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Dynamic Non-Singleton Fuzzy Logic
Systems for Nonlinear Modeling

George C. Mouzouris and Jerry M. Mend€Ellow, IEEE

Abstract—We investigate dynamic versions of fuzzy logic sys- to backpropagation learning, its utility as a universal learning
tems (FLS's) and, specifically, their non-Singleton generalizations paradigm for smooth parameterized models (including FLS's)

(NSFLS’s), and derive a dynamic learning algorithm to train the g1 115] [23] became evident with its successful application
system parameters. The history-sensitive output of the dynamlc_ o artificial neural networks [17]. Being able to utilize a
systems gives them a significant advantage over static systems |nt : 9

modeling processes of unknown order. This is illustrated through l€arning algorithm such as backpropagation implies that a FLS
an example in nonlinear dynamic system identification. Since with linguistic information in its rulebase can be updated or
dynamic NSFLS’s can be considered to belong to the family adapted using numerical information to gain an even greater
of general nonlinear autoregressive moving average (NARMA) o4y antage over a neural network that cannot make direct use of
models, they are capable of parsimoniously modeling NARMA linguistic information. The collection of modifiable IF-THEN
processes. We study the performance of both dynamic and static e : ) . )
FLS’s in the predictive modeling of a NARMA process. rules comprising the rulebase, constitute an adaptive FLS, i.e.,
a system whose input—output behavior is defined by a set of
modifiable parameters. The systems we describe in this paper
belong to the family of adaptive FLS's.

I. INTRODUCTION In Section IV we give examples in system identification and

PROMPTED BY the desire to bridge the gap betweeln€ predictive modeling of a nonlinear autoregressive moving

traditional mathematical models of physical processes afiferage process. These examples illustrate the power of both

the often abstract, or imprecise information associated wit¢ dynamic FLS's, and the dynamic learning algorithm.

such processes, researchers in recent years have started payingction V concludes this paper.
particular attention to fuzzy set theory [29], a mathematical
tool for translating abstract concepts into computable entitied: OVERVIEW OF NON-SINGLETON FUZZY LOGIC SYSTEMS
[4]. In this paper, we present computational systems capableThe large variety of possible available information, together
of processing such entities. with the need for modeling all such information to determine a
In Section Il, we give a brief overview of non-Singletorparticular solution, necessitate the use of a very flexible infor-
fuzzy logic systems (NSFLS’s) [14], [15] that are an extensiamation modeling technique. With this in mind, the formulation
of the well-known Singleton fuzzy logic systems [9], [25]that provides the highest degree of latitude is a list of state-
These systems implement static nonlinear mappings betweeents (rules) where each statement indicates the acceptability
their input and output spaces. Here, we extend these systemsfta proposed solution based on some piece of information.
their dynamic feedback counterparts. The output of dynanmiitie fuzzy formalism can provide a general framework to
systems at timeé + 1 depends on exogenous inputs as wethodel certain or uncertain information in which an action
as previous outputs at time so these systems exhibit richis combined with a statement in an antecedent/consequent
and complex dynamical behavior and can be used to parsiniermat and the individual statement solutions are aggregated
neously represent dynamic processes of unknown order aagrovide the overall solution. The set of statements comprise
structure. Unlike static fuzzy logic systems (FLS’s), processinge fuzzy rule basewhich is a vital part of a FLS (Fig. 1).
of input patterns by dynamic FLS’s depends upon the ord€hefuzzy inference engirmombines the statements in the rule
of presentation during training or recall; therefore, dynamisase according to approximate reasoning theory to produce a
FLS’s are well suited for the representation and processingrafpping from fuzzy sets in the input spadeto fuzzy sets in
temporal information. the output spacé’. The fuzzifiermaps crisp inputs to fuzzy
In Section Ill we derive a dynamic backpropagation typsets defined on the input space and tleduzzifiermaps the
of learning algorithm to update the parameters of a dynamaggregated output fuzzy sets to a single crisp point in the
non-Singleton fuzzy logic system. Although it was a longutput space.
time after its inception (see [26]) that attention was drawn A fuzzy logic system processes crisp data at the input and

. . . 1%_roduces crisp data at the output; therefore, a fuzzifier is used
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Fig. 1. Structure of a fuzzy logic system.

this kind of fuzzifier may not always be adequate, especially in2) In the case of aon-Singleton fuzzifiethe pointz € U

cases where noise is present in the training data or in the data is mapped into a fuzzy set with supportz; whereyu x

which is later processed by the system. A different approach  achieves maximum value at = = and decreases while

is necessary to account for uncertainty in the data, which  moving away frome; = z. We assume that fuzzy sét

is why we direct our attention at NSFLS’s. NSFLS'’s are a is normalized so thatix(z) = 1.

