
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997 199

Dynamic Non-Singleton Fuzzy Logic
Systems for Nonlinear Modeling

George C. Mouzouris and Jerry M. Mendel,Fellow, IEEE

Abstract—We investigate dynamic versions of fuzzy logic sys-
tems (FLS’s) and, specifically, their non-Singleton generalizations
(NSFLS’s), and derive a dynamic learning algorithm to train the
system parameters. The history-sensitive output of the dynamic
systems gives them a significant advantage over static systems in
modeling processes of unknown order. This is illustrated through
an example in nonlinear dynamic system identification. Since
dynamic NSFLS’s can be considered to belong to the family
of general nonlinear autoregressive moving average (NARMA)
models, they are capable of parsimoniously modeling NARMA
processes. We study the performance of both dynamic and static
FLS’s in the predictive modeling of a NARMA process.

Index Terms—Dynamic NSFLS, NARMA, nonlinear modeling.

I. INTRODUCTION

PROMPTED BY the desire to bridge the gap between
traditional mathematical models of physical processes and

the often abstract, or imprecise information associated with
such processes, researchers in recent years have started paying
particular attention to fuzzy set theory [29], a mathematical
tool for translating abstract concepts into computable entities
[4]. In this paper, we present computational systems capable
of processing such entities.

In Section II, we give a brief overview of non-Singleton
fuzzy logic systems (NSFLS’s) [14], [15] that are an extension
of the well-known Singleton fuzzy logic systems [9], [25].
These systems implement static nonlinear mappings between
their input and output spaces. Here, we extend these systems to
their dynamic feedback counterparts. The output of dynamic
systems at time depends on exogenous inputs as well
as previous outputs at time so these systems exhibit rich
and complex dynamical behavior and can be used to parsimo-
neously represent dynamic processes of unknown order and
structure. Unlike static fuzzy logic systems (FLS’s), processing
of input patterns by dynamic FLS’s depends upon the order
of presentation during training or recall; therefore, dynamic
FLS’s are well suited for the representation and processing of
temporal information.

In Section III we derive a dynamic backpropagation type
of learning algorithm to update the parameters of a dynamic
non-Singleton fuzzy logic system. Although it was a long
time after its inception (see [26]) that attention was drawn

Manuscript received December 20, 1995; revised September 5, 1996. This
work was supported by the University of Southern California, Los Angeles,
National Science Foundation under Grant MIP-9 122 018.

The authors are with the Signal and Image Processing Institute, Department
of Electrical Engineering-Systems, University of Southern California, Los
Angeles, CA 90089 USA.

Publisher Item Identifier S 1063-6706(97)02843-9.

to backpropagation learning, its utility as a universal learning
paradigm for smooth parameterized models (including FLS’s)
[8], [15], [23] became evident with its successful application
to artificial neural networks [17]. Being able to utilize a
learning algorithm such as backpropagation implies that a FLS
with linguistic information in its rulebase can be updated or
adapted using numerical information to gain an even greater
advantage over a neural network that cannot make direct use of
linguistic information. The collection of modifiable IF-THEN
rules comprising the rulebase, constitute an adaptive FLS, i.e.,
a system whose input–output behavior is defined by a set of
modifiable parameters. The systems we describe in this paper
belong to the family of adaptive FLS’s.

In Section IV we give examples in system identification and
the predictive modeling of a nonlinear autoregressive moving
average process. These examples illustrate the power of both
the dynamic FLS’s, and the dynamic learning algorithm.

Section V concludes this paper.

II. OVERVIEW OF NON-SINGLETON FUZZY LOGIC SYSTEMS

The large variety of possible available information, together
with the need for modeling all such information to determine a
particular solution, necessitate the use of a very flexible infor-
mation modeling technique. With this in mind, the formulation
that provides the highest degree of latitude is a list of state-
ments (rules) where each statement indicates the acceptability
of a proposed solution based on some piece of information.
The fuzzy formalism can provide a general framework to
model certain or uncertain information in which an action
is combined with a statement in an antecedent/consequent
format and the individual statement solutions are aggregated
to provide the overall solution. The set of statements comprise
the fuzzy rule base, which is a vital part of a FLS (Fig. 1).
The fuzzy inference enginecombines the statements in the rule
base according to approximate reasoning theory to produce a
mapping from fuzzy sets in the input spaceto fuzzy sets in
the output space The fuzzifier maps crisp inputs to fuzzy
sets defined on the input space and thedefuzzifiermaps the
aggregated output fuzzy sets to a single crisp point in the
output space.

