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Fuzzy Basis Functions, Universal Approximation,
and Orthogonal Least-Squares Learning

Li-Xin Wang and Jerry M. Mendel

Abstract—1In this paper, fuzzy systems are represented as series
expansions of fuzzy basis functions which are algebraic superposi-
tions of fuzzy membership functions. Using the Stone—Weierstrass
theorem, we prove that linear combinations of the fuzzy basis
functions are capable of uniformly approximating any real con-
tinuous function on a compact set to arbitrary accuracy. Based
on the fuzzy basis function representations, an orthogonal least-
squares (OLS) learning algorithm is developed for designing
fuzzy systems based on given input—output pairs. Specifically, an
initial fuzzy system is first constructed which has as many fuzzy
basis functions as input—output pairs; then, the OLS algorithm is
used to select significant fuzzy basis functions which are used to
construct the final fuzzy system. The most important advantage
of using fuzzy basis functions is that a linguistic fuzzy IF-THEN
rule from human experts is directly related to a fuzzy basis
function. Therefore, a fuzzy basis function expansion provides a
natural framework for combining both numerical and linguistic
information in a uniform fashion. Finally, the fuzzy basis function
expansion is used to approximate a controller for the nonlinear
ball and beam system, and the simulation results show that the
control performance is improved by incorporating some common-
sense fuzzy control rules.

I. INTRODUCTION

FUZZY systems can be represented as three-layer feedfor-
ward networks [18], [19]. Based on this representation,
a back-propagation algorithm was developed in [18], [19] to
train the fuzzy system to match desired input—output pairs.
Because the fuzzy system is nonlinear in the parameters, the
back-propagation algorithm implements a nonlinear gradient
optimization procedure; it can be trapped at a local minimum
and converges slowly (although much faster than a comparable
back-propagation neural network, see [18] and [19]). In this
paper, we fix certain parameters of the fuzzy system such that
the resulting fuzzy system is equivalent to a series expansion
of basis functions that are named fuzzy basis functions. This
fuzzy basis function expansion is linear in the parameters;
therefore, we can use the classical Gram—Schmidt orthogonal
least-squares (OLS) algorithm to determine the significant
fuzzy basis functions and the remaining parameters. The OLS
algorithm is a one-pass regression procedure, and is therefore
much faster than the back-propagation algorithm of [18] and
{19]. Also, the OLS algorithm generates a robust fuzzy system
which is not sensitive to noise in its inputs.
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The most important advantage of using fuzzy basis func-
tions, rather than polynomials [2], [12}, radial basis functions
[1], [13], neural networks [15], etc., is that a linguistic fuzzy
IF-THEN rule is naturally related to a fuzzy basis function.
Linguistic fuzzy IF-THEN rules can often be obtained from
human experts who are familiar with the system under con-
sideration. For example, pilots can describe properties of
an aircraft by linguistic fuzzy IF-THEN rules [3], [8], and
experienced operators of power plants can provide operational
instructions in the form of linguistic fuzzy IF-THEN rules [7].
These linguistic rules are very important, and often contain
information which is not contained in the input—output pairs
obtained by measuring the outputs of a system for certain
test inputs, because the test inputs may not be rich enough
to excite all the modes of the system. Using fuzzy basis
function expansions, we can easily combine two sets of fuzzy
basis functions—one generated from input—output pairs using
the OLS algorithm and the other obtained from linguistic
fuzzy IF-THEN rules—into a single fuzzy basis function
expansion, which is therefore constructed using both numerical
and linguistic information in a uniform fashion.

In Section II, we define fuzzy basis functions and prove
that a fuzzy basis function expansion, like a polynomial
expansion or a radial basis function expansion, is capable
of approximating any real continuous function on a compact
set to arbitrary accuracy. In Section III, we present the OLS
algorithm for designing fuzzy basis function expansions. In
Section IV the OLS algorithm is used to design a fuzzy basis
expansion which is used as a controller for the nonlinear ball
and beam system. Section V concludes the paper.

