper subset of i.e.,

and for at
least one or if then obviously

]. Let be the point
of intersection of and From the monotonicity
conditions on the membership functions in these intervals we
have

(31)

Thus

(32)

Similarly

(33)

so that

(34)

Consequently, becomes a maximum at the point
of intersection of the two membership functions, which is
also intuitively satisfying. For example, for the previously
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(a) (b)

Fig. 3. (a) Fuzzy basis functions for nonsingleton (dash-dotted line) and singleton fuzzy logic systems with four rules, for Gaussian input and antecedent
membership functions, and for product inference. (b) Fuzzy basis functions for nonsingleton (dash-dotted line) and singleton fuzzy logic systems with
four rules, for triangular input and antecedent membership functions, and for product inference. The antecedent membership functions were chosen to
be the same in the NS FBF’s and singleton FBF’s.

Fig. 4. Membership functions of nonsingleton fuzzy input�X (xk;i ) and
corresponding antecedent�

F
(xk;i ), their product and minimum.

described Gaussian membership functions (21), by equating
their exponents and solving a second-order equation, we find
the point of intersection to be given by

(35)

The output fuzzy set is computed exactly as in (25),
after replacing product withmin, and with the expres-
sion in (35). Fig. 5 depicts the fuzzy basis functions for a
singleton (solid line) and a nonsingleton FLS with four rules,
minimum inference, parabolic antecedent, and triangular input
membership functions.

The complete solutions for the maximization of for
algebraic product and minimum-norms are summarized in

Fig. 5. Fuzzy basis functions for nonsingleton (dash-dotted line) and single-
ton fuzzy logic systems with four rules, for parabolic antecedent and triangular
input membership functions, and minimum inference.

Table I, along with the corresponding solutions for the case of
triangular membership functions. The centers of the antecedent
and input triangular membership functions are denoted by
and respectively, and their corresponding left and right
spreads by and Observe, from Table I, that

is easiest to calculate in the cases of product and
minimum inference with Gaussian membership functions, and
minimum inference with triangular membership functions.

IV. UNIFORM APPROXIMATION PROPERTY

OF NONSINGLETON FUZZY LOGIC SYSTEMS

Wang and Mendel [38] and Kosko [13] have shown that
specific subclasses of singleton fuzzy logic systems are uni-
versal approximators. In [38], the Stone–Weierstrass theorem



MOUZOURIS AND MENDEL: NONSINGLETON FUZZY LOGIC SYSTEMS 63

TABLE I
x
l
k;max FOR GAUSSIAN AND TRIANGULAR MEMBERSHIP FUNCTIONS IN THE CASES OF ALGEBRAIC PRODUCT

AND MINIMUM t-NORMS (DUE TO SPACE LIMITATIONS, DETAILS OF DERIVATIONS ARE OMITTED)

t-norms xlk;max for Gaussian membership functions xlk;max for triangular membership functions
Product �2X m

F
+ �2

F
mX

�2X + �2
F

if mX <m
F

and1 2 [mX ;m
F

]; thenxlk;max = 1

where1 �
mX +m

F
� l

F
+ rX

2
if l

F
>rX and1 62 [mX ;m

F
]; thenxlk;max = mX

if l
F

<rX and1 62 [mX ;m
F

]; thenxlk;max = m
F

;

if mX >m
F

and2 2 [mX ;m
F

]; thenxlk;max = 2

where2 �
m
F

+mX � lX + r
F

2
if lX >r

F
and2 62 [m

F
;mX ]; thenxlk;max = m

F

if lX <r
F

and2 62 [m
F

;mX ]; thenxlk;max = mX

if mX = m
F

= m; thenxlk;max = m

Minimum �X m
F

+ �
F

mX

�X + �
F

l
F

mX + rX m
F

l
F

+ rX
if mX � m

F

l
F

mX + rX m
F

l
F

+ rX
if mX � m

F

(involving algebras of functions) was used for approximations
in the uniform topology on a compact set. This result was
proven only for singleton FLS’s with product inference and
Gaussian membership functions. In [13], continuity was used
to prove uniform approximation capability of singleton ad-
ditive systems. Buckley has also used the Stone–Weierstrass
theorem to show that Sugeno-type controllers are universal
controllers [3]. Additional results on the approximation capa-
bilities of different structures of FLS’s are presented in [9].
Other approaches parallel results from the neural networks
literature (such as in [14]).