family of systems that haveon-Singletorfuzzy sets as inputs.  Non-Singleton fuzzification is especially useful in cases

The structure of the rulebase is identical as in the Singlet@iere the available training data or the input data to the fuzzy

FLS case, except that input Iinguistic variables are allowed m": System are Corrupted by noise. Conceptua”y' the non-

take set values (instead of single-point values). NSFLS’s aggngleton fuzzifier implies that the given input valuds the

a powerful generalization of Singleton FLS’s and provide @ost likely value to be the correct one from all the values

mathematically tractable method to treat input uncertainty. in its immediate neighborhood; however, because the input is
Non-Singleton fuzzifiers have been used successfully incgrrupted by noise, neighboring points are also likely to be the

variety of applications [1], [5], [16], [19], [20], [22]. In neural- correct values, but to a lesser degree.

fuzzy systems [1], [5], vectors of fuzzy sets are used both to|t js up to the system designer to determine the shape of the

train a fuzzy neural network and as inputs during processingembership functiopx based on an estimate of the kind and

In [16], an optimizing control method for optimizing the fuelquantity of noise or uncertainty present. It would be the logical

consumption rate of a marine diesel engine utilizes empiricghoice, though, for the membership function to be symmetric

rules that are expressed by fuzzy numbers. Non-SingletgBout: since the effect of noise is most likely to be equivalent

input has also been used in turning process automation [} all points. Examples of such membership functions are: 1)

to represent a human operator's actions in the fuzzy rulge Gaussian

base, in the design of fuzzy control algorithms [19], and in 9

fuzzy information and decision-making [22]. These methods px(z;) = exp {_M}

are largely heuristic and provide no closed-form expressions 20

fqr_fuzzy logic systems; hence, their generalizations are VEf}iare the variance? reflects the width (spread) of (z;);
difficult. 2) triangular

A. The Non-Singleton Fuzzifier T —

px (z;) = max <0, 1-—

Fuzzy sets have been interpreted as membership functions
wx [29] that associate with each elemenbf the universe of
discoursel/, a numberux (x) in the interval [0, 1]: and 3)

C
px:U — [0, 1]. 1) o () = 1 :
A fuzzifier maps a crisp point € U into a fuzzy setX € U. <1 + T )
1) In the case of &ingleton fuzzifierthe crisp pointz € U
is mapped into a fuzzy seX with supportz; where wherex andc are, respectively, the mean and spread of the
px(z;) =1 for z; = 2 and px(x;) = 0 for ; # =, fuzzy sets. Note that larger values of the spread of the above

i.e., thesingle point in the support ofX with nonzero membership functions imply that more noise is anticipated to
membership function value is; = =x. exist in the given data.

C
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B. Dynamic Non-Singleton Fuzzy Logic System Formulation R, (Tn_n,)

Consider a fuzzy logic system with a rulebaseldfrules, F WX 1 (Fnmng 1) # 0ok pix, (@) /() (3)
and let thelth rule be denoted by?!. Let each rule have
n antecedents and one consequent (as is well known, a nuwleere
with ¢ consequents can be decomposed igtoules, each
having the same antecedents and one different consequent); X CUp, r=1--,n-ns and
also, letFl,r = 1,2,---,n — ny a_ndH]’»,{j = 1,205 Xn—n;+j CUnn,+j; j=1,2,--- ns
denote the antecedent membership functions corresponding to
n—ny exogenous inputs and, feedback inputs, respectively.are the fuzzy sets describing the exogenous and feedback
For example, in the case of a single-feedback inpyt= 1 inputs, respectively.
and the feedback input linguistic variable takes system outputUp to this point, the formulation is identical to that of the
values delayed by one unit. Tlih rule is of the general form Singleton case. In the Singleton case, though, it is assumed that
each input fuzzy sek; has nonzero membership value only
R IFuy is Ff and --- anduy_, is F,ll_nf and at a single point, which reduces to a set with a single point
x' € U. In our treatment here, we do not make this assumption.
Each input fuzzy set is represented by the more general non-
Singleton form in (3), thereby allowing any uncertainty in the
THEN v is & input to be represented in the system.
According to thecompositional rule of inferengehe fuzzy

where uy, k= 1,---,n, and v are the input and output sypseti? of V induced byA € U is given by the composition
linguistic variables, respectively. Each!, H!, and G' are of 4 and R

subsets of possibly different universes of discourse. Let

Un—n,+1 IS Hf and- - - andu, is H,l”