A fuzzy logic system processes crisp data at the input and
produces crisp data at the output; therefore, a fuzzifier is used
at the front of the system to convert crisp data to fuzzy data
and a defuzzifier is used at the output of the system to convert
fuzzy data into crisp data. The most widely used fuzzifier is
the Singleton fuzzifier [9], [10], [25], mainly because of its
simplicity and lower computational requirements; however,

1063–6706/97$10.00 1997 IEEE



200 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

Fig. 1. Structure of a fuzzy logic system.

this kind of fuzzifier may not always be adequate, especially in
cases where noise is present in the training data or in the data
which is later processed by the system. A different approach
is necessary to account for uncertainty in the data, which
is why we direct our attention at NSFLS’s. NSFLS’s are a
family of systems that havenon-Singletonfuzzy sets as inputs.
The structure of the rulebase is identical as in the Singleton
FLS case, except that input linguistic variables are allowed to
take set values (instead of single-point values). NSFLS’s are
a powerful generalization of Singleton FLS’s and provide a
mathematically tractable method to treat input uncertainty.

Non-Singleton fuzzifiers have been used successfully in a
variety of applications [1], [5], [16], [19], [20], [22]. In neural-
fuzzy systems [1], [5], vectors of fuzzy sets are used both to
train a fuzzy neural network and as inputs during processing.
In [16], an optimizing control method for optimizing the fuel
consumption rate of a marine diesel engine utilizes empirical
rules that are expressed by fuzzy numbers. Non-Singleton
input has also been used in turning process automation [20]
to represent a human operator’s actions in the fuzzy rule
base, in the design of fuzzy control algorithms [19], and in
fuzzy information and decision-making [22]. These methods
are largely heuristic and provide no closed-form expressions
for fuzzy logic systems; hence, their generalizations are very
difficult.

A. The Non-Singleton Fuzzifier

Fuzzy sets have been interpreted as membership functions
[29] that associate with each elementof the universe of

discourse, a number in the interval [0, 1]:

(1)

A fuzzifier maps a crisp point into a fuzzy set

1) In the case of aSingleton fuzzifier, the crisp point
is mapped into a fuzzy set with support where

for and for ,
i.e., thesingle point in the support of with nonzero
membership function value is

2) In the case of anon-Singleton fuzzifier, the point
is mapped into a fuzzy set with support where
achieves maximum value at and decreases while
moving away from . We assume that fuzzy set
is normalized so that

Non-Singleton fuzzification is especially useful in cases
where the available training data or the input data to the fuzzy
logic system are corrupted by noise. Conceptually, the non-
Singleton fuzzifier implies that the given input valueis the
most likely value to be the correct one from all the values
in its immediate neighborhood; however, because the input is
corrupted by noise, neighboring points are also likely to be the
correct values, but to a lesser degree.

It is up to the system designer to determine the shape of the
membership function based on an estimate of the kind and
quantity of noise or uncertainty present. It would be the logical
choice, though, for the membership function to be symmetric
about since the effect of noise is most likely to be equivalent
on all points. Examples of such membership functions are: 1)
the Gaussian

where the variance reflects the width (spread) of ;
2) triangular

and 3)

where and are, respectively, the mean and spread of the
fuzzy sets. Note that larger values of the spread of the above
membership functions imply that more noise is anticipated to
exist in the given data.



