56 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 1, FEBRUARY 1997

Nonsingleton Fuzzy Logic Systems:
Theory and Application

George C. Mouzouris and Jerry M. Mend€Ellow, IEEE

Abstract—In this paper, we present a formal derivation of In this paper, we develop a quantitative formulation of
general nonsingleton fuzzy logic systems (NSFLS's) and showan NSFLS and its efficient computation. This formulation
how they can be efficiently computed. We give examples for ,\ides a tool for accounting for uncertainty in either the
special cases of membership functions and inference and we sho L . . .
how an NSFLS can be expressed as a “nonsingleton fuzzy basicraining data or the input to the system. In Section II, we give
function” expansion and present an ana]y’[ica| Comparison of a brief discussion on nonsingleton fuzzification. In Section ”I,
the nonsingleton and singleton fuzzy logic systems formulations. we derive from first principles the continuous and discrete
We prove that an NSFLS can uniformly approximate any given forms of NSFLS'’s, and show how and the conditions under
continuous function on a compact set and show that our NSFLS \hich 4 NSFLS reduces to a singleton fuzzy logic system
does a much better job of predicting a noisy chaotic time series (FLS). We also quantify the difference between the out
than does a singleton fuzzy logic system (FLS). : 3

g yogie &Y (FLS) put fuzzy sets for nonsingleton and singleton fuzzification,
show how our NSFLS can be expressed as a nonsingleton
fuzzy basis function (FBF) expansion, and, present exam-
I. INTRODUCTION ples for i) product and minimum inference and Gaussian

. . . input, antecedent, and consequent fuzzy sets, and ii) minimum
fuzzy logic system processes crisp data at the input an#’

produces crisp data at the output. Therefordyzzifier Inference and triangular input, with parabolic antecedents

is used at the front of the system to convert crisp da?a{]d consequents. In Section IV, we show that our NSFLS's

to fuzzy data, and adefuzzifieris used at the output of uniformly approximate any given continuous function on a

the system to convert fuzzy data into crisp data. The mocsqmpact set. In Section V, we apply our NSFLS to the

widely used fuzzifier is the singleton fuzzifier [13], [35]7pred|ct|on of a noisy Mackey—Glass chaotic time series and

[37] mainly because of its simplicity and lower computationaﬁhow’ by means of simulations, that the NSFLS is much more

. ) o o successful in producing accurate forecasts of that series than
requirements; however, this kind of fuzzifier may not always

. . 7 5,2 comparable singleton FLS. In Section VI, we draw our
be adequate, especially in cases where noise is present in

the training data or in the data which is later processed 89nclu5|ons.

the system. A different approach is necessary to account for
uncertainty in the data, which is why we direct our attention in Il. THE NONSINGLETON FUZZIFIER

this paper at th@onsingletorfuzzifier and nonsingleton fuzzy = Fuzzy sets have been interpreted as membership functions

logic systems (NSFLS’s). px [41] that associate with each elemenof the universe of
Nonsingleton fuzzifiers have been used successfully ind&coursel/, a number.x (x) in the interval [0, 1]

variety of applications [1], [10], [25], [28], [31], [33]. In neural

fuzzy systems [1], [10], vectors of fuzzy sets are used both to px:U —[0,1]. 1

train a fuzzy neural network and as inputs during processing. - . . .

In [25], an optimizing control method for optimizing the fuel'E fuzzifier maps a cn;p point U |.nto a fu_zzy Se_tX €U

consumption rate of a marine diesel engine utilizes empiricall) N the case of aingleton fuzzifigrthe crisp point: € U

rules that are expressed by fuzzy numbers. Nonsingleton input 1S Mapped into a fuzzy se¥ with supportz;, where

has also been used in turning process automation [31] to #x(#:i) = 1for z; = @ and ux(z:) = 0 for z; # z,

represent a human operator’s actions in the fuzzy rule base, - thesmgle pOIn_t in the sgpport ofX with nonzero

in the design of fuzzy control algorithms [28], and fuzzy membership function value i8; = . _

information and decision-making [33]. These methods are?) In the case of aonsingleton fuzzifiethe pointz € U

largely heuristic and provide no closed-form expressions for 1S mapped into a fuzzy seX’ with support;, where

fuzzy logic systems; hence, their generalizations are very fix achieves maximum value at = = and decreases
difficult. while moving away fromz; = x. We assume that fuzzy

set X is normalized so thagx(z) = 1.
Manuscript received July 8, 1994; revised February 26, 1996. This work N ingl f ificati . il ful i
was supported by the University of Southern California under Grant MIP- onsingleton fuzzification Is especially useful In cases

9122018 of the National Science Foundation. where the available training data, or the input data to the
The authors are with the Signal and Image Processing Institute, Departn*ﬁpizy logic system, are corrupted by noise. Conceptually, the

of Electrical Engineering-Systems, University of Southern California, Los . e . . . . .

Angeles, CA 90089 USA. nonsingleton fuzzifier implies that the given input values

Publisher Item Identifier S 1063-6706(97)00038-6. the most likely value to be the correct one from all the values

Index Terms—Fuzzy control, uniform approximation.

1063-6706/97$10.001 1997 IEEE



MOUZOURIS AND MENDEL: NONSINGLETON FUZZY LOGIC SYSTEMS 57

in its immediate neighborhood; however, because the inputwhere X;, C Uy (k = 1,---,p) are the fuzzy sets describing
corrupted by noise, neighboring points are also likely to be tliee inputs.
correct values, but to a lesser degree. Up to this point, the formulation is identical to that of the

It is up to the system designer to determine the shape gifigleton case. In the singleton case, though, it is assumed
the membership functiopx based on an estimate of the kindhat each input fuzzy seX; has nonzero membership value
and quantity of noise present. It would be the logical choicenly at a single point, which reduced to a set with a
though, for the membership function to be symmetric abosingle pointz,. € U. In our treatment here we do not make
x since the effect of noise is most likely to be equivalerthis assumption. Each input fuzzy set is represented by the
on all points. Examples of such membership functions angtore general nonsingleton form in (3), thereby allowing any
1) the Gaussianx(z;) = exp[—(z — x;)?/202] where the uncertainty in the input to be represented in the system.
varianceo? reflects the width (spread) gfx (x;), 2) triangular According to thecompositional rule of inferencehe fuzzy
px(z;) = max (0,1 — [(z — z;)/c|), and 3) ux(z;) = subsetr of V induced byA € U is given by the composition
1/(1 + |(x — x;)/c|P) wherez and c are, respectively, the of A and R':
mean and spread of the fuzzy sets. Note that larger values of
the spread of the above membership functions imply that more
noise is anticipated to exist in the given data.