Y'=Ao R = sup (A% RY. 4)
Fl cU,, r=12,---,n—ns LU
! . . :
H; CUppnyyj, §=12,---,ny and Note that all unions (denoted bf) in A and R over Uy, k =
Gt cv. 1,---,n, are over the same spaces; therefore, we can write
Y! as
Sinpeun_nf+j,j =1,2,---,ny,are fee_dback input_linguistic
variables, they takg values from universe of discourse y7— gy </ / / / /NXl(-Tl)
thus, Uy, —n,+; = V.5 = 1,2,--+,ny (to maintain consistent zeU \Ju, Un—np o Unen gt Un JV

notation with the antecedent linguistic variables, we will use
Ui,k =1,2,---,n, to denote universes of discourse of both . () + (1) % s ( )
exogenous and feedback linguistic variables). Each rule can TR TR F R F P ey

Kook /JXn_nf (-Tn—nf) * I’LX77.—77.f+l (xn—"f‘H)

be viewed as a fuzzy relatioR' [30] from a setl to a setV, $ gt (Tponp41) % ppn ()

whereU is the Cartesian product spabe= U; x - - - x U, .R! ' Y

itself is a subset of the Cartesian prodlick V = {(z,y):z € 5
Uy € VY, wherex = (z1,22,---,7,) and z; and y * e (v)/ () ®)- ®)

are the points in the universes of discoursg, and V' of
u, andv. R! is characterized by a continuous multivariat®ince the supremum is only over < U, then by the
membership functionz (z, %), and can be described by thecommutativity and monotonicity properties oftanorm, we

following: can rewriteY' as
we | v faawes ([ [
UxV KRt (:L.’ y)/(:c, y) 1% el Uy Un—n; YUn—n;t1 Uy,
:/ / / / / jpe (1) iy (1) %k X, (T ) ¥ X
Uy Un_nf Un_nf+1 U, JV ! . (xn—nf+l) Koee Xk hx, (.’L’n) * /“LFf (xl) e
R S (@nn,) * tart (Tn—n+1) PR (@p—n; ) * byt (Fn—p 1) %
sk iy (@) * e (y)/ () )
* g (@0)/(@) | /(). (6)
where x denotes at¢-norm, and [ denotes the union of

individual points of each set in the continuum.
Let the input toR' be denoted by4, where A is a subset
of ann-dimensional Cartesian product space and is given

A:/Ul"'/u /b

n—ng n—ny41

Next, we recall that by definition a&-norm is a two-
t&/ace function from0, 1] x [0, 1] [31]; thus, we can consider
ery t-norm in (6) to be acting on a pair of membership
functions. The calculation of thenorm over all the points in
. / px, (Z1) the corresponding spaces of the two membership functions is
Un easier to visualize if the membership functions are in the same
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space; therefore, we rewrite (6) in the following manner: uncertainty in the consequent fuzzy sets (e.g., if the consequent
membership function is triangular, théhcould be chosen as

yl— / fig (y) % sup / / / / the length of its base).
v zeU \Ju, Up—n 11 Note that when the input fuzzy set becomes a singleton, then

Un— n

pxy () = ppe ()] oo ix, - (@ )+ Thsup = Tk, (B = 1,2, ,n), pgr = ppe, and gt = pup
[14], so that the NSFLS becomes a SFLS

* g (xn n )]* [NXn 71f+1($n nj+1)

nen g
*I’LHZ (‘/En nf+1)] [l’LXn(‘/En) Zylpé (14)
# g (@))/(@) ) [ (). (7)
4 where
Note that the supremum in (7) is over all poistin U (inan L5 wr () = Tl g (n—n p45)/(81)?
n-dimensional Cartesian product space). By the monotonicity p,(z) = i
property of at-norm [31], that supremum is attained when g1 =)« T oo /(812
each term in brackets attains its supremum. Let ; r=1 1 () J=1“H§( nny+i)/ (&)
pqu(ar) = px, (@) * pre (@) (15)
r=12-,n—ng (8) Observe that depending on the choice-oform operation and
st (Tn—n,+j) =X (Tp—n,+5) * gt (Tp—n+j) membership functions, a NSFLS provides a mapping of the
’ J=1,2, 0y ’ (9) set-valued inputg;;, to producery s, Which can be viewed
T as a form of nonlinear prefiltering [11]. How this is done will
where pou px., ppr € Upr = 1,2,---.n — ny, and become clear in Sections Il and IV.
pst (Trnn;+j), uxﬂ_ﬂfﬂ (Trn—n;+i); prt (Tn—n;ts) Equations (11)—(13) define a special case of a NSFLS with
€ Un—ny+j, J = 1,2,---,ny. Assuming thatqu and arbitrary membership functions, arbitrazﬁnorms and modi-

