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Fuzzy Adaptive Filters, with Application
to Nonlinear Channel Equalization

Li-Xin Wang, Member, IEEE, and Jerry M. Mendel, Fellow, IEEE

Abstract— A fuzzy adaptive filter is constructed from a set
of fuzzy IF-THEN rules which change adaptively to minimize
some criterion function as new information becomes available.
In this paper, two fuzzy adaptive filters are developed: one uses
a recursive least squares (RLS) adaptation algorithm, and the
other uses a least mean squares (LMS) adaptation algorithm. The
RLS fuzzy adaptive filter is constructed through the following
four steps: 1) define fuzzy sets in the filter input space U C R"
whose membership functions cover U; 2) construct a set of
fuzzy IF-THEN rules which either come from human experts
or are determined during the adaptation procedure by matching
input-output data pairs; 3) construct a filter based on the set
of rules; and 4) update the free parameters of the filter using
the RLS algorithm. The design procedure of the LMS fuzzy
adaptive filter is similar. The most important advantage of the
fuzzy adaptive filters is that linguistic information (in the form of
fuzzy IF-THEN rules) and numerical information (in the form of
input—output pairs) can be combined into the filters in a uniform
fashion. Finally, these two fuzzy adaptive filters are applied
to nonlinear communication channel equalization problems; the
simulation results show that: 1) without using any linguistic
information, the RLS and LMS fuzzy adaptive filters are well-
performing nonlinear adaptive filters (similar to polynomial and
neural-net adaptive filters); 2) by incorporating some linguistic
description (in fuzzy terms) about the channel into the fuzzy
adaptive filters, the adaptation speed is greatly improved; and
3) the bit error rates of the fuzzy equalizers are close to that of
the optimal equalizer.

I. INTRODUCTION

ILTERS are information processors. In practice, infor-

mation usually comes from two sources: sensors which
provide numerical data associated with a problem, and human
experts who provide linguistic descriptions (often in the form
of fuzzy IF-THEN rules) about the problem. Existing filters
can only process numerical data, whereas existing expert
systems can only make use of linguistic information; therefore,
their successful applications are limited to problems where
either linguistic rules or numerical data do not play a critical
role. There are, however, a large number of practical problems
in engineering, economics, seismology, management, etc.,
where both linguistic and numerical information are critical.
At present, when we are faced with such problems, we
use linguistic information, consciously or unconsciously, in
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the choice among different filters, the evaluation of filter
performance, the choice of filter orders, the interpretation of
filtering results, etc. There are serious limitations to using
linguistic information in this way, because for most practical
problems the linguistic information (in its natural form) is not
about which kind of filter should be chosen or what the order
of the filter should be, etc., but is in the form of IF-THEN
rules concerning fuzzy concepts such as “small,” “hot,” and
“not very fast.” The purpose of this paper is to develop new
kind of nonlinear adaptive filters, which we refer to as fuzzy
adaptive filters, that make use of both linguistic and numerical
information in their natural form, i.e., as fuzzy IF-THEN rules
and input-output data pairs.

A fuzzy adaptive filter is constructed from a set of change-
able fuzzy IF-THEN rules. These fuzzy rules come either
from human experts or by matching input—output pairs through
an adaptation procedure. The adaptive algorithms adjust the
parameters of the membership functions which characterize
the fuzzy concepts in the IF-THEN rules, by minimizing some
criterion functions. Two fuzzy adaptive filters are developed
in this paper which use recursive least squares (RLS) and least
mean squares (LMS) algorithms, respectively.

In Sections II and III, the RLS and LMS fuzzy adaptive
filters are designed, respectively. In Section IV, the two fuzzy
adaptive filters are applied to nonlinear channel equalization
problems. Section V concludes the paper.

II. RLS Fuzzy ADAPTIVE FILTER

Our RLS fuzzy adaptive filter solves the following problem.
Problem 1: Consider a real-valued vector sequence [z(k)]
and a real-valued scalar sequence [d(k)], where k = 0,1,2, -
is the time index, and z(k) € U = [C],C{] x [Cy,CH] x
X [Cr,CF] C R™ (we call U and R the input and output
spaces of the filter, respectively). At each time point k, we
are given the values of z(k) and d(k). The problem is: at
each time point k¥ = 0,1,2,---, determine an adaptive filter
fr : U C R* — R such that

k

J(k) =y N - fil=(@) M

1=0

is minimized, where A € (0,1] is a forgetting factor.