Y!'=AoR' = sup (A% R"). (4)
U
Note that all unions (denoted by) in A and R, over

IIl. NONSINGLETON FuzzyY LoGIC SysTEM FormuLATioN Ui,k = 1,---,p, are over the same spaces; therefore, we
can writeY'! as

A. General Results .
Consider a fuzzy logic system with a rule baseldfrules, Y= 4 /U1 /L A px, (1) * o px, (@)
and let thelth rule be denoted byk!. Let each rule have
antecedents and one consequent (as is well known, a rule with s pupn (1) 5 -5 g (3) % i (1) /() /(y)_
g consequents can be decomposed iptales, each having ! ’
the same antecedents and one different consequent), i.e., it is (5)

of the general form

Since the supremum is only over € U, then, by the
commutativity and monotonicity properties of a t-norm we
THENvisG! can rewriteY! as

where u;, k = 1,---,p, and v are the input and output .
linguistic variables, respectively. Eadf andG' are subsets ¥ = A e (y) * sup /L /L pix, (1) % o
of possibly different universes of discourse. gt C Uj, and ' 7

R':IFuyis Ff anduy is Fy and - - - andu, is I}

G' C V. Each rule can be viewed as a fuzzy relatifh % )/
pex, (Tp) * ppi(T1) * * g (2 x Y).

[42] from a setU to a setl” wherel is the Cartesian product () Fl( ) FP( »)/(®) )

U =U; x---xU,. Rlitself is a subset of the Cartesian product (6)

UxV ={(z,y):xcUyecV} wherex = (21,22, -, zp),

andz; andy are the points in the universes of discoutge Next, we recall that by definition, a-norm is a tvvp-
and V of uy, and v. place function from0, 1] x [0, 1] [44]; thus, we can consider

First, we present a system formulation for the continuo@ery t-norm in (6) to be acting on a pair of membership

case, and then for the discrete case. We also demonstfﬁfbctions' The galculation of thenorm over all th? points.in .
that in the case of theeight defuzzifierthe continuous and the corresponding spaces of the two membership functions is

discrete cases produce identical systefisis characterized easier to visualize if the membership functions are in the same
by a continuous multivariate membership functiog (z, 1), space. Therefore, we rewrite (6) in the following manner:
and can be described by the following:

R=[ e/

:/ / /“Fl(xl)*"'*ﬁbw(a:p) -</Ul.../Up[uxl(azl)*uF{(xl)]*___
v, Ju, Jv' O v

vi= / pigi(y) * sup
Vv xeu

* g (y)/ (2, ) 2 # [nx, (@p) * g (2p)]/ (w)) / (¥). @)
wherex denotes &-norm. / denotes the union of individual . ) o )
points of each set in the continuum [44]. Note that the supremum in (7) is over all poiatsn U (in a

Let the input toR! be denoted byd, where A is a subset P-dimensional Cartesian product space). By the monotonicity
of a p-dimensional Cartesian product space and is given byProperty of a¢-norm [44], that supremum is attained when

each term in brackets attains its supremum. Let
A= e Kook 3
/Ul /Up 25.¢1 (-Tl) Hx, (xp)/(iﬂ) 3) HoL (-Tk) = ux, (-Tk) * iy (-Tk) (8)
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wherequk,uXk,uFi € Uj. Assuming thatquk produced by  Kosko [13] has utilized arithmetic addition as a means of

(8) is a function whose supremum can be eV&Matedﬂ:ilé'Lp aggregatiqn i_nstead oftaconorm. In most cases, this progluces
denote the point i/, where that supremum is attained; the@ central-limit-theorem effect that approximates a unimodal

(7) becomes fuzzy set. The smaller the spread of this set, the higher the
l z probability that the defuzzified value is the correct one. This
Y :/ 1t (y) * Tz gt (Thsup) /(W) (9) additive structure is encountered in matygonorms, which
v

) impose certain conditions (i.e., bounded sum) or normalization
whereZ;, denotes a sequence pf- 1 £-norm operations.  y, Leep the result in [0, 1] (e.g., Einstein sum, algebraic sum,
Using the same procedure and rationale as in the cqQiamacher sum [44]).

tinuous case, we can derive corresponding expressions fo{ye will use a special case of an additive fuzzy logic
discrete NSFLS's. Eacl;, (i = 1,---,p) and V" are finit¢ gystem, one that uses a weighted additive combination of
(and, thus, countable), and theh antecedent membershipihe points where each output fuzzy set becomes a maximum;
function, .;, and consequent membership functigi have it is the modified height defuzzifier of [11] which was also
nonzero membership values at discrete points, - -+, zin;,  proposed by Wang [35], [36]. La}' denote the point in each
and y;, -+, ym, respectively. Theith rule R' is, therefore, ingividual output fuzzy set such that: (5') = 1, and lets! be
given by proportional to the spread ¢f.:. Then, the modified height

e m defuzzifier leads to the following output for our nonsingleton

R=3" 3" ppi(wn,)+- - system

i1=1 tp=1j=1

#pp (T, ) * G () /(@100 B2,000 05 Ty Us) Mo
(10) Zyl[%pzluQi (‘/Ijgx,sup)]/(él)2
. . . Y= fos(x) = =2 . (15)
where ¥ denotes the union of the individual points of each ne M
set. Thep-dimensional input ta?! is given by Z[T,f’:lu% (@ qup)]/ (82
ni np =1
“2:21 Zz:‘l Hx (L) 5, (20, )/ (2) The spread? of the output fuzzy set is proportional to the
B ! ) _amount of uncertainty tha' is close to the point where
where nows = (w14,, 22,4y, " Zp,i,)- USING the composi- 1y _ 1 (e.g., in the case of Gaussian consequent fuzzy

tional rule of inference and the commutativity and monotonig—etséz could be chosen to be the standard deviation); thus
ity properties of az-norm, we can write the discrete outputs o g very small (high degree of confidence), then the

fuzzy setY! as corresponding poin’’ is more heavily weighted than & is
m ny np very large. For the case of the modified height defuzzifier, the

Yi= ZNGZ (y;) * sup Z Z px (1) % discrete nonsingleton fuzzy logic system (with rules in its

i=1 TV Nir=1 dp=1 rulebase), has the form of (15) witt], _, - replaced byz}, ..

s px, (T ) * g (T15,) % - o and, assuming fine enough discretization, will give identical
' results as the continuous system.