fist (Tn—n;ts) produced by (8) and (9), respectively, ardied height defuzzification. Each NSFBE () is associated

functions whose suprema can be evaluated,zlef,, and Wwith either a fuzzy linguistic statement (with uncertain input)
Tn—n,+jsup denote the points irl/, and U,_,,+; where Or uncertain numerical data; hence, both types of information

those suprema are attained; then (7) becomes can be easily combined in a natural framework using NSFBF's.
i _ n—mnjy
Y= A et (W) * Ty et (Er,5up) ll. A L EARNING ALGORITHM FOR DYNAMIC NSFLSS
*leflus; (Tn—n +j,5up)/ (¥) (10) In this section, we derive an algorithm for the adaptive

training of dynamic NSFLS’s. Dynamic NSFLS’s compared to
where T,,"z_lnf and Tj’;fl denote sequences #fhorm opera- static NSFLS’s (which are static mappings between their input
tions. and output spaces) are a richer family of systems, capable of
Using the modified height defuzzifier [7], [25], the outputmplementing a wide range of dynamic systems. The task of
of our NSFLS can be written as a non-Singleton fuzzy badisining dynamic NSFLS’s is equivalent to finding a particular
function (NSFBF) expansion (11) and (12), shown at tHdSFLS from a parameterized family of such systems that
bottom of the page, where the basis functions are given bptimizes a specific cost function [27] and achieves a desired
(13), shown at the bottom of the page, in whighdenotes the mapping defined by a set of input—output pairs of a target
number of rulesy’ denotes the point of maximum membershigystem. The dependence of the system output at tirel
of the Ith consequent fuzzy set, adél is proportional to the on the values of the state variables of the system at time

Zlen ! g (@ sup) * T =1Ms! (#n—n 44, sup)/(61)?
Yo = Fro() = l=]\14 (11)

M
= 7'ph.(=) (12)
=1
Zn NQl (@ SUP) * T =1Hst (Tn—n +4, SUP)/((SI)Q
Phs() = : (13)

Zn_ bqt ( SUP) * T =1Hs! (Tn— ns+j, SUP)/(‘SI)Q
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and
($1’,su )(t) - TnFl)2
per(Zrsup(t)) = exp l— s -
T
r=12.,n-1 (22)

and the input membership functions by

[25'¢% (a:kysup(t)) = exp [_ (wk,sup(t)Q— $k(t))2]

TX,
k=1,2,---,n (22)

where [13]-[15]
ok, my + U%qxn(t)

ool =0 o,
1

0%, mpt + og(t)

xr,sup(t)_ Ug(r—i—afw s 7‘:1,27-..771—1
Fig. 2. Network structure of a dynamic non-Singleton fuzzy logic system, (24)
with M rules,n — 1 exogenous inputs, and one feedback input, which is
labeledx,,. T' denotes a sequence thorm operations. and

makes this task more complicated than that of training static def . . f .

systems [18]. For the sake of simplicity, we will assume in thd€Xt: We define a time-varying error function

derivation of the learning algorithm that thg NSFLS_ has only e(t) = % [fns () — d(£)] (26)
one feedback input and uses prodtxabrm. Fig. 2 depicts the

network structure of a dynamic NSFLS wifif rules,n — 1 and the sum of squared errors

exogenous inputs and one feedback input. The nodes labeled -
N denote the nonlinear processing of input information to Crotal(to, t1) = Z e(t). (27)
generatery, sup- t=to+1

Given a sequence of input—output pairs, we develop .
learning algorithm for temporal supervised tasks [28] th;—?]e update of a particular system parameter
allows the adaptation of the parameters ofaNSFLS.Assumiﬂ_gl (which  can lbe any paramet_er frqm the set
a single-feedback input (so that = 1) and product-norm, W "FL TFL OXL &, my,opt,0x }), is obtained by ac-
the NSFLS in (11) [using (8) and (9)] can be re-expressed fimulating the values OWge(t) for each time step along

terms of the following quantities: the trajectory, i.e.,
t1

n—1
wl(t) = [ nre @ s (D), (@rsup(D) szt (s (1)) B0 =ViCoallo i) =r Z+ Vel
=1 =tq
'A/;LXH (xn,sul) (t)) (16) -k Z ag(;) - Z [fns (t) _ d(t)] afgse(t)
g(t) = ; w'(t) 17) =ttt =ttt (28)