MOUZOURIS AND MENDEL: DYNAMIC NON-SINGLETON FUZZY LOGIC SYSTEMS 201

B. Dynamic Non-Singleton Fuzzy Logic System Formulation

Consider a fuzzy logic system with a rulebase ofrules,
and let the th rule be denoted by Let each rule have

antecedents and one consequent (as is well known, a rule
with consequents can be decomposed intorules, each
having the same antecedents and one different consequent);
also, let and
denote the antecedent membership functions corresponding to

exogenous inputs and feedback inputs, respectively.
For example, in the case of a single-feedback input,
and the feedback input linguistic variable takes system output
values delayed by one unit. Theth rule is of the general form

IF is and and is and

is and and is

THEN is

where and are the input and output
linguistic variables, respectively. Each and are
subsets of possibly different universes of discourse. Let

and

Since are feedback input linguistic
variables, they take values from universe of discourse;
thus, (to maintain consistent
notation with the antecedent linguistic variables, we will use

to denote universes of discourse of both
exogenous and feedback linguistic variables). Each rule can
be viewed as a fuzzy relation [30] from a set to a set
where is the Cartesian product space
itself is a subset of the Cartesian product

where and and
are the points in the universes of discourse, and of

and is characterized by a continuous multivariate
membership function , and can be described by the
following:

(2)

where denotes a -norm, and denotes the union of
individual points of each set in the continuum.

Let the input to be denoted by , where is a subset
of an -dimensional Cartesian product space and is given by

(3)

where

and

are the fuzzy sets describing the exogenous and feedback
inputs, respectively.

Up to this point, the formulation is identical to that of the
Singleton case. In the Singleton case, though, it is assumed that
each input fuzzy set has nonzero membership value only
at a single point, which reduces to a set with a single point

In our treatment here, we do not make this assumption.
Each input fuzzy set is represented by the more general non-
Singleton form in (3), thereby allowing any uncertainty in the
input to be represented in the system.

According to thecompositional rule of inference, the fuzzy
subset of induced by is given by the composition
of and

(4)

Note that all unions (denoted by in and over
are over the same spaces; therefore, we can write

as

(5)

Since the supremum is only over then by the
commutativity and monotonicity properties of a-norm, we
can rewrite as

(6)

Next, we recall that by definition a-norm is a two-
place function from [31]; thus, we can consider
every -norm in (6) to be acting on a pair of membership
functions. The calculation of the-norm over all the points in
the corresponding spaces of the two membership functions is
easier to visualize if the membership functions are in the same



202 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

space; therefore, we rewrite (6) in the following manner:

(7)

Note that the supremum in (7) is over all pointsin (in an
-dimensional Cartesian product space). By the monotonicity

property of a -norm [31], that supremum is attained when
each term in brackets attains its supremum. Let

(8)

(9)

where and

Assuming that and
produced by (8) and (9), respectively, are

functions whose suprema can be evaluated, let and
denote the points in and where

those suprema are attained; then (7) becomes

(10)

where and denote sequences of-norm opera-
tions.

Using the modified height defuzzifier [7], [25], the output
of our NSFLS can be written as a non-Singleton fuzzy basis
function (NSFBF) expansion (11) and (12), shown at the
bottom of the page, where the basis functions are given by
(13), shown at the bottom of the page, in whichdenotes the
number of rules, denotes the point of maximum membership
of the th consequent fuzzy set, and is proportional to the

uncertainty in the consequent fuzzy sets (e.g., if the consequent
membership function is triangular, thencould be chosen as
the length of its base).

Note that when the input fuzzy set becomes a singleton, then
and

[14], so that the NSFLS becomes a SFLS

(14)

where

(15)

Observe that depending on the choice of-norm operation and
membership functions, a NSFLS provides a mapping of the
set-valued inputs to produce , which can be viewed
as a form of nonlinear prefiltering [11]. How this is done will
become clear in Sections III and IV.

Equations (11)–(13) define a special case of a NSFLS with
arbitrary membership functions, arbitrary-norms, and modi-
fied height defuzzification. Each NSFBF is associated
with either a fuzzy linguistic statement (with uncertain input)
or uncertain numerical data; hence, both types of information
can be easily combined in a natural framework using NSFBF’s.