Although (15) bears structural resemblence to Kol-
mogorov’s representation theorem [19], the two are quite
different. Kolmogorov’s theorem (which resolved Hilbert’s
13th problem) provides a representation of a continuous
function of several variables defined on an-dimensional
cube by sums and superpositions of continuous functions of
one variable. In contrast to fuzzy basis functions (16), the
nonlinear functions employed in Kolmogorov’s theorem, as
well as in the subsequent improvements of that theorem by
Lorentz [19] and Sprecher [32], are highly nonsmooth and
strictly increasing. Even though these nonsmooth functions
can be viewed as limits of uniformly converging series of
smoothsigmoidal-type functions [15], [16] the monotonicity
requirements are too restrictive for our basis functions.

Utilizing concepts from real analysis [30], we will show that
a NSFLS can uniformly approximate any continuous function

on a compact set. This approach includes the
systems described in [38] as a special case.

Definition 1: Let
form a partition of Then, the largest partition interval in

is given by

Definition 2: Let denote the set of points of support and
the mean of a one-dimensional convex fuzzy set with

membership function and The left
spreadof the fuzzy set is defined as and
the right spreadis defined as For fuzzy
sets with infinite support and strictly decreasing membership
values while moving away from (such as the Gaussian),
the left and right spreads are defined as

where
and is a small, nonzero membership value. Alternatively,

where is the (finite)
-level set of the fuzzy set with infinite support. Clearly, for

symmetric fuzzy sets, As has been illustrated in (2)
and (3), the -dimensional antecedent and input membership
functions can be composed from their correspondingone-
dimensional fuzzy sets.

The following definition imposes certain restrictions on the
type of membership functions that can be used and some of
their parameters.

Definition 3: The class ofadmissibleantecedent and input
membership functions defined onshould have the following
properties:

[P1] membership functions should be normalized convex
fuzzy sets (fuzzy numbers) or fuzzy intervals;

[P2] membership function spread should be no larger than
, but large enough so that the union

of the supports, or the-level sets of all antecedents
cover the entire input space; input membership func-
tion spread should not be larger than the antecedent
membership function spread.

Fig. 6 shows examples of admissible and inadmissible mem-
bership functions.
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Fig. 6. Examples of admissible (solid and dotted lines) and inadmissible
(cross and dash-dotted lines) membership functions.

Theorem: Let nonsingleton fuzzy logic system in (15)
be defined for admissible membership functions and any-
norm such that

Then, any given continuous function
on a compact set can be uniformly approximated by

as becomes sufficiently large.
Note that in the case of minimum-norm the conse-

quent fuzzy sets must also be symmetric. Note, also, that
the condition

is satisfied by -norms such as algebraic product,
Einstein product, bounded difference, Hamacher product, and
for consequent membership functions of arbitrary shape.

Proof: (See Appendix A.)
This is an existence theorem which gives us assurance that

there exists an NSFLS capable of uniformly approximating any
continuous function on compact a. Although the construction
of the proof provides some insight, it does not tell us how to
choose some of the parameters of the NSFLS—nor does it tell
us how many basis functions will be needed to achieve such
performance.

V. MODELING AND PREDICTION OF

COMPLEX SYSTEMS: CHAOTIC TIME SERIES

Several well-known algorithms exist [2], [5], [40] for the
calculation of dynamical and geometric invariants such as
fractal dimension (capacity, correlation, information) and Lya-
punov exponents of an underlying strange attractor of time
series. The largest Lyapunov exponent is essentially a measure
of how predictable a system can be from observations of
the past, whereas the fractal dimension is an indication of
the complexity of a system. Unfortunately, data requirements
and extreme sensitivity to noisy measurements make these
algorithms prohibitively expensive in practical applications.
Even if these invariants could be calculated accurately, they
still do not provide enough information for the construction
of a predictive model.

Other approaches attempt to construct a predictive model
based solely on the given time-series data. Several such
approaches (e.g., Gabor polynomials, linear prediction) have

Fig. 7. Sample waveforms of the Mackey–Glass chaotic time series
(� = 30) for two different, but very close, initial conditions (all values
in the initial value interval are set to 0.1 for the first waveform and to
0.100 001 for the second waveform). Observe that after a certain point, the
two realizations evolve completely differently.

been compared to prediction using feedforward neural net-
works with the best results occuring for the neural networks
[17]. In [35] it was shown that a numerical-fuzzy approach
based on a singleton FLS can give results equivalent to those
or even better than that of a neural network. Here, we show
that our nonsingleton FLS can significantly outperform an
equivalent singleton FLS in the predictive modeling of a
chaotic time series, especially in cases where either or both
the training data and input data are corrupted by noise.