M o where is the constant positive learning rate, and parameter
h(t) = Zy w'(2). (18) 4 remains constant in the intervith, ¢1].
=1 We show some of the basic steps in the derivation of

At time-stept + 1, the output of the NSFLS is computed asthe update fory', but we omit details of similar steps in
the derivations for the remaining parameters. To obtain an

fns(t+1) = h(t)/9(t). (19) expression for the recursive computationdf,.(t)/d7', we
Note that the exogenous inputs at timedo not affect the :)ljalgm by differentiating the system dynamics using the chain

output of the system until timé + 1.
In the special case of Gaussian antecedent and input fuz@yns(t +1) [0fns(t+1) dg(t) | Ofns(t+1) Oh(t)

sets, the antecedent membership functions are given by Iy N dg(t)  Ouw(t) on(t)  Owi(t)
i
(Zn,sup () — Mgt )2  Gw (@) 8fnjl(t> Ofns(t +1) 8h_(f)
Ht (wn,suP(t)) =€xp |— 2 (20) O frs(t) dy Oh(t) ay

Tt (29)
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where, using (16)—(19), we find

Ofas(t+1) _ h(t)
o0) 20 o
dg(t) _
dul(e) (31)
Ofns(t+1) 1
ohH g 42
aajf 5= @33)
) =w'(t) (34)
and [using (16), (23), and (25)]
i n—1
g}u ((tt)) = 1] nx.(ox, mps, 0F)np(0x,  mp, 05)
ns r=1
a n,sup
[Pl ot
Oy (T sup(t))
+ px, (xn,sup(t))wl (35)
where [using (22), (23), and (25)]
Ax, (Tnsup(t)) 0%, | fns(t)—mp
Ofns(t) __UJQLI{ + ag(n 01%[{ + ag(n
CHX, (xn,sul)(t)) (36)
and [using (20), (23), and (25)]
gt (Tnsup(t)) o frs(t) = my
O fns(t) aﬁﬁ +o% | o3 +ok
gy (T sup(1))- (37)
Substituting (36) and (37) into (35), we find
8wl(t) L i fns(t)
ol < T w(t). (38)

Substituting (30)—(34) and (38) into (29), we obtain

" §_I:| myt — fnS(t)
a(t) U?ﬁ + 0%,

Ofuslt+1) _ {_ h(t)

' g*(t)
Afns(t)  w'(t)
O gt
_ wl(t) . mgt — fnS(t)
= g(t) [(yl - fnS(t+ 1))( 0;{{ +U§(n )
afg;l( ) + 1} (39)

Assuming thatdf,,(0)/8%" = 0, and letting ¢y:(t) =

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

Ofns(t) /07, (39) can be expressed as
Myt — Ins (t)
0?{{ + 0%

$5:(0) =0

pp(t+1) = [@’ — frs(t+ 1))<

. (/)gz t)+1], (40)

which is the desired recursion fétf,.,(t)/0%.

Following a similar procedure, we obtain

[ Ty — MEpl
ot ox
] (41)
opi(x, —mpt)?
Popu (t+1) = A@) | B(2) - bo,, () + m]
Fi Xt
) (42)
oxi(mp —z,)2
Po (E+1) = A@) | B(E) - do, (1) + W
: @
bt +1) = A)|[BO) - () - (a4)
where
_ yl_fnS(t+1) i
Ay = | Ll D i s)
myt — fns(t)
o= () *

and all of the above recursions are initialized to zeréat0.

To obtain recursions suitable for real-time training of the
NSFLS, we can relax the assumption that the parameters
remain fixed infto, ¢1]. We can make the parameter changes
at each time point while the system is running (see [28)), i.e.,
update each parameter with

Al = kVge(t) = K[ fns(t) — d(t)]de(t) (47)
instead ofA#. This implies that the real-time algorithm will
not follow the exact negative gradient of the total error
surface. The difference, however, usually becomes very small
as the learning rate; becomes small [28]. (Note that this
is equivalent to the familiar static backpropagation type of
algorithms which also modify each parameter at every time
point [6].) Then, the recursions for the NSFLS parameters are
given by