The above problem is quite general. As a particular example,
consider the following time-series prediction problem: we
measure the values of a bounded time series [y(k)] at each time
point kK = 0,1,2, ---; at time point k— 1, we want to determine
afilter fr_; : U — Rsuch that fr_1[y(k—1), --,y(k—n)]is
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an optimal prediction of y(k) in some sense. For this problem,
we have z(k) = [y(k — 1),---,y(k — n)]T,d(k) = y(k), and
the “in some sense” means to minimize the J(k) of (1). If we
constrain the fi’s to be linear functions, the problem becomes
an FIR adaptive filter design problem [4], [23]. If the fi’s are
Volterra series expansions, we have an adaptive polynomial
filter design problem [11], [17]. If the fi’s are multilayer
perceptions or radial basis function expansions, the problem
becomes the neural nets adaptive filter design problem [2], [3].

Design Procedure of the RLS Fuzzy Adaptive Filter

Step 1: Define m; fuzzy sets {24] in each interval[Ci__ s C{" ]
of the input space U, which are labeled as F'(i =
1,2,---,n;5¢ = 1,2,---,my; note that ji is a single index,
e.g., j1 is an index which takes values from 1 to m;), in the
following way: the m; membership functions pps: cover the
interval [C;",C;"] in the sense that for each z; € [C],C]]
there exists at least one ppsi(x;) # 0. These membership
functions are fixed and will not change during the adaptation
procedure of step 4.

Step 2: Construct a set of []'—; m; fuzzyIF-THEN rules in
the following form:

RGL™I™) . [Fgis F’1 and -

and z,, is FJ", THEN dis G(Jl"“'jn)y 2

where £ = (z1,--+,2,)T € U (the filter input), d € R (the
filter output), ji = 1,2,---,m; with ¢+ = 1,2,---,n,F/"’s
are the same labels of the fuzzy sets defined in step 1, and
the GU197)’g are labels of fuzzy sets defined in the output
space which are determined in the following way: if there are
linguistic rules from human experts in the form of (2), set
GULi") to be the corresponding linguistic terms of these
rules; otherwise, set pge;1,.-,5») to be an arbitrary membership
function over the output space R. It is in this way that we
incorporate linguistic rules into the fuzzy adaptive filter; i.e.,
we use linguistic rules to construct the initial filter.

Step 3: Construct the filter f), based on the[]._; m; rules
in step 2 as follows:

fi(z)
B Z;T:l R Z;’;;l Q(Jlu-,Jn)(uF{.l (z1) - ipin (zn))
E;nl;l Z;‘?{':l(upg"(xl) o Mpin (Tn)) 7
3)
where z = (z1,--- ,zn)T € U, pps:’s are membership func-

tions defined in step 1, and #1-™) € R is the point at which
Hgiit,-5» achieves its maximum value. Due to the way in
which we defined the yi;:’s in step 1, the denominator of (3)
is nonzero for all the p(;ints of U; therefore the filter fi of
(3) is well defined. Equation (3) is obtained by combining the
H?:l m; rules of step 2 using product inference and centroid
defuzzification [9], [10]. Another way of interpreting (3) is
as follows. For a given input £ € U, we determine the filter
output fi(z) as a weighted average of the [],_, m; points
#4137 in the output space at which the fuzzy sets GU1»37)
of the THEN parts of the ], m; rules have maximum
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membership values; and, the weight i1 (z1) ** - tpan (z0) for
g(1,3n) is proportional to the membership values of which
 satisfies the IF part of R(1»9™)_ This is a reasonable filter
because #0197 s are the “most likely” points in the output
space based on the []7_, m; rules, and the point (1™
should be given more weight if the given input point z satisfies
the corresponding IF part “more likely” (in the sense of larger
membership value).