Chaos is having an impact on many different fields including
physics, biology, chemistry, economics, and medicine [4], [6],
[29]. The chaotic time series that we examine is a model for
blood production due to Mackey and Glass [20]. This chaotic
time series is described by the following delay differential
equation that is now known as the “Mackey–Glass equation”:

(36)

For greater than 17, (36) exhibits chaotic behavior.
Chaotic behavior can be described as bounded fluctuations

of the output of a system with high degree of sensitivity to
initial conditions [4], i.e., trajectories with nearly identical
initial conditions diverge exponentially (note that exponential
divergence of two distinct trajectories does not imply unbound-
edness. Fig. 7 illustrates this kind of behavior). A system such
as the one in (36), exhibiting chaotic dynamics, evolves in a
deterministic manner. However, the correlation of observations
appears to be limited; thus, prediction of the state of the system
is particularly difficult [29].

To demonstrate the qualitative nature of the dynamical
system given by (36), we display representative portions of the
time series for different values of in Fig. 8(a) and (b). We
also depict the amplitude spectrum estimates of these repre-
sentative sections in Fig. 8(c) and (d), and their corresponding
two-dimensional phase plots in Fig. 8(e) and (f). From these
plots, we are able to distinguish periodic behavior for small

’s and chaotic behavior for larger’s. Most commonly, the
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. (a) and (b) Representative samples of the Mackey–Glass time series after letting transients relax. (c) and (d) Amplitude spectra plotted on a semilog
scale for the examples illustrated in (a) and (b). (e) and (f) Corresponding phase plots of the time series segments depicted in (a) and (b). (“d” in x(t � d)
on the vertical axis denotes the delay used in the Mackey–Glass equation; it is either 13 or 30.)

transition of a system from predictability to chaos occurs via
a cascade of bifurcations which are qualitative changes in the
limit sets of a system, where a limit set is the set of points
whose every neighborhood is repeatedly entered by the

solution of the differential equation as For
close to 17, which is the onset of chaos for the Mackey–Glass
equation, the bifurcations get closer and closer together until
the system breaks down into chaotic behavior.
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Fig. 9. Prediction results in the absense of noise, for 300 points of (36)
(x(1005) to x(1304); after allowing 1000 points for the transients to die
out). The solid line is the actual time series, whereas the dash-dotted line
shows the predicted estimates. In this case, the NSFLS and the singleton FLS
produce identical results. The same parameters of the singleton FLS used here
are also used in the subsequent cases when noise is added. All the common
parameters of the NSFLS and the singleton FLS are identical.

The largest Lyapunov exponent [6] which quantifies the
rate of divergence of the time series and, therefore, the degree
to which the system is predictable in the long term, can be
estimated using nonlinear regression [26]. If then the
system will exhibit chaotic behavior (this property makes it
possible to detect chaotic dynamics in a noisy environment
just by examining the sign of We estimated to be 0.007
for the Mackey–Glass equation with thus confirming
that the system is indeed chaotic.

We designed the NSFLS in (17) to be a single-step predictor
of the Mackey–Glass chaotic time series. Our design is based
on -training pairs that we obtained by simulating (36)
for using a finite-dimensional iterated mapping.
A higher order Adams–Bashforth integration algorithm [27]
with sufficiently small step size would be a good choice
for the simulation of (36) (note that for the higher order
algorithms to yield better results than the lower order ones, the
integration step should be chosen to be sufficiently small). In
our simulations, we assumed that only noisy measured values
of are available, namely
The input vector to our fuzzy logic system is

, so that the estimate of the
time series based on our NSFLS is given by

(37)