By defining the following nonsingleton FBF's
“urglans, )@ | [ ). () B defining g nonsing
[Tk (2, oup)1/ (65)?
From the finiteness of each universe of discoutse the pilz) = = e b (16)
supremum is the same as the maximum; therefore, we need TP l §4)2
. . o= Hot (X, sup
to calculate the maximum over a#l € U of the parenthetical ;[ 1t (Thsup) 1/ (2

term in (11). That term will be maximized when every term
. we can express our nonsingleton system in (15) as the follow-
rat (@ri) = 1 (@hi) * i (T (12) ing fuzzy basis function expansion

i imi i {
is maximized. If the global maximumzj .. of each

por (7.4,) can be evaluated, then Mo
@ o) - Jus(@) =Y T'mi(@). (17)
=1
vi= Z [2Zel (yj) * lzykpzluQi (xgc,max)/(yj) (13)
j=1 The modified height defuzzifier is a simple and fast method
which is the discrete counterpart to (9). to implement a general FLS; however, other defuzzification

Because our FLS half rules, the final output fuzzy s&f methods that have different properties can also be used, e.g.,

is obtained byt-conorm aggregation of the individual outputsenter-of-area center-of-sumsand first-of-maxima(see [11]
of each rule, i.e., for an overview and comparison of different defuzzification
L2 M methods).

Y=Y3Y"t--+¥ (14 1o contrast the nonsingleton and singleton discrete cases,
where+ denotest-conorm (s-norm) [18], [44]. and also to show that the singleton case is a special case of
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(11), we assume (as mentioned before) that the input fuzBy Product Inference

sets are normalized. Consequently, for each input fuzzy setrg 1ih input fuzzy set and the correspondirigh an-

Xj there exists at least one poing.,, & Xj such that (ceqent are assumed to have the following forms:
px,(Zr,q.) = 1. In addition, we assume that, = xx,q,

is unigue in X (extension to multiple such points is easy); (210) = _(-Tk,ik —mx, )?
then, px, (Z1) = -+ = /vLXp(fp) =1, and ux, (T1) * - % X \Lk,ip ) = €XP —203( ,
1x,(Zp) = 1, which is true for allt-norms. Consequently, y y
the general nonsingleton case in (11) can be decomposed into o (@, — mFﬁ.)
o : . ri(ZTri) =exp | ———F=—— (21)
contributions of the singleton components and the remaining ke 20%,
components with membership values less than unity ¥
and “%” in (11) denotes algebraic product, i.e.,
Y =" e () sup | pupe (@) 5+ % gt (7) L SR
jz::l Y ger |TH P Y IEENGI(QJ)'%gg 2"'2[NX1($1,11)
Jj= 1= zP:
YD Y (@) o (20) %
e e g (@a)] e e, (Bp,,) - pE(@p,0,)] /(yj)-
* px, (Tp,i, ) % ppt (T1,0) % gy (T2,6,) 5o
m (22)
prytans)| [0 = Sbe) Sl 0) o e unton
(18) /“LQi, (:L'k:ik) = KX, (:L'k:ik) ' NF}i (xkyik) (23)
where “+” denotes union. If the inputs are indeed singleton®e find that it is maximum at
then the term on the right-hand side of™ becomes zero UgfkmF,f, +o2myx,
and the supremum is no longer necessary, in which case (18) xi max = 5 5 (24)
reduces to the familiar singleton case, namely ox, T Tr
m Substituting (24) into (22), the latter becomes
YE=" ne(yy) = s (Ba) % pope (Fp)/ (05) m P
=t Y =" e (wi) [T iy (#homa) /()- (25)
j=1 k=1
= pi () * S/ (y5)- (19) . , _ .
j=1 An important special case occurs when all input points

for each input variable have the same level of uncertainty
Equations (18) and (19) show that in the nonsingleton systdafter they are fuzzified using the nonsingleton fuzzifier) so
the scaling of the output fuzzy set for each rule will, in genera{rgfk = o%. In this case, we also setx, = ) and, therefore
be different than in the case of a singleton system.

. ip . 2 2
A general expression for quantifying the scale factor differ- . oxmpt + Tt Lk (26)
enceds = S, — S5 can be found as a direct consequence of Thmax = 0% + 0'%1
;

(18) and (19), i.e.,
For the special case of product inference, Gaussian mem-
08 =5ps — S bership functions, and equal uncertainty on all inputs, the
nonsingleton FBF's given by (16) become

= sup NF{(fl)*"'*uF}ﬂ(fp)'i_Z"' )

; P odmp + o5, T},
LU iz HNQZ< XMF] F k)/(él)Q
k
k=1

0% + o3,
Sy (@) ke k() (1) % i) = : .@
i M p oXmp + U%i 7,
ZHNQi 0§(+0—21 /(61)2
_ _ I=1k=1 Fy
# ppt(@pi,) | — pp(T1) 5% g (Tp) (20) *

When the uncertainty of the input is zerg, = 0, and (26)

. _ _ ~ reduces to the singleton case, i€, .. = «}. In this case,
where, again 4" denotes union, but+" denotes arithmetic eachy, (zL _ =a!),k =1, --,pis unity [see (21)] and,

subtraction. l _ /

The most widely used subclasses of FLS's are those Wit&erefore,u% (@ max) = #rt (23, SO (25) reduces to
product or minimum inference astenorm and with Gaussian m p
or triangular membership functions. These subclasses are Y =" payy) [ me (=5)/ () (28)
considered next. j=1 k=1
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(@ (b)
Fig. 1. (a) SISO FLS: composition of rule with singleton input and corresponding output. (b) SISO NSFLS: composmon of rule with Gaussian input and

corresponding output. This figure also illustrates (25) and (26) for a one-rule sypteml, m 1 = 40, Tpr = =10,2) =25, 0x = 7,mg = 50, and
o1 = 15) for Gaussian membership functions. Equation (25) reduces to (19) if the input is smgletomwnkmaced by product.

and the NSFLS in (15) reduces to the following singleton FL&ntecedent [i.em - = mx, SO thatq:k max = TVF! (see (24)],
the difference in the scale factor is zero.