In (3), the weights ,uFJl(zl) “Bpin(zn) are fixed func-
tions of z; therefore, the free design parameters of the fuzzy
adaptive filter are the gU1+37)’s which are now collected as
a ], m;-dimensional vector

g = (61D ... glmadi),
0(1,2,1,--~,1)’ e 9(m11211v'“y1); e
0(1,m2,1,~-,1)’ L ’0(m1 ,mz,l,"-,l); .

b

glma,ma) L glmima,ma))T @)

Define the fuzzy basis functions [22]}

UL I (g) = ”Ff;(ml)”'l‘ﬁ'f“(wn)
21t "EjnLI(HFfl(xl) F;n(xn))
&)

and collect them as a [];_; m;-dimensional vector p(z) in the
same ordering as the 8 of (4), i.e.,

plz) = (1D a), o it Da),
(121,-,1)(1)’ (m1 2,1, )(1)7 :
plbmaly ’1)(:1:) p(mx,mz, 1)(,’.)7 e
p(l ,ma, vm")(z) mlsty . ,mn)(z)) (6)

Based on (4) and (6) we can now rewrite (3) as
fi(z) = p" (2)0. (7

We see from (7) that f is linear in the parameter vector 6;
therefore, we can use the fast-convergent RLS algorithm to
update 6.

Step 4: Use the following RLS algorithm [4] to update 0:
let the initial estimate of #,8(0), be determined as in step 2,
and P(0) = oI, where o is a small positive constant, and J
is the [T, m; — by — []'—, m; identity matrix; at each time

point £k = 1,2,-.-, do the following:
#(k) = ( (%), ®)
P(k) = [ (k—1) - P(k—1)$(k)(A
+¢(@P@—HM@Y%WMP%—HL<%

K(k) = P(k = 1)$(k)[A + ¢" (k) P(k — 1)(k)] ™", (10)
8(k) = 0(k — 1) + K (k)(d(k) — ¢" (k)0(k — 1)), (11)

where [z(k)] and [d(k)] are the sequences defined above in
Problem 1, p(x) is defined in (6), and X is the forgetting
factor in (1).

Some comments on this RLS fuzzy adaptive filter are now
in order.
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Remark 1: The RLS algorithm (9)—(11) is obtained by
minimizing J(k) of (1) with fi constrained to be the form of
(7). Because fj, of (7) is linear in the parameter, the derivation
of (9)—(11) is the same as that for the FIR linear adaptive filter
[4]; therefore, we omit the details.

Remark 2: The RLS algorithm (9)—(11) can be viewed as
updating the [];._, m; rules in the form of (2) by changing the
“centers” §(/1:7") of the THEN parts of these rules in the
direction minimizing the criterion function (1). We are allowed
only to change these “centers.” The membership functions
ppsi of the IF parts of the rules are fixed at the very beginning
and are not allowed to change; therefore, a good choice of
Lpsi’s is important to the success of the entire filter. In the
next section, we will lighten this constraint by allowing the
Kpi’s also to change during the adaptation procedure.

Remark 3: 1t was proven in [18] and [22] that functions
in the form of (3) are universal approximators; i.e., for any
real continuous function g on the compact set U, there exists
a function in the form of (3) such that it can uniformly
approximate g over U to arbitrary accuracy. Consequently, our
fuzzy adaptive filter is a powerful nonlinear adaptive filter in
the sense that it has the capability of performing very difficult
nonlinear filtering operation.

Remark 4: The fuzzy adaptive filter (7) performs a two-
stage operation on the input vector z: first, it performs a
nonlinear transformation p(x) on z; then, the filter output is
obtained as a linear combination of these transformed signals.
In this sense, our fuzzy adaptive filter is similar to the radial
basis function [3],[16] and potential function [12] approaches.
The unique feature of our fuzzy adaptive filter, which is not
shared by other nonlinear adaptive filters, is that linguistic
rules can be incorporated into the filter, as discussed next.

Remark 5: Linguistic information (in the form of the
fuzzyIF-THEN rules of (2)) and numerical information (in the
form of desired input—output pairs (z(k), d(k))) are combined
into the filter in the following way: due to steps 2—4, linguistic
IF-THEN rules are directly incorporated into the filter (3) by
constructing the initial filter based on the linguistic rules; and,
due to the adaptation step 4, numerical pairs (z(k), d(k)) are
incorporated into the filter by updating the filter parameters
such that the filter output “matches” the pairs in the sense
of minimizing (1). It is natural and reasonable to assume
that linguistic information from human experts is provided in
the form of (2) because the rules of (2) state what the filter
outputs should be in some input situations, where “what should
be” and “some situations” are represented by linguistic terms
which are characterized by fuzzy membership functions. On
the other hand, it is obvious that the most natural form of
numerical information is provided in the form of input—output
pairs (z(k),d(k)).