III. A L EARNING ALGORITHM FOR DYNAMIC NSFLSS

In this section, we derive an algorithm for the adaptive
training of dynamic NSFLS’s. Dynamic NSFLS’s compared to
static NSFLS’s (which are static mappings between their input
and output spaces) are a richer family of systems, capable of
implementing a wide range of dynamic systems. The task of
training dynamic NSFLS’s is equivalent to finding a particular
NSFLS from a parameterized family of such systems that
optimizes a specific cost function [27] and achieves a desired
mapping defined by a set of input–output pairs of a target
system. The dependence of the system output at time
on the values of the state variables of the system at time

(11)

(12)

(13)



MOUZOURIS AND MENDEL: DYNAMIC NON-SINGLETON FUZZY LOGIC SYSTEMS 203

Fig. 2. Network structure of a dynamic non-Singleton fuzzy logic system,
with M rules, n � 1 exogenous inputs, and one feedback input, which is
labeledxn. T denotes a sequence oft-norm operations.

makes this task more complicated than that of training static
systems [18]. For the sake of simplicity, we will assume in the
derivation of the learning algorithm that the NSFLS has only
one feedback input and uses product-norm. Fig. 2 depicts the
network structure of a dynamic NSFLS with rules,
exogenous inputs and one feedback input. The nodes labeled

denote the nonlinear processing of input information to
generate

Given a sequence of input–output pairs, we develop a
learning algorithm for temporal supervised tasks [28] that
allows the adaptation of the parameters of a NSFLS. Assuming
a single-feedback input (so that and product -norm,
the NSFLS in (11) [using (8) and (9)] can be re-expressed in
terms of the following quantities:

(16)

(17)

(18)

At time-step , the output of the NSFLS is computed as

(19)

Note that the exogenous inputs at timedo not affect the
output of the system until time

In the special case of Gaussian antecedent and input fuzzy
sets, the antecedent membership functions are given by

(20)

and

(21)

and the input membership functions by

(22)

where [13]–[15]

(23)

(24)

and

(25)

Next, we define a time-varying error function

(26)

and the sum of squared errors

(27)

The update of a particular system parameter
(which can be any parameter from the set

is obtained by ac-
cumulating the values of for each time step along
the trajectory, i.e.,

(28)

where is the constant positive learning rate, and parameter
remains constant in the interval
We show some of the basic steps in the derivation of

the update for , but we omit details of similar steps in
the derivations for the remaining parameters. To obtain an
expression for the recursive computation of , we
begin by differentiating the system dynamics using the chain
rule

(29)



204 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

where, using (16)–(19), we find

(30)

(31)

(32)

(33)

(34)

and [using (16), (23), and (25)]

(35)

where [using (22), (23), and (25)]

(36)

and [using (20), (23), and (25)]

(37)

Substituting (36) and (37) into (35), we find

(38)

Substituting (30)–(34) and (38) into (29), we obtain

(39)

Assuming that and letting

, (39) can be expressed as

(40)

which is the desired recursion for
Following a similar procedure, we obtain

(41)

(42)

(43)

(44)

where

(45)

(46)

and all of the above recursions are initialized to zero at
To obtain recursions suitable for real-time training of the

NSFLS, we can relax the assumption that the parameters
remain fixed in We can make the parameter changes
at each time point while the system is running (see [28]), i.e.,
update each parameter with

(47)

instead of . This implies that the real-time algorithm will
not follow the exact negative gradient of the total error
surface. The difference, however, usually becomes very small
as the learning rate becomes small [28]. (Note that this
is equivalent to the familiar static backpropagation type of
algorithms which also modify each parameter at every time
point [6].) Then, the recursions for the NSFLS parameters are
given by

(48)

(49)

(50)

(51)

(52)



MOUZOURIS AND MENDEL: DYNAMIC NON-SINGLETON FUZZY LOGIC SYSTEMS 205

The recursions for and are identical to those of
and , respectively, when we replace input with

with , and with .
The sequence of computations for the dynamic learning

algorithm is as follows: we initialize the system using the
one-pass (OP) method [24], and use (11) with Gaussian
membership functions, product inference, and to obtain
the system output. The exogenous inputs together with the
feedback input comprise the entire set of inputs. At time ,
we initialize all variables to zero and, subsequently, use
(40)–(44) to compute their updates over all
and . The initial value of the feedback input is
chosen to be in the range of the desired response, i.e., it should
lie in the interval . Using the computed
values of together with the instantaneous error
we calculate the correction in (47) and, subsequently,
use (48)–(52) to compute the system parameter updates. The
procedure is repeated for each time-step.