M L , - Figs. 1 and 2 clearly imply that (especially in the cases of
M Zy szt 1m0/ (6°) more complex systems with more than one rule and multiple
fs(x') = Zylpf(:c’) = lle - (29) inputs) the defuzzified nonsingleton system output may be
=1 ZH“ () /(62 significantly different than the corresponding singleton system
L1l BTk output.

Fig. 3(a), which is a direct implementation of (27) (with

Observe that we could have relabelgdz’) to f,(z). Com- p = 1L,M = 4,z € [, 100] 8 = 1,mp = 201, and
paring (15) and (29), we see that nonsingleton and singletep: = 10 for I = 1,.-- M) compares the fuzzy basis
FLS’s are structurally the same. functions in asmgleton system versus the fuzzy basis functions

To illustrate the differences between a NSFLS and a singlé-a nonsingleton system. When the degree of uncertainty in
ton FLS, we present the case of a one-rlé = 1) single- the Gaussian input is large, the basis functions of (27) (shown
input single-output (SISO) FLS with Gaussian membership Fig. 3(a) by the dash-dotted line) are significantly different
functions and product inference. For the nonsingleton systeiian in the singleton case (solid line). Note that, when the
the input is also fuzzified using a Gaussian membershimcertainty at the input is small, then the nonsingleton case is
function. Fig. 1 shows the output fuzzy sets correspondiggsentially identical to the singleton case, and the nonsingleton
to each system. Observe the Gaussian nature in Fig. 1(b)(NS) FBF’s plotted in Fig. 3 are indistinguishable from the
the product functlole( x) and the location of its maximum singleton FBF’s. For the example presented here, the higher

value atzr = x% ax- I this case, the output membershig/ncertainty input had variance of the order of the variance

function for the NSFLS is of greater maximum height thaff the antecedents, whereas the lower uncertainty input had
that of the singleton FLS. variance about one twentieth of the variance of the antecedents.
Fig. 2(a) demonstrates (20) for product inference and Gau&#g- 3(b) depicts the fuzzy basis functions for a singleton
ian membership functions. Fig. 2(b) demonstrates (20) fégolid line) and a nonsingleton FLS with four rules, product
parabolic antecederfi: = max (0, —((x — my2)/a)? +1) inference, and triangular membership functions. Observe that
and tnangular input membersh|p functions, for both minimurihe two exterior FBF’s saturate at unity.
(“=.",“— =") and product (<", “ +") inference. The bimodal It should be noted that the FBF's given in these examples
curves in Fig. 2 indicate the scale factor difference betweane symmetric because the centers of the antecedent mem-
the two systems as the input sweeps over the entire univebsgship functions were equispaced. In general, FBF's are not
of discourse of the antecedent membership function. Thgmmetric.
larger amplitude scale factor difference curves correspond toGreater uncertainty in the input not only “fires” rules at a
a nonsingleton input with higher level of uncertairftyx =~ higher level than a singleton system [(20) and Figs. 1 and 2],
0.70r), whereas the smaller amplitute difference curves cdput it also usually fires more rules than a singleton system
respond to nonsingleton input with lower level of uncertaintwould. This is due to the fact that a nonsingleton input
(cx = 0.20F). When the input singleton and the mean ofnay have membership (or nonzero subsethood [12]) in more
the corresponding nonsingleton input are at the mean of thetecedent fuzzy regions than a singleton input. For example,
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Scale factor difference between Singleton and Nonsingleton systems Scale factor difference between Singleton and Nonsingleton systems
1 T T T T T T T T 1 T T T T T T T T
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(@) (b)

Fig. 2. (a) Scale-factor difference between SISO singleton and nonsingleton systems over the entire input range for one antecedent. Forshigher level
of uncertainty in the input (represented by larger variance in the Gaussian nonsingleton input), the scale factor difference is larger. Tiois idiffere

scale factors is also evident in Fig. 1 for one particular case of singleton and nonsingleton inputs. The horizontal axis represents the means of the
Gaussian input in the nonsingleton case and the location of the singleton input in the singleton case. (b) Scale-factor difference betweeretstSO singl
and nonsingleton systems over the entire input range for one parabolic antecedent and triangulariripabd““— —" represent minimum inference

and “x” and “4" represent product inference).

a vertical line atz = 40 in Fig. 3(a) intersects three singletorgenerality, |€"§uF,g (xk,i, ) be strictly increasing andx, (zx,i, )

FBF's and four nonsingleton FBF's. be strictly decreasing on the interv@ds,c;] and, conse-
During the review process, one of the reviewers observgdently, on any closed subintervalsy, bi], [bx, cx]. [In the

that in the special case of Gaussian membership functions @ade of;.ix, (zx,;, ) being a proper subset @fz (xx;, ), i.€.,

product inference, it is sometimes possible to interpret tf)g(k (r4,) C 0% (Zri)s andpx, (g, ) # szk(wk,ik) for at

NSFLS as a SFLS.. This can be egsﬂy seen by §ubstltutlng (283st onery i, , or if px, (x4, ) = 1El (z.i, ), then obviously

into (23) and carrying out some simple algebraic calculationg,, . - pq! (#riy,) = maxvs px, (#x,i, )] Let by, be the point

Of course, even then thgt system coptams the same 'nforma&'ﬂnintersection of upe and pix,. From the monotonicity

about the nonsingleton input set. This observation, however i, jitions on the membership functions in these intervals we

not true in general, e.g., the case of parabolic antecedent and,

triangular membership functions with any of the commonly

usedt-norms. One of the strengths of fuzzy logic is that fuzzy, . _

system formulas can be described by meaningful Iinguisti(\:%aj € [an, biJ, - min (e, (xk’”)’uFﬁ (@hi)) = B, (@hii)

rules, and the rules can be described by an underlying logic. where HF! (zk,1) <Hp! (zr,2) i @1 <ape.