Remark 6: By fixing the fuzzy membership functions on
the input space U at the very beginning, we obtained a
nonlinear filter which is linear in the parameter; therefore, we
could use the fast-convergent RLS algorithm in the adaptation
procedure. The price paid is that we had to include all the
[T, m; possible rules in the filter, because if a region of U
is not covered by any rules and an input z to the filter happens

163

to be in this region, then the filter response will be very poor.
As a result, for problems of high dimension n and large m;, the
computations involved in this fuzzy adaptive filter are intense,
because at each time point k we need to perform the []'-.; m;-
dimensional matrix-to-vector multiplications of (9)—(11) and to
evaluate the values of the [];_; m; fuzzy basis functions of
(8) (see also (6) and (5)). Although these computations are
highly parallelizable, we may not be able to use the filter in
some practical situations where computing power is limited;
therefore, we will now develop another fuzzy adaptive filter
which involves much less computation, next.

II. LMS Fuzzy ADAPTIVE FILTER

Our LMS fuzzy adaptive filter solves the following problem.

Problem 2: Consider the same input sequence {z(k)]and
output sequence [d(k)] as in Problem 1. The problem is: at
each time point £ = 1,2,---, determine an adaptive filter
fr : U — R such that

L = E[(d(k) - fi(=(k)))?] (12)
is minimized.
Design Procedure of the LMS Fuzzy Adaptive Filter

Step 1: Define M fuzzy sets F} in each interval[C;", C]f]
of U with the following Gaussian membership functions:

( ) o 1/z;, — .'Z'i z
ZI;) = eXx -

) 13)

7

where [ =1,2,---,M,i=1,2,---,n,z; € [C],C;"), and z!
and o} are free parameters which will be updated in the LMS
adaptation procedure of step 4.

Step 2: Construct a set of M fuzzy IF-THEN rules in the
following form:

R': IFz isFland --- andz,
isF}, THEN dis G', (14
where £ = (z1,---,2,)T € U,d € R,F"s are defined in
step 1, M < [[_,m; (in general, M < []i—, m;), and
GYs are fuzzy sets defined in R which are determined as
follows: if there are linguistic rules in the form of (14), set
FV’sand G to be the labels of these linguistic rules; otherwise,
choose pg: and the parameters ' and o} arbitrarily. The
(parameters of) membership functions ppt and pgr in these
rules will change during the LMS adaptati(;n procedure of step
4; therefore, the rules constructed in this step are initial rules of
the fuzzy adaptive filter. As in the RLS fuzzy adaptive filter,
we incorporate linguistic rules into the LMS fuzzy adaptive
filter by constructing the initial filter based on these rules.
Step 3: Construct the filter fr : U — R based on theM
rules of step 2 as follows:

_ i (i e ()
Yoty (Tl mre(20))

where £ = (1, --,%,)7 € U,up’s are the Gaussian
membership functions of (13), and 8 € R is any point at

fr(z) , (15)



which g achieves its maximum value. The filter (15) is
constructed in the same way as (3), and shares the same
interpretation. Because we chose the membership functions
KF (z;) to be Gaussian functions which are nonzero for any
z; € [C;,C}t), the denominator of (15) is nonzero for any
z € U; therefore, the filter fi of (15) is well defined. Because
the 6! as well as 7! and o} are free parameters, the filter (15)
is nonlinear in the parameters.

Step 4:  Use the following LMS algorithm [23] to update
thefilter parameters 6, 7! and o*: let the initial §*(0), Z(0) and
o}(0) as determined in step 2; at each time point k = 1,2, -,
do the following:

al(k - 1)

Wk=1) (16)

6'(k) = 6'(k — 1) + eld(k) — fi
z,(k) = zi(k — 1) + ad(k)

'k — 1) = fir 4 (k) — Bk — 1)

- fk]wa (k- I)W’
an

8k —1) -
(k) = ik = 1)+ ald(h) - p G
(zi(k) — Z}(k — 1))

sal(k=1) CICEE , (18)
where a'(k — 1) = ], exp [—%(I’(’?&fﬁ)—l))j bk —
) = Sk -1),fi = L#,a is a small

positive step size, [ = 1,2,---,M, and ¢ = 1,2,---,n.
Equations (16)—(18) are obtained by taking the gradient of L
(12) (ignore the expection E) with respect to the parameters
and using the specific formula of (15) and (13).