It should be noted that no convergence analysis exists yet
for this kind of dynamic learning algorithm, therefore, caution
should be exercised so that the system does not become
unstable. To minimize this risk, it is recommended that the
time scale of parameter changes be much slower than the time
scale of the system operation, i.e., the learning rate be kept
sufficiently small [6], [28].

In the absence of feedback, the dynamic learning algorithm
(40)–(52) reduces to the static backpropagation algorithm for
NSFLS’s [15]. If, in addition, the input becomes a Singleton,

(48)–(52) reduce to the Singleton
back-propagation scheme proposed in [23]. Note that unlike
a Singleton FLS, a NSFLS can be trained to account for
uncertainty at the input by training for .

IV. EXAMPLES AND APPLICATIONS

In this section, we present examples to investigate the utility
of the proposed dynamic system and dynamic learning algo-
rithm that demonstrate they can offer significant advantages
in different scenarios.

A. System Identification

To illustrate the superiority of our dynamic FLS over a
corresponding static FLS in modeling processes of unknown
order and structure, we give an example for the identification
of a nonlinear dynamic system. System identification requires
selecting one of a parameterized family of functions so as
to approximate the input–output behavior of a target function
in an optimum manner, as defined by a given cost function.
When the identification problem involves a dynamic system
whose output depends both on past inputs and past outputs,
it would be preferable to construct a dynamic identification
model that can exhibit similar behavior. Despite the fact that
the output of a static FLS is a function of its current inputs
only, static FLS’s have been used in the past (see [25]) for the
identification and control of dynamical systems. If the order
of the system (or an upper bound of it) is known, then the
appropriate number of past inputs and outputs can be explicitly
used as inputs to the static FLS. This could be unrealistic if

(a)

(b)

Fig. 3. (a) Output of plant (53) with input (54) (solid line) and output of
the dynamic FLS identification model (dash-dotted line). (b) Output of plant
(53) with input (54) (solid line) and output of the static FLS identification
model (dash-dotted line).

inadequate information is available about the unknown plant
and impractical if a large number of inputs is needed [21].
Here, we compare the performance of static and dynamic
FLS’s when minimal information is available about the plant.

The output of the plant is given by

(53)

i.e, it depends on two previous inputs and three previous
outputs. Both static FLS’s and feedforward neural networks
used in the past to identify systems similar to (53), required
five inputs of the appropriate past values ofand [21]
[i.e.,



206 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

. This restrictive limitation, which makes such systems
hard to use when the order of the plant is unknown, is removed
(at least in this example) by using dynamic FLS’s. For our
example, we only used and as inputs. The dynamic
FLS we used is of the form of (11) with Gaussian membership
functions, product inference, , and . We trained
our system with a random input uniformly distributed in the
interval using the learning algorithm (40)–(52) for
5000 time steps and a learning rate of 0.3. For the testing
phase, we used the following inputs:

(54)

We compared the performance of the dynamic FLS with a
static FLS that had the same structure, type of membership
functions, and inference as the dynamic FLS (11). The only
difference between the two systems is the presence of the
additional feedback input in the case of the dynamic system.
The static FLS was trained using the static backpropagation
algorithm given in [15] for 5000 iterations and a learning
rate of 0.5. Both systems were identically initialized using
the OP method. Fig. 3(a) and (b) shows the output of the
plant (solid line) and the outputs of the dynamic and static
identification models (dash-dotted lines), respectively. We see
that the dynamic FLS has evolved through the dynamic
learning algorithm to be able to reproduce the behavior of
(53), but the corresponding static system failed to do so.