L. Fuzzy SYSTEMS AS Fuzzy BasIS FUNCTION EXPANSIONS

In this paper, we consider a fuzzy system whose basic
configuration is shown in Fig. 1 [9]. There are four principal
elements in such a fuzzy system: fuzzifier, fuzzy rule base,
fuzzy inference engine, and defuzzifier. We consider multi-
input, single-output fuzzy systems: U C R* — R, where U is
compact [14]. A multi-output system can always be separated
into a group of single-output systems.

The fuzzifier performs a mapping from the observed crisp
input space U C R™ to the fuzzy sets defined in U, where a
fuzzy set {21] defined in U is characterized by a membership
function pr : U — [0,1], and is labeled by a linguistic term
F such as “small,” “medium,” “large,” or “very large.” The
most commonly used fuzzifier is the singleton fuzzifier, which
maps z € U into fuzzy set A, in U with pa, (z) =1 and
pa(g)=0forallg € U withz' #z.

1045-9227/92803.00 © 1992 IEEE
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Fig. 1. Basic configuration of fuzzy systems.

The fuzzy rule base consists of a set of linguistic rules in
the form of “IF a set of conditions are satisfied, THEN a set of
consequences are inferred.” In this paper, we consider the case
where the fuzzy rule base consists of M rules in the following
form:

R; :TF 71 is A] and =z is A}
and z, is A%, THEN z is B,

™

where j = 1,2,---,M, z; (i=1,2,---,n) are the input
variables to the fuzzy system, z is the output variable of
the fuzzy system, and Al and B7 are linguistic terms charac-
terized by fuzzy membership functions p s (:) and ppi(2),
respectively. Each R; can be viewed as a fuzzy implication
Al x ... x Al — B?, which is a fuzzy set in U x R with
e i (P T 2) = g (@) 5% gy (21) %
g5 (2) (other operations are possible, see [9] and [10]), where
= (z}, - ,21)T € U, z € R, and the most commonly used
operations for “x” are “product” and “min” [9].

The fuzzy inference engine is decision making logic which
employs fuzzy rules from the fuzzy rule base to determine a
mapping from the fuzzy sets in the input space U to the fuzzy
sets in the output space R. Let A, be an arbitrary fuzzy set
in U; then each R; of (1) determines a fuzzy set A; o R; in
R based on the sup-star composition [9]:

and ---

pa.or;(2) = supzreulna, (&)

* /J'A{X.A.xA{L_.Bj(ljla T, 2)]
= supgreupa, (@) * pag(€1) * - %
p45 (2) * g (2)]- @

The defuzzifier performs a mapping from the fuzzy sets in
R to crisp points in R. The following centroid defuzzifier
(10}, which performs a mapping from the fuzzy sets Az o
R;(j=12,--- ,M) in R to a crisp point z € R, is the most
commonly used method:

S S aon, (7)
S haon, (7)

where 7 is the point in R at which pp;(z) achieves its
maximum value (usually, we assume that zip; (27) = 1).

z=

€)

We now consider a subset of the fuzzy systems of Fig. 1.

Definition 1: The set of fuzzy systems with singleton fuzzi-
fier, product inference, centroid defuzzifier, and Gaussian mem-
bership function consists of all functions of the form

M 4 n
f@) =17 (Hi:l Y (wi))
)= ,
M n
2= (Hi=1 i q5 (Zz‘))
where f: U C R* = R,z = (21,%2,+,%a) €U; B 45 ()
is the Gaussian membership function, defined by '

N 2
; 1 x; -7
p i (z:) = af exp _E< i 1) ;

9;

Q)

©®)

7, and ¢} are real-valued parameters with 0 <
al <1, and 7 is the point in the output space R at which
g (z) achieve its maximum value.

Clearly, (4) is obtained by substituting (2) into (3)
(centroid defuzzifier), replacing the “x” with “product”
(product inference), and considering the fact that by using the
singleton fuzzifier and assuming that pp; () = 1, we have
HAzoR; (7’) = suppevlpa, (-’5')#,4;‘ (z1')- Tt Had (zn) 1B
(29)] = [Ty 45 (i) (because pa, (z) =1 and g, (x') =
0 for all ’ € U with =’ # z).