7t +1) =7 () = rilfus(t) = d(t)]pg (1) (48)
mp(t+1) =mpi(t) — ralfs(t) — d(t )]</>m (1) (49)
op(t+1) =opt) = ralfns () — dD)]¢s,, (8)  (50)
oxi(t+1) =ox:(t) = walfus(t) = d(®)]o ., () (51)
8t +1) =8'(t) — sl fns(t) — d(B)] 95t (). (52)
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The recursions formy: and oy are identical to those of 15 —— T
mp: and o, respectively, when we replace input with
fns(t),mpi with myt, and OF! with Thi- l

The sequence of computations for the dynamic learning '}
algorithm is as follows: we initialize the system using the
one-pass (OP) method [24], and use (11) with Gaussian
membership functions, product inference, and= 1 to obtain
the system output. The exogenous inputs together with the
feedback input comprise the entire set of inputs. At time0,
we initialize all variablesp to zero and, subsequently, use
(40)—(44) to compute their updates overral- 1,2,--- ,n—1,
and! = 1,2,---, M. The initial value of the feedback inputis  _gs}
chosen to be in the range of the desired response, i.e., it should
lie in the interval [inf d(¢),sup d(t)]. Using the computed
values of¢ together with the instantaneous erif (¢) — d(t) -1f
we calculate the correctiatVge(t) in (47) and, subsequently,
use (48)—(52) to compute the system parameter updates. The
procedure is repeated for each time-step W0 20 w0 40 0 60 700 80 90 1000

It should be noted that no convergence analysis exists yet @)
for this kind of dynamic learning algorithm, therefore, caution
should be exercised so that the system does not become
unstable. To minimize this risk, it is recommended that the
time scale of parameter changes be much slower than the time
scale of the system operation, i.e., the learning rate be kept
sufficiently small [6], [28].

In the absence of feedback, the dynamic learning algorithm o5 "\ N T gy |
(40)—(52) reduces to the static backpropagation algorithm for ! v ;
NSFLS’s [15]. If, in addition, the input becomes a Singleton, v
0%, =0,k =1,2,---,n, (48)~(52) reduce to the Singleton of '
back-propagation scheme proposed in [23]. Note that unlike
a Singleton FLS, a NSFLS can be trained to account for
uncertainty at the input by training forx, . I I N \ WA

1.5 T T T T T T T T T

IV. EXAMPLES AND APPLICATIONS b

In this section, we present examples to investigate the utility
of the proposed dynamic system and dynamic learning algo- . . 1 ‘ 1 ‘ . ] .
rithm that demonstrate they can offer significant advantages % 0 20 00 40 50 60 700 800 90 1000

in different scenarios. (b)

Fig. 3. (a) Output of plant (53) with input (54) (solid line) and output of
A. System Identification the dynamic FLS identification model (dash-dotted line). (b) Output of plant
. L. . (53) with input (54) (solid line) and output of the static FLS identification
To illustrate the superiority of our dynamic FLS over anodel (dash-dotted line).

corresponding static FLS in modeling processes of unknown

order and structure, we give an example for the identification q inf L iiable ab h K |
of a nonlinear dynamic system. System identification requirg’sa equate information is available about the unknown plant

selecting one of a parameterized family of functions so ggd impractical if a Iﬁrge nl:mber of m;)uts IS nezd%d [21].'
to approximate the input—output behavior of a target functicmere’ we compare the performance of static and dynamic

in an optimum manner, as defined by a given cost functioﬁ'_—ﬁ]s when m|r]:|rrr1]a| lr;form_atm_n is f;l)vallable about the plant.
When the identification problem involves a dynamic system € output of the plant Is given by

whose output depends both on past inputs and past outputs, y(t)

: e (t+1)= + 0.3u(t)

it would be preferable to construct a dynamic identification y T l4y(t—12+yt—2)? :

model that can exhibit similar behavior. Despite the fact that +0.7u(t — 1) (53)

the output of a static FLS is a function of its current inputs

only, static FLS’s have been used in the past (see [25]) for the, it depends on two previous inputs and three previous
identification and control of dynamical systems. If the ordesutputs. Both static FLS's and feedforward neural networks
of the system (or an upper bound of it) is known, then thgsed in the past to identify systems similar to (53), required
appropriate number of past inputs and outputs can be explicitiye inputs of the appropriate past values wfand y [21]
used as inputs to the static FLS. This could be unrealistic[ife., z1 = w(t), 22 = u(t—1),23 = y(t), 24 = y(t - 1), 25 =
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y(t—2)]. This restrictive limitation, which makes such systemb our example, we approximated the optimum predictor by
hard to use when the order of the plant is unknown, is removed _ . . .
(at least in this example) by using dynamic FLS’s. For our *t =@, 2, ey €1, Gy Gem) (ST)
example, we only used; and z3 as inputs. The dynamic &_r =T¢_x — T, J=12,-,m. (58)
FLS we used is of the form of (11) with Gaussian members
functions, product inferencé/ = 30, andn; = 1. We trained
our system with a random input uniformly distributed in th
interval [-2, 2], using the learning algorithm (40)—(52) for 7
5000 time steps and a learning rate of 0.3. For the testing Ty = vy + L2041 exp <— 6 ) + 0.814_1
phase, we used the following inputs: V2,