B. Predictive Modeling of a NARMA Process

Here, we examine the predictive ability of our dynamic
FLS for a nonlinear autoregressive moving average (NARMA)
process and compare its performance with static FLS’s of
different orders. Static FLS’s essentially belong to the general
family of nonlinear autoregressive [NAR(n)] models given by

(55)

where is an unknown smooth function [2]. Then, assuming
that and the error variance is
finite, the optimal mean-squared error predictor of, given

is the conditional mean, i.e.,

A dynamic FLS belongs to the family of
[2] models

(56)
where, again, is an unknown smooth function, the same
assumptions hold for as in the NAR case, and the optimum
predictor is

In our example, we approximated the optimum predictor by

(57)

(58)

We trained the dynamic system (11) as a one-step predictive
model of

(59)

where is a zero-mean uniform white noise process with stan-
dard deviation (see Fig. 4). The system had one exogenous
input and one feedback input . The
FLS was trained for 1500 samples, after 1000 points were
allowed for the transients to die out. The model was then
tested on the 500 points following the training segment, for
100 Monte Carlo iterations. We similarly trained and tested
static FLS’s of different orders [NAR(1)–NAR(6)], with the
static backpropagation algorithm in [15]. All FLS’s employed
Gaussian membership functions and product inference and
contained 50 rules in their rulebase. The results are given in
Table I for both dynamic and static FLS’s for different values
of . It is obvious that the NARMA(1, 1) dynamic FLS
outperforms all static FLS’s. The NAR(1) FLS outperforms
all other static systems in both in-sample and out-of-sample
performance. The mean-suared error (MSE) for the NAR
model increases dramatically when increasing the number of
inputs from one to two, but it decreases gradually as the
number of inputs continues to inrease. The learning ratewas
set conservatively to 0.1 for the and cases,
and to 0.07 for the case. When starts becoming
too large (i.e., , the dynamic system starts to exhibit
oscillatory behavior and, finally, becomes unstable.

V. CONCLUSION

We have presented a formulation for dynamic NSFLS’s,
with two main distinguishing features: 1) they generalize static
NSFLS’s and 2) they generalize Singleton FLS’s. Extensive
comparisons between singleton and non-Singleton FLS’s are
given in [13]–[15]. In this paper, through several examples,
we have demonstrated that dynamic NSFLS’s can signifi-
cantly outperform static NSFLS’s in different applications.
We have also derived a dynamic learning algorithm to train
the system parameters given a sequence of input–output pairs.
The dynamic learning algorithm (40)–(52) has characteristics
similar to the static backpropagation algorithm for Singleton
[23] and non-Singleton [15] FLS’s. It can be initialized based
on linguistic information, or using a simple procedure like
the one-pass method. This kind of initialization, as opposed
to random initialization as in the neural network case, can
constrain the search space during optimization, thus result-
ing in much faster convergence. Since the parameters being
updated with the learning algorithm are directly associated
with the information in the rule base, the linguistic meaning
of the rules is preserved throughout the training process. The
learning algorithm for dynamic NSFLS’s also includes training



MOUZOURIS AND MENDEL: DYNAMIC NON-SINGLETON FUZZY LOGIC SYSTEMS 207

Fig. 4. Nonlinear autoregressive moving average process (59) with�� = 0:3.

TABLE I
PREDICTIVE MODELING RESULTS FOR THENARMA(1, 1) PROCESS(59). ALL SYSTEMS WERE TRAINED FOR 1500 SAMPLES, AFTER 1000 POINTS

WERE ALLOWED FOR THE TRANSIENTS TO DIE OUT. ALL RESULTS WERE AVERAGED OVER 100 MONTE CARLO ITERATIONS

to include the right amount of input uncertainty. Furthermore,
if the feedback input is removed, then (40)–(52) reduce to a
static backpropagation algorithm [15].