If we view (]—[?=1 1 ad (z:)/ Ej\il T, Kas (z,)) as basis
functions and Z’ as constants, then f(z) of (4) can be viewed
as a linear combination of the basis functions.

Definition 2: Define fuzzy basis functions (FBF’s) as

[Timy as ()
M 9’
Zj:l T, Hoy (z:)

where 1 ,;(z;) are the Gaussian membership functions (5).
Then, the fuzzy system (4) is equivalent to an FBF expansion:

where al, T

pj(.’l:)= j21727"'7M7 (6)

M
f@) =Y pi(@);, ™
j=1

where §; € R are constants.

From (6) and (1) we see that an FBF corresponds to a fuzzy
IF—THEN rule. Specifically, an FBF for R; can be determined as
follow. First, calculate the product of all membership functions
for the linguistic terms in the IF part of R;, and call it a pseudo-
FBF for R;; then, after calculating the pseudo-FBF’s for all
the M fuzzy IF-THEN rules, the FBF for R; is determined
by dividing the pseudo-FBF for R; by the sum of all the
M pseudo-FBF’s. An FBF can either be determined based
on a given linguistic rule as above or generated based on a
numerical input—output pair (as shown later in the initial FBF
determination, in Section IIT).

How does the FBF of (6) look when plotted as a function
of z? We now consider a simple one-dimensional example
(ie, n = 1). Suppose that we have four fuzzy rules in

the form of (1) with pa;(x) = exp [——é—(m - Tj)z], where
-3,1,1,3 for j = 1,2,3,4 respectively (note that
the FBF’s are determined based only on the IF parts of the

T o=
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rules, so we do not need the pp;(z)). Therefore, pi(z) =
exp [+ (o - )]/ Ticy exp L—%(w -7)’]
plotted in Fig. 2 from left to right for j = 1,2,3, 4, respec-
tively. From Fig. 2 we see a very interesting property of the
FBF’s: the p;{z)’s whose centers 79 are inside the interval
[~3,3] (which contains all the centers) look like Gaussian
functions, whereas the p;(z)’s whose centers 77 are on the
boundaries of the interval [—3, 3] look like sigmoidal functions
[4]. It is known in the neural network literature that Gaussian
radial basis functions are good at characterizing local proper-
ties, whereas neural networks with sigmoidal nonlinearities are
good at characterizing global properties [11]. Our FBF’s seem
to combine the advantages of both the Gaussian radial basis
functions and the sigmoidal neural networks. Specifically, for
regions in the input space U which have sampling points
(we often use the sampling points as centers of the FBF’s;
see Section IiT), the FBF’s cover them with Gaussian-like
functions so that higher resolution can be obtained for the FBF
expansion over these regions. On the other hand, for regions
in U which have no sampling points, the FBF’s cover them
with sigmoidal-like functions which have shown themselves to
have good global properties [4], [11]. Of course, all the above
are empirical observations; it seems to be a very interesting
research topic to study the properties of the FBF’s from a
rigorous mathematical point of view.

Equation (6) defines only one kind of FBF; i.e., it defines the
FBF for fuzzy systems with singleton fuzzifier, product infer-
ence, centroid defuzzifier, and Gaussian membership function.
Other fuzzy systems can have other forms of FBF’s; e.g.,
the fuzzy systems with minimum inference have an FBF in
the form of (6) with product operation replaced by minimum
operation. However, the basic idea remains the same, i.c., to
view a fuzzy system as a linear combination of functions
which are defined as FBF’s. Different FBF’s have different
properties. Next, we show an important property of the FBF
of (6).

Let Y be the set of all the FBF expansions (7) with p;(z)
given by (6), and deo(f1, f2) = supzev(|fi(z) — f2(2)]) be
the sup-metric; then, (Y,do) is a metric space [14]. The
following theorem shows that (Y, deo) is dense in (CIU), deo)s
where C[U] is the set of all real continuous functions defined
on U.