Fig. 9 depicts the prediction results in the absence of noise
for 300 points of (36) [ to after allowing
1000 points for the transients to die out], produced by our
singleton FLS using a numerical fuzzy algorithm (all fuzzy
rules were generated from the training data). Five hundred
input-output training pairs of five inputs and a single
output were used to construct the system; these were drawn
from to where the th input of the th training
pair was selected as and

the th output was selected as
The same numerical-fuzzy algorithm and number of training
pairs were used to construct a nonsingleton system of the form
of (15). All the common parameters between the singleton
and nonsingleton FLS’s were chosen to be the same. For
all simulations, in the NSFLS case was chosen equal
to the standard deviation of the additive noise. In a noise-
free environment for which the performance of
the nonsingleton system was identical to that of the singleton
system. As shown in Fig. 9, both systems can closely predict
(36) in the given range. Both systems were trained using the
one-pass method described in [37], with (basis
functions) and

Using the same common parameters for both systems (as
in the noise free case) we added zero-mean uniform noise
to the training and test sets and we retrained both systems.
Again, 500 input-output training pairs of five inputs and a
single output were used to construct the system drawn from

to as described above. Fig. 10 shows typical
prediction results for both the singleton and the nonsingleton
systems at signal-to-noise ratios (SNR’s) (defined as

where denotes standard deviation) of
0, and 10 dB. Fig. 11 summarizes the performance of the
nonsingleton and singleton systems for these SNR’s averaged
over 100 realizations. The average mean-squared error and
average standard deviation for each case are given in Table II.
Fig. 12(a) shows the prediction results based on our NSFLS
for 20 different realizations and SNR 0 dB, overlapped
on the same figure to give a visual representation of the
standard deviation of the predicted estimates. Fig. 12(b) shows
the prediction results based on the corresponding singleton
FLS for 20 realizations. It is evident from this figure that the
singleton FLS does not appear to be able to deal effectively
with the uncertainty during the prediction process due to
the noise in the training data and the input. Our NSFLS is
significantly more successful in producing better predicted
estimates of the chaotic time series.

Table III summarizes the average mean-squared errors and
average standard deviations for the same experiments as above,
but with parabolic antecedent and triangular input membership
functions and minimum inference. Observe that the results
in Tables II and III are quite similar, hence, the improved
forecasting ability of our NSFLS isnot limited to NSFLS’s
with Gaussian membership functions.

Note that no attempt was made to optimize the FLS’s used
here. Algorithms aimed at obtaining optimum or near-optimum
NSFLS’s are described in [24].

VI. CONCLUSIONS

We have presented the continuous and discrete cases
of a general NSFLS, and its efficient computation for
the special subclasses of Gaussian and triangular mem-
bership functions with product or minimum inference. We
have also developed a simple equation that describes the
scale-factor difference between singleton and nonsingleton
systems; it lets us examine and compare the behavior of
singleton and nonsingleton systems for different types of
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Typical prediction results (single realization) for nonsingleton and singleton fuzzy logic systems for different signal-to-noise ratios(solid line: actual
time series, dash-dotted line: predicted estimates), for 300 points of (36) (x(1005) to x(1304) after allowing 1000 points for the transients to die out).

inputs and uncertainty levels. We have also shown that
a NSFLS can be expressed as a linear combination of
nonsingleton fuzzy basis functions. Although, conceptually,
singleton and nonsingleton FLS’s are very different, the
latter does have essential structural similarities with the

former, and they become identical in the absence of noise
or uncertainty at the input. We have also shown that
the NSFLS (15) can uniformly approximate a continuous
function on a compact set, i.e., it is a universal approxima-
tor.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Averaged prediction results for 100 Monte Carlo runs (solid line: actual time-series, dash-dotted line: predicted estimates) for 300 points of
(36) (x(1005) to x(1304) after allowing 1000 points for the transients to die out). In all cases, the mean-squared errors and the corresponding standard
deviations are significantly smaller in the nonsingleton case (see Table II).

The utility of our NSFLS and its superiority over a sin-
gleton FLS was demonstrated through our example on the
prediction of a chaotic time series from noisy observations.
In all cases, our NSFLS significantly outperformed a cor-

responding singleton FLS. Both were trained in the same
manner with identical common parameters and were capa-
ble of closely approximating the time series in a noise-free
environment.
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(a) (b)

Fig. 12. (a) Prediction results for the NSFLS for 20 different noise realizations at 0 dB. (b) Prediction results for the singleton FLS for 20 differentnoise
realizations at 0 dB. These figures show that the standard deviation of the prediction results is much higher in the singleton case than in the nonsingleton
case. Predictions are given for 300 points of (36) (x(1005) to x(1304) after allowing 1000 points for the transients to die out).