Some comments on this LMS fuzzy adaptive filter are now
in order.

Remark 1: From steps 2-4 we see that the initial LMS-
fuzzy adaptive filter is constructed based on linguistic rules
from human experts and some arbitrary rules (in the sense
that the parameters of membership functions pp: and pg:
which characterize these rules are chosen arbitra}i]y). Both
sets of rules are updated during the LMS adaptation procedure
of step 4 by changing the parameters in the direction of
minimizing the L of (12). Because minimizing (12) can
be viewed as matching the input-output pairs [z(k);d(k)],
our LMS fuzzy adaptive filter combines both linguistic and
numerical information in its design.

Remark 2: Because the LMS algorithm is a gradient algo-
rithm, a good choice of initial parameters is very important
to its convergence. Because we use linguistic information
to choose the initial parameters, the adaptation procedure
should converge quickly if the linguistic rules provide good
instructions for how the filter should perform, i.e., good
descriptions of the input—output pairs [z(k); d(k)]. Therefore,
although LMS algorithms in general are slow to converge, our
LMS algorithm in particular may converge fast, provided that
there are sufficient linguistic rules.

Remark 3: The filter fi of (15) can match any input—output
pair [z(k);d(k)] to arbitrary accuracy by properly choosing
the parameters 6', 7! and o!, as we show next. For given

i A
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Fig. 1. Schematic of data transmission system.
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Fig. 2. Optimal decision region for the channel (28), Gaussian white noise
with variance 02 = 0.2, and equalizer order n = 2 and lag d = 0.

[z(k);d(k)], let } = =z;(k),Z} # x;(k) for I # 1, and
6' = d(k); therefore, for £ = =z(k) in (15), the weight
(I, ppr(zi(k))) for 6! = d(k) equals one for any choice
of o}, and the other M — 1 weights ([]}_, I (z;(K))) for 6
with [ # 1 can be arbitrarily close to zero if we choose all o
to be sufficiently small (see (13) and notice that x;(k) # &'
for I # 1). As a result, |[d(k) — fe(z(k))| can be arbitrarily
small. Because of this property and the freedom to update the
parameters during the adaptation procedure, we can hope that
we have a well-performing filter using only a small number
of rules (i.e., we may choose M < [, m.).

IV. APPLICATION TO NONLINEAR CHANNEL EQUALIZATION

Nonlinear distortion over a communication channel is now
a significant factor hindering further increase in the attainable
data rate in high-speed data transmission [1], [6]. Because
the received signal over a nonlinear channel is a nonlinear
function of the past values of the transmitted symbols, and
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the nonlinear distortion varies with time and from place to
place, effective equalizers for nonlinear channels should be
nonlinear and adaptive.

In [1], [6], polynomial adaptive filters were developed for
nonlinear channel equalization. In [2] and [3], multilayer
perceptrons and radial basis function expansions were used as
adaptive equalizers for nonlinear channels. Because nonlinear
channels include a very broad spectrum of nonlinear distortion,
it is very difficult to say which nonlinear adaptive filter is
dominantly better than the others. Therefore, it is worth trying
other new nonlinear structures as prototypes of nonlinear
adaptive filters in addition to the existing Volterra series,
multilayer perception, radial basis function expansions, etc.
The RLS and LMS adaptive filters are such new nonlinear
adaptive filters. In this section, we use them as equalizers for
nonlinear channels.
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The digital communication system considered in this paper
is shown in Fig. 1, where the “channel” includes the effects
of the transmitter filter, the transmission medium, the receiver
matched filter, and other components. The transmitted data
sequence s(k) is assumed to be an independent sequence
taking values from {—1, 1} with equal probability. The inputs
to the equalizer, x(k),z(k — 1),---,z(k — n + 1), are the
channel outputs corrupted by an additive noise e(k). The
task of the equalizer at the sampling instant k is to produce
an estimate of the transmitted symbol s(k — d) using the
information contained in z(k),z(k — 1),---,z(k — n + 1),



254 y—
¥
Y. !
18 3 L
1 ]
~ 05 4
—
U ¥ 3
VR + 4
N’ +4
R : L
s
1 ; 1 J
18 ¥ L ;
2 4
u -y 5 "

25 2 A4S a9 @5 0 05 1 15 2 28

x(k)

Fig. 7. Decision region of the RLS fuzzy adaptive filter after incorporating
the fuzzy rules illustrated in Fig. 6 and when the adaptation stopped at k = 30.