Theorem: For any given real continuous function g on the
compact set U C R™ and arbitrary ¢ > 0, there exists f € Y
such that

, which are

supzevlg(z) — fl=z)| <e. ®)

A proof of this theorem is given in the Appendix. This
theorem shows that the FBF expansions (7) are “universal
approximators.”

We can analyze (7) from two points of view. First, if we
view all the parameters a?, 7., and o] in p;(x) as free design
parameters, then the FBF expansion (7) is nonlinear in the
parameters. In order to specify such an FBF expansion, we
must use nonlinear optimization techniques, €.g., use the back-

propagation algorithm of [18] and [19]. On the other hand, we
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Fig. 2. An example of the fuzzy basis functions.

can fix all the parameters in p;(z) at the very beginning of the
FBF expansion design procedure, so that the only free design
parameters are f;; in this case, f(z) of (7) is linear in the
parameters. We adopt this second point of view in this paper.
The advantage of this point of view is that we are now able to
use some very efficient linear parameter estimation methods,
e.g., the Gram—Schmidt orthogonal least squares algorithm
[1], [2}, to design the FBF expansions.

IIl. ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM

In order to describe how the orthogonal least-squares (OLS)
learning algorithm works, it is essential to view the fuzzy basis
function expansion (7) as a special case of the linear regression
model

M
d(t) =Y p;i()8; +e(t), ©

=1

where d(t) is system output, §; are real parameters, p; (t) are
known as regressors which are fixed functions of system inputs
z(t), ie.,

p;(t) = pi(=(t)), (10)
and, e(t) is an error signal which is assumed to be uncorrelated
with the regressors. Suppose that we are given N input—output
pairs: (z°(t),d’(t)), t = 1,2,---, N. Our task is to design an
FBF expansion f(z) such that some error function between
F(2°(t)) and d°(t) is minimized.

In order to present the OLS algorithm, we arrange (9) from
t = 1 to N in the following matrix form:
d=PO+e, (11)
where d = [d(1),---,d())", P = [p1,- - par] with
o = (D), ()T, 0 = (B, 0u]", and e
le(1),---,e(N )]¥. The OLS algorithm transforms the set of
p; into a set of orthogonal basis vectors and uses only the
significant basis vectors to form the final FBF expansion. In
order to perform the OLS procedure, we first need to fix the
parameters a?, 77, and o] in the FBF pj{z) based on the
input—output pairs. We propose the following scheme:
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Initial FBF Determination

Choose N initial p;(z)’s in the form of (6) (for this
case, the M in (6) equals N), with the parameters de-

termined as follows: a! = 1, # = 29(j), and o] =
[max (Z’?(]),j = 1727"'7N) - mln(x?(]), .7 = 1 2,
N))/M;, where ¢ = 1,2,---,n, j = 1,2,---,N, and Ms is

the number of FBF’s in the final FBF expansion. We assume
that M, is given based on practical constraints; in general,
M, < N.

We choose a! = 1 because Al () are fuzzy membership
functions which can be assumed to achieve unity membershlp
value at some center 9:’ We choose the centers Z, to be the
input points in the given input—output pairs. Flnally, the above
choice of o7 should make the final FBF’s “uniformly” cover
the input region spanned by the input points in the given
input—output pairs.

Next, we use the OLS algorithm, similar to that in [1] and
[2] (it is based on the classical Gram—Schmidt orthogonaliza-
tion procedure), to select the significant FBF’s from the N
FBF’s determined by the initial FBF determination method:

At the first step, for 1 < ¢ < N, compute

(z)>

ol = p, do / ( )

ferl{? = (gY))Z(w&”)Tw&") [ @re), a3

where p; = [pi(z°(1)),- -, pi (zO(N))]T, and p;(z°(t)) are
given by the initial FBF determination method. Find

ferr){") = max (ferr]", 1 < i < N) (14)

and select

(i) = g,

=p; 0 (15)

w =w

At the kth step where 2 < k < M,, for 1 < i < N,

i # i1,-++,% # ik—1, compute
agzk) = wfpi/(w?wj), 1<j<k (16)
=pi— Z o\Jw;
o = (wf) TP / ( ) (o> a7
) N2/ T
9 = () () w0 @),
Find
[err]g") = max ([err]g),l <i< N,i#iy, i # ik_l)
(19)
and select
wy = w*) g = g¢ . (20)