In Section IV-A, we compared the performance of a dy-
namic FLS trained with the dynamic learning algorithm with
that of a corresponding static FLS trained with static backprop-
agation. Both systems were trained as identification models
for a nonlinear dynamic system whose order was not known.
The failure of the static system to successfully identify the
unknown plant has demonstrated that using static FLS’s to

model dynamical systems may be unsatisfactory [21]. On the
other hand, the dynamic FLS was able to capture the behavior
of the plant without being explicitly fed all inputs and outputs,

.
Viewing dynamic NSFLS’s as belonging to the general

family of nonlinear autoregressive moving average models and
static NSFLS’s as general nonlinear autoregressive models, we
have examined their performance in the predictive modeling
of a NARMA process. For time series that possess moving
average components, dynamic NSFLS’s have proven to pro-



208 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 2, MAY 1997

duce models that not only have a lower mean-square error,
but also are more parsimonious and have better generalization
capabilities.

REFERENCES

[1] M. Balazinski, E. Czogala, and T. Sadowski, “Control of metal-cutting
process using neural fuzzy controller,” in2nd IEEE Int. Conf. Fuzzy
Syst., San Francisco, CA, Mar. 1993, vol. 1, pp. 161–166.

[2] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural networks
and robust time series prediction,”IEEE Trans. Neural Networks, vol.
5, pp. 240–254, Mar. 1994.

[3] D. Dubois and H. Prade,Fuzzy Sets and Systems: Theory and Applica-
tions. Orlando, FL: Academic, 1980.

[4] , “Fuzzy sets in approximate reasoning—Part 1: Inference with
possibility distributions,”Fuzzy Sets Syst., vol. 40, no. 1, pp. 143–202,
1991.

[5] Y. Hayashi, J. J. Buckley, and E. Czogala, “Fuzzy neural network with
fuzzy signals and weights,”Int. J. Intell. Syst., vol. 8, pp. 527–537, 1993.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation. New
York: Macmillan, 1994.

[7] H. Hellendoorn and C. Thomas, “Defuzzification in fuzzy controllers,”
J. Intell. Syst., vol. 1, pp. 109–123, 1993.

[8] R. J. Jang and C. Sun, “Neuro-fuzzy modeling and control,”Proc. IEEE,
vol. 83, pp. 378–406, Mar. 1995.

[9] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller—Part
I,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404–418, Feb. 1990.

[10] , “Fuzzy logic in control systems: fuzzy logic controller—Part
II,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 419–435, Feb. 1990.

[11] J. M. Mendel, “Fuzzy logic systems for engineering: A tutorial,”Proc.
IEEE, vol. 83, pp. 345–377, Mar. 1995.

[12] , Lessons in Estimation Theory, for Signal Processing, Communi-
cations and Control. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[13] G. C. Mouzouris and J.M. Mendel, “Non-Singleton fuzzy logic sys-
tems,” in 3rd IEEE Proc. Int. Conf. Fuzzy Syst., June 1994, vol. 1, pp.
456–461.

[14] , “Non-Singleton fuzzy logic systems: Theory and application,”
IEEE Trans. Fuzzy Syst., vol. 5, pp. pp. 56–71, Feb. 1997.

[15] , “Nonlinear time series analysis with Non-Singleton fuzzy logic
systems,” inIEEE/IAFE Conf. Computati. Intell. Financial Eng., New
York, Apr. 1995, pp. 47–56.

[16] Y. Muyaram, T. Terano, S. Masui, and N. Akiyama, “Optimizing control
of a diesel engine,” inIndustrial Applications of Fuzzy Control, M.
Sugeno, Ed. Amsterdam, The Netherlands: North-Holland, 1992, pp.
63–71.

[17] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, Mar. 1990.

[18] O. Nerrand, P. Roussel–Ragot, L. Personnaz, G. Dreyfus, and S. Marcos,
“Neural networks and nonlinear adaptive filtering: Unifying concepts
and new algorithms,”Neural Computat.vol. 5, no. 2, pp. 165–199,
1993.

[19] W. Pedrycz, “Design of fuzzy control algorithms with the aid of fuzzy
models,” in Industrial Applications of Fuzzy Control, M. Sugeno, Ed.
Amsterdam, The Netherlands: North-Holland, 1992, pp. 139–151.