- exp <——_) (59)

3

hi
\}\)/e trained the dynamic system (11) as a one-step predictive
gnodel of

w(t) =0.4sin (37t/250) cos (7t /50) + 0.6 cos (37t/250)
t < 500 wherey, is a zero-mean uniform white noise process with stan-
=0.6sin (mt/125) + 0.2sin 2(7t/25) + 0.2 cos (¢ /50) dard deviatiorr,, (see Fig. 4). The system had one exogenous
500 < £ < 1000 (54) input (z;—1) and one feedback inpyt,;(t — 1) = ;1. The
- ) FLS was trained for 1500 samples, after 1000 points were
We compared the performance of the dynamic FLS with aa{lowed for the transients to die out. The model was then
static FLS that had the same structure, type of membersh ted on the 500 points following the training segment, for
functions, and inference as the dynamic FLS (11). The o 0 Monte Carlo iterations. We similarly trained and tested
difference between the two systems is the presence of fguc FLS's of different orders [NAR(1)-NAR(6)], with the
additional feedback input in the case of the dynamic systefijatic Packpropagation algorithm in [15]. All FLS’s employed
The static FLS was trained using the static backpropagatiGussian membership functions and product inference and
algorithm given in [15] for 5000 iterations and a learnin ontained 50 rules in t.helr ruIebe}se. The resu_lts are given in
rate of 0.5. Both systems were identically initialized usin able | for both dynamic and static FLS’s for different values

the OP method. Fig. 3(a) and (b) shows the output of tf v~ It iS obvious that the NARMA(L, 1) dynamic FLS
plant (solid line) and the outputs of the dynamic and statft/tPerforms all static FLS's. The NAR(1) FLS outperforms
identification models (dash-dotted lines), respectively. We sk Other static systems in both in-sample and out-of-sample
that the dynamic FLS has evolved through the dynamRgrformance. The mean-suared error (MSE) for the NAR
learning algorithm to be able to reproduce the behavior B}Odel increases dramatically when increasing the number of

(53), but the corresponding static system failed to do so. MPUts from one to two, but it decreases gradually as the
number of inputs continues to inrease. The learning tat@s

- . set conservatively to 0.1 for the, = 0.3 ando,, = 0.5 cases,
B. Predictive Modeling of a NARMA Process and to 0.07 for thes, = 0.7 case. Whenx starts becoming
Here, we examine the predictive ability of our dynamigoo large (i.e.,x > 1), the dynamic system starts to exhibit

FLS for a nonlinear autoregressive moving average (NARMAyscillatory behavior and, finally, becomes unstable.
process and compare its performance with static FLS’s of
different orders. Static FLS’s essentially belong to the general V. CONCLUSION

family of nonlinear autoregressive [NAR(n)] models given by \we have presented a formulation for dynamic NSFLS's,
with two main distinguishing features: 1) they generalize static
Ty = M1, 82,0 Ten) F (3%) NSFLS's and 2) they generalize Singleton FLS'’s. Extensive
comparisons between singleton and non-Singleton FLS's are
given in [13]-[15]. In this paper, through several examples,
we have demonstrated that dynamic NSFLS’s can signifi-
cantly outperform static NSFLS’s in different applications.
We have also derived a dynamic learning algorithm to train
& = E[me|Te—1,Tr—2, s Tt—n] the system paramgters givep a sequence of input—output. pgirs.
The dynamic learning algorithm (40)—(52) has characteristics
similar to the static backpropagation algorithm for Singleton
A dynamic FLS belongs to the family aFARMA (n, m) [23] .and.nqn-_SingIeto_n [15] FLS’S. It can be initialized ba§ed
[2] models on linguistic information, or using a .S|.m_ple.procedure like
the one-pass method. This kind of initialization, as opposed
Tp = h(B1, To—2, s Lty Co1, Coe2y > Comm) + € to random initialization as in the neural network case, can
(56) constrain the search space during optimization, thus result-
where, again). is an unknown smooth function, the saméng in much faster convergence. Since the parameters being

assumptions hold foe; as in the NAR case, and the optimuntiPdated with the learning algorithm are directly associated
predictor is with the information in the rule base, the linguistic meaning

of the rules is preserved throughout the training process. The
&= h(@p—1,Te—2, " Ttepy CL1,€1—2, " "y Ctm)- learning algorithm for dynamic NSFLS’s also includes training

whereh is an unknown smooth function [2]. Then, assumin
that Efes|zy_1,24_2,---] = 0, and the error variance? is
finite, the optimal mean-squared error predictorzpf given
Ty—1,T4—2, -+, Ty_yn 1S the conditional mean, i.e.,