Solve the triangular system

AM) M) — (M) (21
where
Lo o ol
a0 |01 a§3> N 2t 22)
0 0 e,
0 0 0 1
g™ = [91,"',9MS]T oM = [9§M”,~-.,0%5>]T
(23)
The final FBF expansion is
M,
1@ =Y pi, @6, (24)
j=1

where p;, () make up the subset of the FBF’s determined by
the 'initial FBF determination method with ¢; determined by
the above steps.

Some comments on this OLS algorithm are now in order.
For in-depth discussions on the OLS algorithm, see [1] and [2].

1) The purpose of the original Gram-Schmidt OLS algo-
rithm is to perform an orthogonal decomposition for P, ie.,
P = W A, where W is an orthogonal matrix and A is an upper-
triangular matrix with unity diagonal elements. Substituting
P = WA into (11), we have that d = WAB +e = Wg+e
where g = A0 has the same meaning as used in our OLS
algorithm, and the a(') in our OLS algorithm correspond to
the elements of A. Our OLS algorithm does not complete the
decomposition of P = WA, but only selects some domain
columns from P R

2) The [err]{ = (gs)) (wg)) w? /(d“TdO) represents
the error reduction ratio caused by wg) {1], [2]- Hence our
OLS algorithm selects significant FBF’s based on their error

reduction ratio; i.e., the FBF’s with largest error reduction
ratios are retained in the final FBF expansion.

IV. CONTROL OF A NONLINEAR BALL AND
BEAM SYSTEM USING FBF EXPANSION

In this section, we use the OLS algorithm to design an
FBF expansion to approximate a controller for a nonlinear
ball and beam system [5]. Our purpose is to use the FBF
expansion as a controller to regulate the system to the origin
from a certain range of initial conditions. We first use the
input—output linearization algorithm of [5] to generate a set
of state-control pairs for randomly sampled points in a certain
region of the state space. Then we view these state-control
pairs as the input—output pairs in Section III and use the OLS
algorithm to determine an FBF expansion which is used as the
controller for the ball and beam system with initial conditions
arbitrarily chosen in the sampled state space. In other words,
we use the controller of [5] to generate a lookup table of state-
control pairs, and then use the FBF expansion to interpolate
these pairs to form the final controller. For many practical
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problems, this kind of lookup table of state-control pairs can be
provided by human experts or collected from past successful
control executions.

The ball and beam system, which can be found in many
undergraduate control laboratories, is shown in Fig. 3. The
beam is made to rotate in a vertical plane by applying a torque
at the center of rotation and the ball is free to roll along the
beam. We require that the ball remain in contact with the beam.

Letz = (7,7, 9,9 be the state of the system, and y = 7 be

the output of the system. Then, from [5], the system can be
represented by the state-space model

Z1 T2 0
Fa | _ B(z123 — G sin z3) + 0 v (25
T3 T4 0
T4 0 1
y =11, (26)

where the control u is the acceleration of #, and the parameters
B and G are defined in [5]. The purpose of control is to
determine u(z) such that the closed-loop system output y will
converge to zero from certain initial conditions.

The input—output linearization algorithm of [5] determines
the control law u(z) as follows: for state , compute v(g) =
— a3pa(T)— a3 (T) — 12 (%) — o1 (3), where 61 (%) = 71,
$2(x) = ®2, Pp3(x) = —BG sin x3, da(z) = —BGz4 cos T3,
and the o; are chosen so that s* + azs® + azs? + a1s + ag
is a Hurwitz polynomial. Compute a(z) = —BG cos z3 and
b(z) = BGz sin x3; then u(z) = (v(z) — b(z))/a(z).