¢
'3
‘¢
24 4
15 P, s
1 L
—~ 08 T ;
- 33t
0 .
= ”
K s 4
Bt L
-15 ] 4-:5{‘ <
2 . 4
1.
getriedd 252 SN -

2 N —
2 2 A5 1 45 0 o5 1 15 2 28

Fig. 8. Decision region of the LMS fuzzy adaptive filter without using any
linguistic information and when the adaptation stopped at £ = 100.

where the integers n and d are known as the order and the lag
of the equalizer, respectively.

We use the geometric formulation of the equalization prob-
lem due to [2] and [3]. Using similar notation to that in those
studies, define

{ (k) € R™|s(k —d) = 1}, (19)
nd( 1) = { (k) € R"[s(k d) '—1}7 (20)

where
#(k) = [&(k), &(k — 1),---, 2k —n+1)]T, (@21

-

#(k) is the noise-free output of the channel (see Fig. 1),
and P, 4(1) and P, 4(—1) represent the two sets of possible
channel noise-free output vectors #(k) that can be produced
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from sequences of the channel inputs containing s(k — d) = 1

and s(k — d) = -1, respectively. The equalizer can be
characterized by the function
gk R* — {~1,1} (2)
with
8(k — d) = gr(x(k)), 23)
where
z(k) = [z(k),x(k - 1), -, a(k —n+1)]T  (24)

is the observed channel output vector. Let p;[z(k)|(k) €
P, 4(1)] and p_;[z(k)|2(k) € P, 4(—1)] be the conditional
probability density functions of z(k) given (k) € P, 4(1)
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some of the fuzzy rules illustrated in Fig. 6 and when the adaptation stopped
at k = 100.
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Fig. 12. Optimal decision region for the channel (28), Gaussian white noise

with variance 02 = 0.2, and equalizer order n = 2 and lag d = 1.

and (k) € Py 4(—1), respectively. It was shown in [2] and
[3] that the equalizer which is defined by

fope(2(k)) = sgnlpr(z(k)|&(k) € Pn.a(1))

- p-1(z(k)|#(k) € Paa(-1))] (25
achieves the minimum bit error rate for the given order n and
lag d, where sgn(y) = 1(—1) if y > 0(y < 0). If the noise
e(k) is zero-mean and Gaussian with covariance matrix

Q = E'[(e(k), ) -38(.16 -n+ 1))(6(](:)7 o 'ae(k —-n+ 1))T]’
(26)
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Fig. 13. Decision region of the RLS fuzzy adaptive filter for the case of
Example 5 when the adaptation stopped at k = 20.
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Fig. 14. Decision region of the RLS fuzzy adaptive filter for the case of
Example 5 when the adaptation stopped at k = 50.

2w 2 A5 4

then from z(k) = #(k) + e(k) we have that
pilz(k)|E(k) € Paa(1)] — p-1[z(k)|Z(k) € Pna(-1)]
= Y exp [ 5(ah) = 27 w(4) - 2.)

- S e [ 3ot - 2T Q e - 2] @

where the first (second) sum is over all the points £, €
Pn.a(1)(£- € Ppa(-1)).
Now consider the nonlinear channel
(k) = s(k) + 0.5s(k — 1) — 0.9[s(k) + 0.5s(k — 1), (28)
and white Gaussian noise e(k) with E[e?(k)] = 0.2. For this
case, the optimal decision region for n = 2 and d = 0,
[z(k) € R?|p1[z(k)l&(k) € P2,0(1)]

— p_1[z(k)|E(k) € Pao(-1)] > 0], (29)
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Fig. 15. Comparison of bit error rates achieved by the optimal and fuzzy equalizers (Example 6).

is shown in Fig. 2 as the shaded area. The elements of the sets
P 0(1) and P3o(—1) are illustrated in Fig. 2 by the “o0” and
“«”, respectively. From Fig. 2 we see that the optimal decision
boundary for this case is severely nonlinear. We now use the
RLS and LMS fuzzy adaptive filters to solve this specific
equalization problem (channel (28), (k) white Gaussian with
variance 0.2, equalizer order n = 2 and lag d = 0) under
various conditions (Examples 1-4).