:h(xt—17$t—27"'7xt—n)7 tzn+1.
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Fig. 4. Nonlinear autoregressive moving average process (59) ayitn= 0.3.

TABLE |
PrREDICTIVE MODELING RESULTS FOR THENARMA(1, 1) Process(59). ALL SysTEMS WERE TRAINED FOR 1500 S\WPLES, AFTER 1000 RINTS
WERE ALLOWED FOR THE TRANSIENTS TO DIE OuT. ALL REsuLTS WERE AVERAGED OVER 100 MONTE CARLO ITERATIONS

I Noise std = 0.3 ” Training mse I Testing mse I Training std I Testing std—l
Dynamic FLS (NARMA(1,1)) 0.14959 0.15169 0.41549 0.42040
Static FLS (NAR(1)) 0.23637 0.23970 0.51883 0.52295
Static FLS (NAR(2)) 0.98778 0.99921 1.30617 1.33570
Static FLS (NAR(3)) 0.70791 0.72730 1.00326 1.02114
Static FLS (NAR(4)) 0.59357 0.60698 0.90215 0.92933
Static FLS (NAR(5)) 0.51702 0.53835 0.83927 0.86847
Static FLS (NAR(6)) 0.41993 0.44609 0.72982 0.75021

I Noise std = 0.5 H Training mse | Testing mse l Training std ] Cesting sth
Dynamic FLS (NARMA(L,1)) 0.41020 0.41172 0.74687 0.75178
Static FLS (NAR(1)) 0.47017 0.48763 0.83915 0.84420
Static FLS (NAR(2)) 1.48926 1.51058 1.87004 1.90084
Static FLS (NAR(3)) 1.38008 1.38263 1.78067 1.79702
Static FLS (NAR(4)) 1.30205 1.32557 1.70006 1.73300
Static FLS (NAR(5)) 1.20256 1.23846 1.60474 1.64985
Static FLS (NAR(6)) 1.13150 1.16789 1.52302 1.56824

| Noise std = 0.7 ” Training mse I Testing mse | Training std [ Testing std ]
Dynamic FLS (NARMA(1,1)) 0.62818 0.63217 1.00943 1.01618
Static FLS (NAR(1)) 0.91287 0.92454 1.33465 1.36060
Static FLS (NAR(2)) 1.83255 1.85864 2.26543 2.29705
Static FLS (NAR(3)) 1.73073 1.75982 2.17637 2.21373
Static FLS (NA (4)) 1.63573 1.66323 2.05391 2.09283
Static FLS (NAR(5)) 1.62831 1.66999 2.05332 2.09996
Static FLS (NAR(6)) 1.41556 1.45758 1.85065 1.90050

to include the right amount of input uncertainty. Furthermorenodel dynamical systems may be unsatisfactory [21]. On the
if the feedback input is removed, then (40)—(52) reduce toother hand, the dynamic FLS was able to capture the behavior
static backpropagation algorithm [15]. of the plant without being explicitly fed all inputs and outputs,
In Section IV-A, we compared the performance of a dyz,---,x5.

namic FLS trained with the dynamic learning algorithm with Viewing dynamic NSFLS’s as belonging to the general
that of a corresponding static FLS trained with static backprofamily of nonlinear autoregressive moving average models and
agation. Both systems were trained as identification modeistic NSFLS’s as general nonlinear autoregressive models, we
for a nonlinear dynamic system whose order was not knowmave examined their performance in the predictive modeling
The failure of the static system to successfully identify thef a NARMA process. For time series that possess moving
unknown plant has demonstrated that using static FLS’s a@erage components, dynamic NSFLS’s have proven to pro-
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duce models that not only have a lower mean-square errfa] L. X. Wang and J. M. Mendel, “Back-propagation fuzzy systems as
but also are more parSImonlous and have better generallzatlon non-linear dynamlc System |dent|f|ers,” IBEE Proc. Int. Conf. FUZZy

capabilities. [24]
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