In our simulations, we used the u(z) = (v(z) — b(z))/a(z)
to generate N(z,u) pairs with = randomly sampled in the
region U = [-5,5] x [-2,2] X [—7/4,m/4] x [-0.8,0.8]. We
simulated three cases. For case 1, N = 200, M, = 20, and
the final FBF expansion f(z) of (24) was used as the control
u in (25). In case 2, N = 40, M, = 20, and the final FBF
expansion f(z) of (24) was used as the control u in (25). In
case 3, N = 40, M, = 20, and the control

1

Sl@) + @), @7

u(z) =

where f(x) is given by (24), and fL(x) is a linguistic con-
troller. This controller is in the form of (4) and is determined
based on the following four common-sense linguistic control
rules:

Rf: IF xp is “positive” and 2 is “near zero” and z3 is
“positive” and x4 is “near zero,” THEN u is “negative.”

(28)

R%: IF 71 is “positive” and z3 is “near zero” and x3 is
“negative” and x, is “near zero,” THEN u is “positive
big.” 29)

Rg‘: IF z; is “negative” and zo is “near zero” and z3 is
“positive” and x4 is “near zero,” THEN u is “negative
big.” (30)

Rf . IF 71 is “negative” and z2 is “near zero” and z3 is

“negative” and x4 is “near zero,” THEN u is “positive.”

€Y

beam
Fig. 3.

The ball and beam system.

Here the “positive” for z; is a fuzzy set Pl with member-
ship function ppi(z1) = exp [—%(ﬂﬂ’%ﬂ)z]; the
“negative” for xy is a fuzzy set N1 with membership func-
tion pni(z1) = exp [*%(-“l‘x—(a‘—ﬂ)z]; the “near zero” for
both  and 4 is a fuzzy set ZO with uno(z) = exp [-12%);
the “positive” for xz3 is a fuzzy set P3 with pps(z3) =
exp[_%(ﬂ!%‘*’_o))z]; the “negative” for z3 is a fuzzy
i = __z_L_ -

net N3 with pys(zs) = exp[—%(m“(;ﬁ” 40)) ]; the
“positive” for u is a fuzzy set Pu with ppyu(u) =
exp|—3(u— 0.1)]; the “negative” for v is a fuzzy set Nu
with pyy(u) = exp[—%(u + 0.1)2]; the “positive big” for u
is a fuzzy set PBu with pppu(u) = exp[—%(u - 0.4)2]; and
the “negative big” for u is a fuzzy set N Bu with pypa(u) =
exp[—3{u+ 0.4)]. The above membership functions for the
IF parts of RF—Ry were determined based on the meaning
of the linguistic terms; the parameters of the THEN part
membership functions were determined by common sense and
trial and error. The detailed formula of fE(x) can be easily
obtained based on (4) and above membership functions.

Clearly, RF-RY are determined based on our common
sense of how to control the ball to stay at the origin when the
ball is in certain regions. Take RY as an example. If the ball
stays at its position depicted in Fig. 3 (which just corresponds
to the IF part of RY), then we should move the beam
downwards to reduce @ (but not a lot), which is equivalent
to saying “u is ‘negative’,” because the control v equals the
acceleration of @ (see (25)). Although these common-sense
control rules are not precise, the control performance will, as
we show below, be greatly improved by incorporating them
into the controller (27).

We simulated each of the three cases for four initial condi-
tions: z(0) = [2.4,—0.1,0.6,0.1]", [1.6,0.05, ~0.6,-0.05]",
[~1.6,-0.05,0.6,0.05]7, and [-2.4,0.1,-0.6, ~0.1]", which
were arbitrarily chosen in U = [-5,5] X [-2,2] x
[-7/4,7/4] x [—0.8,0.8]. Figs. 4-6 depict the output y of
the closed-loop system for cases 1-3, respectively. In the
simulations, we solved the differential equations using the
MATLAB command “ode23,” which uses the second/third
order Runge—Kutta method.