Example 1: Here we used the RLS fuzzy adaptive filter
without any linguistic information. We chose A = 0.999,0 =

2
(%) ] with
z] = -2,-1.5,-1,-0.5,0,0.5,1,1.5,2 for j = 1,2,---,9,
respectively, where i = 1,2,z; = z(k), and zo = z(k — 1).
For the same realization of the sequence s(k) and the same
randomly chosen initial parameters #(0) (within [—0.5,0.5]),
we simulated the cases when the adaptation algorithm (9)—(11)
stopped at (i) £ = 30, (ii) ¥ = 50, and (iii) £ = 100. The
final decision regions, [z(k) € R?|fi(z(k)) > 0], for the
three cases are shown in Figs. 3-5, respectively. From Figs.
3-5 we see that the decision regions obtained from the RLS
fuzzy adaptive filter tended to converge towards the optimal
decision region.

Example 2: Next, we used the RLS fuzzy adaptive filter
and incorporated the following linguistic information about
the decision region. From the geometric formulation we see
that the equalization problem is equivalent to determining a
decision boundary in the input space of the equalizer. Suppose
that there are human experts who are very familiar with the
specific situation, such that although they cannot draw the
specific decision boundary in the input space of the equalizer,
they can assign degrees to different regions in the input space
which reflect their belief that the regions should belong to 1-
catalog or -1-catalog. Take Fig. 2 as an example. We see from
this figure that the difficulty is to determine which catalog
the middle portion should belong to; in other words, as we
move away from the middle portion, we have less and less
uncertainty about which catalog the region should belong to.

z;—&]
it%;
0.3

1

0.1,my =my =9, and pu; (z;) = exp [—2

For example, for the leftmost region in Fig. 2, we have more
confidence that it should belong to the 1-catalog than to the
-1-catalog. Similarly, for the rightmost region in Fig. 2, we
have more confidence that it should belong to the -1-catalog
than to the 1-catalog. Also, we assume that the human experts
know that a portion of the boundary is somewhere around
z(k) = —1.2 for z(k — 1) less than 1 and around z(k) = 1.2
for z(k — 1) greater than 1. To make these observations more
specific, we have the fuzzy rules shown in Fig. 6, where the
membership functions N3, N2, etc. are the pp;’s defined in
Example 1. We have 48 rules in Fig. 6, cor}esponding to
the boxes with numbers; for example, the bottom-left box
corresponds to the rule: “IF z(k) is N4 and z(k — 1) is N4,
THEN f; is G,” where f} is the filter output, and the center of
pe is 0.6. Because the filter output fi is a weighted average
of these centers (see (3)), the numbers 0.6, 0.4, —0.4, —0.6 in
Fig. 6 reflect our belief that the regions should correspond to
the 1-catalog or the -1-catalog. For example, if the input point
[z(k),z(k — 1)] falls in the leftmost region of Fig. 6, then we
have more confidence that the transmitted s(k) should be 1
than —1, and, we represent this confidence by assigning the
center of the fuzzy term in the corresponding THEN part to
be 0.6.

It should be emphasized that the rules in Fig. 6 provide
very fuzzy information about the decision region, because
1) the regions are fuzzy, i.e., there are no clear boundaries
between the regions, and 2) the numbers 0.6, 0.4, —0.4, —0.6
are conservative, i.e., they are away from the real transmitted
values 1 or —1. We now show that although these rules
are fuzzy, the speed of adaptation is greatly improved by
incorporating them into the RLS fuzzy adaptive equalizer
(filter). Fig. 7 shows the final decision region determined by
the RLS fuzzy adaptive filter, [z(k) € R?|fi(z(k)) > 0]
(shaded area), when the adaptation stopped at k¥ = 30 after
the rules in Fig. 6 were incorporated, where the yp;’s and
the sequence s(k) were the same as those in Example 1.
Comparing Figs. 7 and 3 we see that the adaptation speed
was greatly improved by incorporating these fuzzy rules.
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Example 3: Here we used the LMS fuzzy adaptive filter
without any linguistic information. We chose: M = 20,a =
0.05, the initial #'(0) randomly in [—0.5,0.5], z7(0)’s ran-
domly in [—2,2], and &](0)’s randomly in [0.1,0.3]. For the
same sequence s(k) (in Example 1) and the same initial param-
eters, we simulated the cases when the adaptation algorithm
(16)—(18) stopped at: (i) k¥ = 100, (ii)) & = 200, and (iii)
k = 500. The decision regions for the three cases are shown
in Figs. 8-10, respectively.