[20] Y. Sakai and K. Ohkusa, “A fuzzy controller in turning process
automation,”Industrial Applications of Fuzzy Control, M. Sugeno, Ed.
Amsterdam, The Netherlands: North-Holland, 1992, pp. 139–151.

[21] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron
networks for identification and control of dynamical systems,”IEEE
Trans. Neural Networks, vol. 5, pp. 306–319, Mar. 1994.

[22] H. Tanaka, T. Okuda, and K. Asai, “Fuzzy information and decision in
statistical model,” inAdvances in Fuzzy Set Theory and Applications,
M. M. Gupta, R. K. Ragade, and R. R. Yager, Eds. Amsterdam, The
Netherlands: North-Holland, 1979, pp. 303–320.

[23] L. X. Wang and J. M. Mendel, “Back-propagation fuzzy systems as
non-linear dynamic system identifiers,” inIEEE Proc. Int. Conf. Fuzzy
Syst., San Diego, CA, Mar. 1992, pp. 1409–1418.

[24] , “Generating fuzzy rules from numerical data, with applications,”
USC-SIPI Rep. 169, 1991; also inIEEE Trans. Syst., Man, Cybern., vol.
22, pp. 1414–1427, Nov. 1992.

[25] L. X. Wang, Adaptive Fuzzy Systems and Control. Englewood-Cliffs,
NJ: Prentice-Hall, 1994.

[26] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, pp. 1550–1560, Oct. 1990.

[27] R. J. Williams and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectories,”Neural Computat.,
vol. 2, pp. 490–501, 1990.

[28] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,”Neural Computat., vol. 1, no.
2, pp. 270–280, 1989.

[29] L. A. Zadeh, “Fuzzy sets,”Inform. Contr., vol. 8, no. 3, pp. 338–353,
1965.

[30] , “Outline of a new approach to the analysis of complex systems
and decision processes,”IEEE Trans. Syst., Man, Cybern., vol. SMC-3,
pp. 28–44, Jan. 1973.

[31] H. J. Zimmermann,Fuzzy Set Theory And Its Applications, 2nd ed.
Boston, MA: Kluwer, 1991.

George C. Mouzouriswas born in Cyprus in 1966.
He received the B.S. (with honors) and M.S. degrees
from Brown University, Providence, RI, both in
1990, and the Ph.D. degree from the University of
Southern California, Los Angeles, in 1996.

From 1990 to 1992, he was with the Digital Sig-
nal Processing Group of Texas Instruments, Hous-
ton, TX, where he dealt with the design and imple-
mentation of signal and image processing algorithms
on specialized processors. He is currently with the
Signal and Image Processing Institute at the Uni-

versity of Southern California, Los Angeles. His research interests include
nonlinear dynamic modeling, fuzzy systems, radial basis functions, neural
networks, and financial modeling.

Dr. Mouzouris is a member of Tau Beta Pi and Sigma Xi.

Jerry M. Mendel (S’59–M’61–SM’72–F’78) re-
ceived the Ph.D. degree in electrical engineering
from the Polytechnic Institute of Brooklyn, Brook-
lyn, NY, in 1963.

Currently he is a Professor of electrical engineer-
ing, Director of Special Educational Projects for the
School of Engineering, and Associate Director for
Education of the Integrated Media Systems Center,
all at the University of Southern California, Los
Angeles, where he has been since 1974. He has
published over 325 technical papers and is the

author or editor of seven books. His present research interests include higher
order statistics and neural networks applied to array processing and prediction
of nonlinear time-series and fuzzy logic applied to prediction of nonlinear
time-series, classification problems, and social science problems.

Dr. Mendel is a Distinguished Member of the IEEE Control Systems
Society. He was President of the IEEE Control Systems Society in 1986.
Among his awards are the 1983 Best Transactions Paper Award for a paper
in the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, the 1992
Signal Processing Society Paper Award for a paper in the IEEE TRANSACTIONS

ON ACOUSTICS, SPEECH, ANDSIGNAL PROCESSING, and a 1984 IEEE Centennial
Medal.