Shifting fuzziness from the input into rule antecedents changes (31)

the meaning of rules and in many applications this does not

make alot of sense (see, for example, [44, pp. 185-189]). Thus

many other applications, the input can only be defined as a set

or an interval [21], [23], [43]. elfmi 1/@; (Trsp,) = 1pt (br)- (32)
TE|Ak,0k
C. Minimum Inference Similarly
Now, we let %" in (11) be thet-norm ‘min’, in which case
pg (wri) in (12) is Vi € by, e, min (i (@r,i); e (i) = px (@00 )
. hy ,3) > ; if zp3<zi
g (@) = min (e, (2,). it (@0,)) (30) where pux, (@na) > v (@) 1 @ e
for finite universes of discourse. As in the case of the algebraic
product¢-norm, the term in the parenthesis in (11) is maxigsg that
mized when every grouped pair is a maximum, -V“%?ﬁ, (Zhix )
must be maximized over alt and all z. max ix, (2r.,) = px, (br)- (34)

For the input fuzzy setX; to activate the fuzzy rule x€lby,cp)
R! at F}, some of the points in the support df; must
coincide with some points in the support m‘,ﬁ. Let this Consequentlyyi (zx,,) becomes a maximum at the point
set of points define the closed intervgl,c;] such that of intersection of the two membership functions, which is
b € (ag,cr) and ap < by <c (Fig. 4). Without loss of also intuitively satisfying. For example, for the previously
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Fig. 3. (&) Fuzzy basis functions for nonsingleton (dash-dotted line) and singleton fuzzy logic systems with four rules, for Gaussian inpuedadtantec
membership functions, and for product inference. (b) Fuzzy basis functions for nonsingleton (dash-dotted line) and singleton fuzzy logic iflystems w
four rules, for triangular input and antecedent membership functions, and for product inference. The antecedent membership functions were chosen t
be the same in the NS FBF's and singleton FBF's.
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Fig. 4. Membership functions of nonsingleton fuzzy inpu¢, (x1 ;, ) and Fig. 5. Fuzzy basis functions for nonsingleton (dash-dotted line) and single-
corresponding antecedenmt,.; (=3, ;, ), their product and minimum. ton fuzzy logic systems with four rules, for parabolic antecedent and triangular
k input membership functions, and minimum inference.

described Gaussian membership functions (21), by equatifigh|e |, along with the corresponding solutions for the case of
their exponents and solving a second-order equation, we figgngular membership functions. The centers of the antecedent
the point of intersection to be given by and input triangular membership functions are denotechp
andmyx, , respectively, and their corresponding left and right
(35) spreads byFi,le,rFi, andrx, . Observe, from Table |, that
ox +Ox T}, o 1S €asiest to calculate in the cases of product and
minimum inference with Gaussian membership functions, and

The output fuzzy set”* is computed exactly as in (25), minimum inference with triangular membership functions.
after replacing product witmin, anda:ftjmaX with the expres-

sion in (35). Fig. 5 depicts the fuzzy basis functions for a

. aXka{ +O—F£$k
xk,ma.x = .

singleton (solid line) and a nonsingleton FLS with four rules, IV.- UNIFORM APPROXIMATION PROPERTY
minimum inference, parabolic antecedent, and triangular input OF NONSINGLETON FUZZY LOGIC SYSTEMS
membership functions. Wang and Mendel [38] and Kosko [13] have shown that

The complete solutions for the maximization pg?i for specific subclasses of singleton fuzzy logic systems are uni-
algebraic product and minimuminorms are summarized inversal approximators. In [38], the Stone—Weierstrass theorem
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TABLE |
x;c.max FOR GAUSSIAN AND TRIANGULAR MEMBERSHIP FUNCTIONS IN THE CASES OF ALGEBRAIC PRODUCT
AND MINIMUM t-NORMS (DUE TO SPACE LIMITATIONS, DETAILS OF DERIVATIONS ARE OMITTED)

t-norms xk _ for Gaussian membership functions at __ for triangular membership functions
) 2 2 . i , . ol -~
Product X, mF}i + UFIf» mx, if mx, < mpt andy; € [mx,, rll,F]i], then.Lk,ymax =7
2 3 mx, +mp —lpe +rx,
Xy TR wherey; = bk

2
if lF}i >rx, andy; € [mxmeﬁ]’ thenxkymax =mx,
if lF}i <rx, andy ¢ [mxk,mﬂ], thenxkymax =Mmpt
if mx, > mPi andvys € [mx,, mpi], thenacf,{ymaX =72
mFlf +mx, — le + rF}f

wherevys = 5
i . - ‘ t -
if Ix, > Tri andvy2 ¢ [”lF']i7ka]7 thenzy .. = mpt
i . -, " —
if Ix, < Tri and~s ¢ [m'F']i7'71'Xk]7 thenay, .« = mx,
if mx, =m,. =m, thenazl _=m

P K
Minimum IX Mpl +0p£77l,\'k lF]i"le +TkaF]i

ifmyx, <m,
v ) S Mt
TX,, +(7F£ If';f» +rx, k

lFlf» mx, +7x, mF]i

ifmyx, <mg;
r>Mp
lp]i'l'rxk k

(involving algebras of functions) was used for approximations Definition 2: Let S denote the set of points of support and
in the uniform topology on a compact set. This result was € S the mean of a one-dimensional convex fuzzy set with
proven only for singleton FLS'’s with product inference anethembership functiop and|sup (S) —inf (S)| < 0c. Theleft
Gaussian membership functions. In [13], continuity was ussgreadof the fuzzy set is defined ag, = m — inf (S), and
to prove uniform approximation capability of singleton adthe right spreadis defined assp = sup (S) — m. For fuzzy
ditive systems. Buckley has also used the Stone—Weierstrasts with infinite support and strictly decreasing membership
theorem to show that Sugeno-type controllers are universalues while moving away fromn (such as the Gaussian),
controllers [3]. Additional results on the approximation capahe left and right spreads are definedsas= m — x,sg =
bilities of different structures of FLS’s are presented in [9ktgr — m, where zp < m < zp,plzr) = pler) = 7
Other approaches parallel results from the neural networdsd n is a small, nonzero membership value. Alternatively,
literature (such as in [14]). sp, = m—inf (87), sg = sup(S7)—m, whereS” is the (finite)
Although (15) bears structural resemblence to Kok-level set of the fuzzy set with infinite support. Clearly, for
mogorov's representation theorem [19], the two are quisymmetric fuzzy setss;, = sg. As has been illustrated in (2)
different. Kolmogorov's theorem (which resolved Hilbert'sand (3), thep-dimensional antecedent and input membership
13th problem) provides a representation of a continuofisnctions can be composed from their correspondingne-
function of several variables defined on andimensional dimensional fuzzy sets.
cube by sums and superpositions of continuous functions ofThe following definition imposes certain restrictions on the
one variable. In contrast to fuzzy basis functions (16), thgpe of membership functions that can be used and some of
nonlinear functions employed in Kolmogorov's theorem, a$eir parameters.
well as in the subsequent improvements of that theorem byDefinition 3: The class ofadmissibleantecedent and input
Lorentz [19] and Sprecher [32], are highly nonsmooth armdembership functions defined éhshould have the following
strictly increasing. Even though these nonsmooth functiopsoperties:

can be viewed as limits of uniformly converging series of [P1] membership functions should be normalized convex

smoothsigmoidaltype functions [15], [16] the monotonicity fuzzy sets (fuzzy numbers) or fuzzy intervals;

requirements are too restrictive for our basis functions. [P2] membership function spread should be no larger than
Utilizing concepts from real analysis [30], we will show that §=[xr_, (6")2]*/2, but large enough so that the union

a NSFLS can uniformly approximate any continuous function of the supports, or thg-level sets of all antecedents

g:U — V on a compact set. This approach includes the cover the entire input space; input membership func-

systems described in [38] as a special case. tion spread should not be larger than the antecedent
Definition 1. Let ¢ <ch < - <y, € Us,i = 1,2, ,p membership function spread.

form a partition oft;. Then, the largest partition interval in - £jq g shows examples of admissible and inadmissible mem-
U; is given byd" = max; (¢} — ¢j_q)- bership functions.
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Fig. 6. Examples of admissible (solid and dotted lines) and inadmissilféy. 7. Sample waveforms of the Mackey-Glass chaotic time series
(cross and dash-dotted lines) membership functions. (7 = 30) for two different, but very close, initial conditions (all values
in the initial value interval are set to 0.1 for the first waveform and to

Theorem: Let nonsingleton fuzzy logic systerf),, in (15) 0.100001 for the second waveform). Observe that after a certain point, the
be defined for admissible membership functions and @ny WO realizations evolve completely differently.
norm such thatcenter(Y! = X7L) pei(y;) * Sns/(y5)) =

center(G'). Then, any given continuous functignU — V
on a compact set/ € RP can be uniformly approximated by

been compared to prediction using feedforward neural net-
works with the best results occuring for the neural networks
. [17]. In [35] it was shown that a numerical-fuzzy approach
fns, @s M becomes sufficiently large. based on a singleton FLS can give results equivalent to those

Note that in the case of minimuna-norm the conse-

- or, even better than that of a neural network. Here, we show

quent fuzzy sets must also be symmetric. Note, also, ﬂ%ﬁ%\t our nonsingleton FLS can significantly outperform an
the condition center(Y! = X7, pei(y;) * Sns/(y5)) =

. o = ; equivalent singleton FLS in the predictive modeling of a
center(G) s satisfied byt-norms such as algebraic prOdUCttréaotic time series, especially in cases where either or both
Einstein product, bounded_d|ﬁerer_lce, Hama<_:her product, ane training data and input data are corrupted by noise.
for consequent membership functions of arbitrary shape. Chaos is having an impact on many different fields including

I.quOf: (Seg Appendix A.) , , hysics, biology, chemistry, economics, and medicine [4], [6],
This is an existence theorem which gives us assurance t S . L
. The chaotic time series that we examine is a model for

there exists an NSFLS capable of uniformly approximating a ood production due to Mackey and Glass [20]. This chaotic

continuous function on compact a. Although the constructi o . . . .
b 9 tt(l)me series is described by the following delay differential

of the proof provides some insight, it does not tell us how ion that i K he “Mackev—Gl o
choose some of the parameters of the NSFLS—nor does it Fe%uatlon that is now known as the “Mackey-Glass equation™

us how many basis functions will be needed to achieve such dz(t)  02z(t-7) 12(8) (36)
performance. dt 14+200t—-7) '
For 7 greater than 17, (36) exhibits chaotic behavior.

Chaotic behavior can be described as bounded fluctuations
of the output of a system with high degree of sensitivity to
Several well-known algorithms exist [2], [5], [40] for thejnitial conditions [4], i.e., trajectories with nearly identical
calculation of dynamical and geometric invariants such &siia| conditions diverge exponentially (note that exponential
fractal dimension (capacity, correlation, information) and Lyasiyergence of two distinct trajectories does not imply unbound-
punov exponents of an underlying strange attractor of tim@ness. Fig. 7 illustrates this kind of behavior). A system such
series. The largest Lyapunov exponent is essentially a measy&nhe one in (36), exhibiting chaotic dynamics, evolves in a
of how predictable a system can be from observations gkierministic manner. However, the correlation of observations
the past, whereas the fractal dimension is an indication 9fhears to be limited; thus, prediction of the state of the system

the complexity of a system. Unfortunately, data requirements particularly difficult [29].

and extreme sensitivity to noisy measurements make thes&, demonstrate the qualitative nature of the dynamical

algorithms prohibitively expensive in practical applicationsystem given by (36), we display representative portions of the

Even if these invariants could be calculated accurately, thgye series for different values of in Fig. 8(a) and (b). We

still do not provide enough information for the constructioRiso depict the amplitude spectrum estimates of these repre-

of a predictive model. sentative sections in Fig. 8(c) and (d), and their corresponding
Other approaches attempt to construct a predictive modgb-dimensional phase plots in Fig. 8(e) and (f). From these

based solely on the given time-series data. Several sysbts, we are able to distinguish periodic behavior for small

approaches (e.g., Gabor polynomials, linear prediction) havs and chaotic behavior for larget's. Most commonly, the