Example 4: Next, we used the LMS fuzzy adaptive filter
and incorporated some of the fuzzy rules from Fig. 6. We still
chose M = 20 and o = 0.05 and used the same s(k) sequence.
Since the filter is constructed from 20 rules, whereas Fig. 6
contains 48 rules, we can only choose a portion of the rules
in Fig. 6 to construct the initial LMS fuzzy adaptive filter. We
chose 20 rules arbitrarily from the boxes labeled 0.4 and —0.4.
The final decision region for this case when the adaptation
stopped at £ = 100 is shown in Fig. 11. Comparing Figs. 11
and 8 we see that the adaptation speed was greatly improved
by incorporating these fuzzy rules.

Example 5: Here, we considered the same situation as in
Example 1, except that we chose d = 1 rather than d = 0.
The optimal decision region for this case is shown in Fig. 12.
Figs. 13 and 14 show the final decision regions determined by
the RLS fuzzy adaptive filter when the adaptation stoped at
k = 20 and k = 50, respectively. We also simulated the LMS
fuzzy adaptive filter for this case, and the final decision region
was similar to Fig. 14 when the adaptation stoped at & = 300.
Since we showed this kind of comparisons in Examples 14,
we omit the details.

Example 6: In this final example, we compared the bit error
rates achieved by the optimal equalizer (25) and the fuzzy
adaptive equalizers for different signal-to-noise ratios, for the
channel (28) with equalizer order » = 2 and lag d = 1. The
optimal bit error rate was computed by applying the optimal
equalizer (25) to a realization of 10° points of the sequences
s(k) and e(k). For the RLS fuzzy adaptive filter, we chose
the filter parameters to be the same as in Example 1. For the
LMS fuzzy adaptive filter, the parameters were chosen as in
Example 3. We ran the RLS and LMS fuzzy adaptive filters
for the first 1000 points in the same 10% point realization of
s(k) and e(k) as for the optimal equalizer, and then used the
trained fuzzy equalizers to compute the bit error rate for the
same 108 point realization. Fig. 15 shows the bit error rates of
the optimal equalizer and the two fuzzy equalizers for different
signal-to-noise ratios, where the bit error rate curves for the
RLS and LMS fuzzy equalizers are indistinguishable. We see
from Fig. 15 that the bit error rates of the fuzzy equalizers are
very close to the optimal one.

V. CONCLUSIONS

In this paper, we developed two new nonlinear adaptive
filters, namely RLS and LMS fuzzy adaptive filters. The key
elements of the fuzzy adaptive filters are a fuzzy system, which
is constructed from a set of fuzzy IF-THEN rules, and an
adaptive algorithm for updating the parameters in the fuzzy
system. For the RLS fuzzy adaptive filter, this algorithm is
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an RLS type, and for the LMS fuzzy adaptive filter, it is an
LMS type. The most important advantage of the fuzzy adaptive
filters is that linguistic information from human experts (in the
form of fuzzy IF-THEN rules) can be directly incorporated
into the filters. If no linguistic information is available, the
fuzzy adaptive filters become well-defined nonlinear adaptive
filters, similar to the polynomial, neural nets, or radial basis
function adaptive filters. We applied the two fuzzy adaptive
filters to nonlinear channel equalization problems. Simulation
results showed that 1) the fuzzy adaptive filters worked quite
well without using any linguistic information; 2) by incorpo-
rating some linguistic rules into the fuzzy adaptive filters, the
adaptation speed was greatly improved; and 3) the bit error
rates of the fuzzy equalizers were close to that of the optimal
equalizer.

Continuing the work in this paper, we may do the following:
1) in the RLS and LMS fuzzy adaptive filters, we need to
determine the order of the filters before processing; a good
way to determine the order as well as the parameters is to use
the lattice filter idea, i.e., we can develop a fuzzy lattice filter;
and, 2) to extend the work in this paper to blind equalization,
we may use unsupervised learning algorithms to determine the
cluster centers of data, then view the centers, in some way, as
learning samples, and use the fuzzy adaptive filters to process
them.
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