TABLE II
AVERAGE STANDARD DEVIATIONS AND AVERAGE MEAN-SQUARED ERRORS FOR

DIFFERENT SIGNAL-TO-NOISE RATIOS, FOR SINGLETON AND NONSINGLETON

SYSTEMS WITH GAUSSIAN MEMBERSHIP FUNCTIONS. IN THE NOISE-FREE CASE,
THE AVERAGE STANDARD DEVIATION AND MEAN-SQUARED ERROR WERE

0.0168AND 2:8329� 10�4, RESPECTIVELY, FOR BOTH SYSTEMS

The fuzzification subsystem within a FLS lets us handle
uncertainty in a very natural way. It provides a mapping of
noisy data into , e.g., (26), that can be interpreted as
a form of nonlinear data prefiltering [22]. To date, there does
not seem to be a comparable way to handle uncertainty in a
feedforward neural network.

In summary, we have found NSFLS’s to be very promising
and an effective tool for dealing with uncertainty and for
designing systems with set-valued inputs totally within the
framework of fuzzy logic.

APPENDIX A
PROOF OFUNIFORM APPROXIMATION THEOREM

Proof: Uniform approximation requires that

(A.1)

is given by (15) and represents the crisp output
produced by the modified height method defuzzifier of the
nonsingleton system. Since is a compact subset of
continuity of implies uniform continuity [30]. Thus

(A.2)

TABLE III
AVERAGE STANDARD DEVIATIONS AND AVERAGE MEAN-SQUARED

ERRORS FORDIFFERENT SIGNAL-TO-NOISE RATIOS FOR SINGLETON

AND NONSINGLETON SYSTEMS WITH PARABOLIC ANTECEDENT AND

TRIANGULAR INPUT MEMBERSHIP FUNCTIONS. IN THE NOISE-FREE CASE, THE

AVERAGE STANDARD DEVIATION AND MEAN-SQUARED ERROR WERE

0.0159AND 2:5233� 10�4, RESPECTIVELY, FOR BOTH SYSTEMS

Construct a “grid” of points in such that

1) given any , there is a point in the grid so that
;

2) the family of open balls (each open ball is
centered at and has radius forms a finite open
subcover of i.e., so that assuming

is connected and and are nearest
neighbors

(A.3)

is obtained as outlined in Definitions 1–3. For
in (15), corresponds to the mean of the-dimensional
antecedent membership function andcorresponds to an upper
bound of the spread of each of its components. The image of
the center of each open ball underis given by Since

is a continuous function, the image of under in
will also be compact and connected and

(A.4)

Select fuzzy sets centered at such that the
set of points of support of covers
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and . Hence, covers Let
and ; then, and

From (A.2) and the triangular inequality

(A.5)

The distances of from and from are both bounded
by ; thus, can come arbitrarily close to and can
come arbitrarily close to By letting and approach
and , respectively, then (A.5) bounds the difference of their
corresponding images

Any point that is not a center of a fuzzy set belongs
to some therefore, the distance of its image from the image
of the center is given by (A.5): Let this
point be the point at which the functions in

in (15) are maximized.
Now suppose that activates rules. Then, we

have nonzero output fuzzy sets (and, thus, individual
centers) which are combined according to the modified height
method defuzzifier to produce the final system output. The
system output lies somewhere inbetween or exactly on the
centers of the output fuzzy sets and, consequently, on the
centers of the sets by construction. This is ensured by
the fact that for any the sum of the coefficients (16)
of each in (15) equals one, i.e., [Note
that from the properties of the most commonly used-norms
(algebraic product, Einstein product, bounded difference, and
Hamacher product) and (13) we know that the output fuzzy
set and the consequent fuzzy set of theth rule achieve
their maximum at the same point In the case ofminimum
as a -norm, is required to be symmetric.] We have already
shown that the distance between centersand is bounded
by thus, the distance of the output produced by the
nonsingleton fuzzy logic system (15) from the centroid of
is also bounded by i.e., Then, by the
triangular inequality

(A.6)

Thus, the nonsingleton fuzzy logic system in (15)
uniformly approximates

It should be noted that as the number of pairs
becomes arbitrarily large (i.e., then neighboring
antecedent centers and get arbitrarily close
and so do consequent fuzzy set centers and implying
that

The above proof includes the singleton FLS’s of [38] as a
special case. It can also be easily extended to nonsingleton
additive FLS’s [13].
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