V. MODELING AND PREDICTION OF
COMPLEX SYSTEMS. CHAOTIC TIME SERIES
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Fig. 8. (a) and (b) Representative samples of the Mackey—Glass time series after letting transients relax. (c) and (d) Amplitude spectra plotiddgon a s
scale for the examples illustrated in (a) and (b). (e) and (f) Corresponding phase plots of the time series segments depicted in (ay'aimd £).-“d)
on the vertical axis denotes the delay used in the Mackey—Glass equation; it is either 13 or 30.)

transition of a system from predictability to chaos occurs visolution ¢.(z) of the differential equation as — oo. For 7

a cascade of bifurcations which are qualitative changes in ttlese to 17, which is the onset of chaos for the Mackey—Glass
limit sets of a system, where a limit set is the set of poinequation, the bifurcations get closer and closer together until
whose every neighborhoo# is repeatedly entered by thethe system breaks down into chaotic behavior.
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Prediction results at the absense of noise the /th output was selected 35(92(1 - 1) + 6),l =1,---,500.
' ' j ' The same numerical-fuzzy algorithm and number of training
pairs were used to construct a nonsingleton system of the form
of (15). All the common parameters between the singleton
and nonsingleton FLS’'s were chosen to be the same. For
all simulations,ox in the NSFLS case was chosen equal
to the standard deviation of the additive noise. In a noise-
free environment for whichvx = 0, the performance of
the nonsingleton system was identical to that of the singleton
system. As shown in Fig. 9, both systems can closely predict
(36) in the given range. Both systems were trained using the
one-pass method described in [37], wild = 500 (basis
functions) andé = 1.
Using the same common parameters for both systems (as
. . . ) in the noise free case) we added zero-mean uniform noise
0 50 100 1% 20 20 300 to the training and test sets and we retrained both systems.
Fi o Pregict s in the ab  noise. for 300 boints of 3Again, 500 input-output training pairs of five inputs and a
s e e o . o 300 £om o eingle output were used to construct the system drawn from
out). The solid line is the actual time series, whereas the dash-dotted Iﬁ(sl) to C(1004), as described above. Fig. 10 shows typical
shows the predicted estimates. In this case, the NSFLS and the singleton Pr8diction results for both the singleton and the nonsingleton
produce et vesuts. The same parameters of e Srgleton L vsed Wlktems . signal-to-noise ratios (SNR's) (definedas
parameters of the NSFLS and the singleton FLS are identical. log 0ignal/ Tnoise, Whereo denotes standard deviation) ef,
0, and 10 dB. Fig. 11 summarizes the performance of the
The largest Lyapunov exponent [8] which quantifies the nonsingleton and singleton systems for these SNR’s averaged
rate of divergence of the time series and, therefore, the degeg@r 100 realizations. The average mean-squared error and
to which the system is predictable in the long term, can kgerage standard deviation for each case are given in Table II.
estimated using nonlinear regression [26]Al5 0, then the Fig. 12(a) shows the prediction results based on our NSFLS
system will exhibit chaotic behavior (this property makes for 20 different realizations and SNR 0 dB, overlapped
possible to detect chaotic dynamics in a noisy environmegi the same figure to give a visual representation of the
just by examining the sign of). We estimated\ to be 0.007 standard deviation of the predicted estimates. Fig. 12(b) shows
for the Mackey—-Glass equation with= 30, thus confirming the prediction results based on the corresponding singleton
that the system is indeed chaotic. FLS for 20 realizations. It is evident from this figure that the
We designed the NSFLS in (17) to be a single-step predicigihgleton FLS does not appear to be able to deal effectively
of the Mackey—Glass chaotic time series. Our design is basggh the uncertainty during the prediction process due to
on N-training pairs that we obtained by simulating (36)he noise in the training data and the input. Our NSFLS is
for 7 = 30, using a finite-dimensional iterated mappingsignificantly more successful in producing better predicted
A higher order Adams—Bashforth integration algorithm [27dstimates of the chaotic time series.
with sufficiently small step size would be a good choice Table Il summarizes the average mean-squared errors and
for the simulation of (36) (note that for the higher ordegyverage standard deviations for the same experiments as above,
algorithms to yield better results than the lower order ones, thgt with parabolic antecedent and triangular input membership
integration step should be chosen to be sufficiently small). #anctions and minimum inference. Observe that the results
our simulations, we assumed that only noisy measured valygsTables Il and Il are quite similar, hence, the improved
of z(t) are available, namel(t) = =(¢)+n(t),t = 1,---,N. forecasting ability of our NSFLS isot limited to NSFLS’s

The input vector to our fuzzy logic system gt — 1) = with Gaussian membership functions.
[C(t=1), ¢(t = 2),--+,{(t — p)]* so that the estimate of the Note that no attempt was made to optimize the FLS's used
time series based on our NSFLS is given by here. Algorithms aimed at obtaining optimum or near-optimum

. NSFLS’s are described in [24].
2(t) = fas(u(t — 1)). (37)

Fig. 9 depicts the prediction results in the absence of noise

for 300 points of (36) £(1005) to z(1304) after allowing  we have presented the continuous and discrete cases
1000 points for the transients to die out], produced by ogf a general NSFLS, and its efficient computation for
singleton FLS using a numerical fuzzy algorithm (all fuzzyhe special subclasses of Gaussian and triangular mem-
rules were generated from the training data). Five hundrgdrship functions with product or minimum inference. We
input-output training pairs of five input® = 5) and a single have also developed a simple equation that describes the
output were used to construct the system; these were drageale-factor difference between singleton and nonsingleton
from z(1) to (1004) where theith input of thelth training systems; it lets us examine and compare the behavior of
pair was selected as(2(l — 1) + 6 —¢),¢ = 1,---,p, and singleton and nonsingleton systems for different types of

VI. CONCLUSIONS
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Typical prediction results for the NSFLS at SNR = -5dB Typical prediction results for the singleton FLS at SNR=-5dB
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Typical prediction results for the NSFLS at SNR = 10dB Typical prediction results for the singleton FLS at SNR=10dB
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Fig. 10. Typical prediction results (single realization) for nonsingleton and singleton fuzzy logic systems for different signal-to-noi@®lidtio®e: actual
time series, dash-dotted line: predicted estimates), for 300 points of £BB)((5) to x(1304) after allowing 1000 points for the transients to die out).

inputs and uncertainty levels. We have also shown thimrmer, and they become identical in the absence of noise
a NSFLS can be expressed as a linear combination @f uncertainty at the input. We have also shown that
nonsingleton fuzzy basis functions. Although, conceptuallthe NSFLS (15) can uniformly approximate a continuous
singleton and nonsingleton FLS’'s are very different, thinction on a compact set, i.e., it is a universal approxima-
latter does have essential structural similarities with ther.
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NSFLS prediction results after 100 Monte Carlos at SNR=-5dB Singleton FLS prediction results after 100 Monte Carlos at SNR=-5dB
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Fig. 11. Averaged prediction results for 100 Monte Carlo runs (solid line: actual time-series, dash-dotted line: predicted estimates) fors360 point
(36) (¢(1005) to x(1304) after allowing 1000 points for the transients to die out). In all cases, the mean-squared errors and the corresponding standard
deviations are significantly smaller in the nonsingleton case (see Table ).

The utility of our NSFLS and its superiority over a sinfesponding singleton FLS. Both were trained in the same
gleton FLS was demonstrated through our example on tianner with identical common parameters and were capa-
prediction of a chaotic time series from noisy observationkle of closely approximating the time series in a noise-free
In all cases, our NSFLS significantly outperformed a coenvironment.
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NSFLS prediction results for 20 Monte-Carlos at SNR = 0dB Singleton FLS prediction results for 20 Monte-Carios at SNR = 0dB

n
2 T T T T T 2 T T T T

1 L

"o 50 100 150 200 250 300 ) 50 100 150 200 250 300
X

(@) (b)

Fig. 12. (a) Prediction results for the NSFLS for 20 different noise realizations at 0 dB. (b) Prediction results for the singleton FLS for 20rdifferent
realizations at 0 dB. These figures show that the standard deviation of the prediction results is much higher in the singleton case than in thennonsingle
case. Predictions are given for 300 points of (36)1005) to x(1304) after allowing 1000 points for the transients to die out).

TABLE I TABLE Il
AVERAGE STANDARD DEVIATIONS AND AVERAGE MEAN-SQUARED ERRORS FOR AVERAGE STANDARD DEVIATIONS AND AVERAGE MEAN-SQUARED
DIFFERENT SIGNAL-TO-NOISE RATIOS, FOR SINGLETON AND NONSINGLETON ERRORS FORDIFFERENT SIGNAL-TO-NOISE RATIOS FOR SINGLETON
SYSTEMS WITH GAUSSIAN MEMBERSHIP FUNCTIONS. IN THE NoISEFREE CASE, AND NONSINGLETON SYSTEMS WITH PARABOLIC ANTECEDENT AND
THE AVERAGE STANDARD DEVIATION AND MEAN-SQUARED ERROR WERE TRIANGULAR INPUT MEMBERSHIP FUNCTIONS. IN THE NOISEFREE CASE, THE
0.0168AND 2.8329 x 10—*, RESPECTIVELY, FOR BOTH SYSTEMS AVERAGE STANDARD DEVIATION AND MEAN-SQUARED ERROR WERE
SNR ” 5B | 0dB l 10dB 0.0159AND 2.5233 x 10~*, RESPECTIVELY, FOR BOTH SYSTEMS
Singleton FLS, avg. std 05517 | 0.3308 | 0.1281 SNR | -5dB | 0dB [ 10dB
Nonsingleton FLS, avg. std || 0.2128 | 0.1496 | 0.0765 Singleton FLS, avg. std 0.5418 | 0.3545 | 0.1123
Singleton FLS avg. mse 0.3066 | 0.1101 | 0.0165 Nonsingleton FLS, avg. std || 0.2227 | 0.1345 | 0.0766
Nonsingleton FLS avg. mse || 0.0462 | 0.0228 | 0.0059 Singleton FLS avg. mse 0.3185 | 0.1345 | 0.0132
Nonsingleton FLS avg. mse || 0.0504 | 0.0242 | 0.0057

The fuzzification subsystem within a FLS lets us handle ) o
uncertaintyin a very natural way. It provides a mapping of Construct a “grid” of points il such that
noisy dataz into ! ., e.g., (26), that can be interpreted as 1) given anyz € U, there is a poing; in the grid so that
a form of nonlinear data prefiltering [22]. To date, there does lz — ¢l <6;
not seem to be a comparable way to handle uncertainty in &) the family of open ball{B(c;, 6)} (each open ball is
feedforward neural network. centered afg; and has radiug)) forms a finite open
In summary, we have found NSFLS'’s to be very promising ~ Subcover ot i.e.,U C U, B(g, §), so that assuming
and an effective tool for dealing with uncertainty and for U is connected and3(¢;,6) and B(g,,6) are nearest

designing systems with set-valued inputs totally within the ~ neighbors

framework of fuzzy logic. I, = B(g,6)N B(g,6) #0 forl,k <M. (A3)
& is obtained as outlined in Definitions 1-3. Féy.(x)
APPENDIX A in (15), ¢; corresponds to the mean of thedimensional
PROOF OF UNIFORM APPROXIMATION THEOREM antecedent membership function ahcorresponds to an upper
Proof: Uniform approximation requires that bound of the spread of each of its components. The image of

the center of each open ball undgrs given byg(¢;). Since
e > 0l fns(2) — g(@)| <cvz € U. (A1) g is a continuous function, the image bf underg, g(U) in

frs(x) is given by (15) and represents the crisp outpdt will also be compact and connected and

produced by the modified height method defuzzifier of the M

nonsingleton system. SincE is a compact subset aoRP, g(U) C Ug(B(CI,é))- (A.4)

continuity of g implies uniform continuity [30]. Thus =

Ver >036>0 2 [g(z,) — g(x)] Select fuzzy set6' e V centered af' = g(¢;) such that the
<eVE.,xs € U D |z, — x5 <6. (A.2) set of points of support of, Sc.:, coversg(B(e;, 6) N U),
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and s (7') = 1. Hence,UM, S coversg(U). Let z; €
B(e, 6),z2 € Bley, 6) andxs € Iy; then,|z; — z3] < 6 and 1]
|£3 — x2| < 6. From (A.2) and the triangular inequality

l9(z1) — g(z2)| <|g(x1) — g(=3)| + [9(x3) — g(=2)| [2]

<€] + €1 = e (AS)
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