Some comments on these simulation results are now in
order:

a) The fuzzy controller in case 1 gave the best overall
performance; this suggests that given a sufficient number
of state-control pairs, the OLS algorithm can determine
a successful FBF expansion controller.

b) The fuzzy controller in case 2 could regulate the ball
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V] 2 4 6 8 10 i2 14 16 18 20

Fig. 4. Outputs of the closed-loop ball and beam system for case 1 and four
initial conditions.

o 2 a 6 3 10 12 14 16 18 20

Fig. 5. Outputs of the closed-loop ball and beam system for case 2 and four
initial conditions.

) 2 4 6 8 10 12 14 16 18 20

Fig. 6. Outputs of the closed-loop ball and beam system for case 3 and four
initial coriditions.

to the origin for some initial conditions, but the closed-
loop system was unstable for some initial condition; this
suggests that sufficient sampling of the state space is
important for the “pure numerical” fuzzy controller to

be successful.
¢) Using the same small number of state-control pairs but
adding the fuzzy control rules (28)—(31), the fuzzy con-
troller in case 3 showed much better performance than
the fuzzy controller in case 2; i.e., control performance
was greatly improved by incorporating (in the sense of
(27)) the linguistic fuzzy control rules into the controller.
We also simulated two extreme cases: (i) using the origi-
nal controller of [S] and (ii) using only the pure linguistic
controller fX(x) based on RF—RE, for the same initial

-6

Fig. 7. Outputs of the closed-loop ball and beam system using the
input—output linearization algorithm of [5] and four initial conditions.

50
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-50
o] 2 4 6 8 10 12 14

Fig. 8. Outputs of the closed-loop ball and beam system using the pure fuzzy
logic controller based on the four linguistic rules (28)—(31) and four initial
conditions.

conditions as in cases 1-3. Figs. 7 and 8 show the output
of the closed-loop system for the two cases (i) and (ii),
respectively. Comparing Fig. 7 with Figs. 4-6, we see that
the original controller of [S] gave the best performance; this
is to be expected because we used the FBF expansions to
approximate this controller. But the controller of [5] requires
the mathematical model of the system, whereas our method
does not. Fig. 8 shows that if we use the FBF expansion
controller based only on the four linguistic rules (28)—(31),
the closed-loop system is unstable; ie., a pure fuzzy logic
controller with only these four linguistic rules is not sufficient
to control the system. ‘

V. CONCLUSIONS

In this paper we have 1) showed that fuzzy systems can be
represented as linear combinations of fuzzy basis functions;
2) proved that linear combinations of the fuzzy basis functions
are capable of uniformly approximating any real continuous
function on a compact set to arbitrary accuracy, i.e., they
are universal approximators; and 3) developed an orthogonal
least-squares algorithm to select the significant fuzzy basis
functions. Through a simple example we illustrated that the
fuzzy basis functions whose centers are inside the sampling
region look Gaussian, whereas the fuzzy basis functions whose
centers are on the boundaries of the sampling regions look
sigmoidal. The most important advantage of the fuzzy basis
functions is that a linguistic fuzzy IF-THEN rule is directly
related to a fuzzy basis function, so that the fuzzy basis
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function expansion provides a natural framework to combine
both numerical information (in the form of input—output pairs)
and linguistic information (in the form of fuzzy IF-THEN rules)
in a uniform fashion. We showed an example of how to
combine the fuzzy basis functions generated from a numerical
state-control table and the fuzzy basis functions generated
from some common-sense linguistic fuzzy control rules, to
form a controller for the nonlinear ball and beam system. The
simulation results showed that the control performance was
improved by incorporating these linguistic fuzzy control rules.

APPENDIX

We use the following Stone—Weierstrass theorem to prove
the theorem.

Stone—Weierstrass Theorem [14]: Let Z be a set of real
continuous functions on a compact set U. If 1) Z is an algebra,
i.e., the set Z is closed under addition, multiplication, and
scalar multiplication, 2) Z separates points on U, ie., for
every z, y € U, z # y, there exists f € Z such that
f(z) # f(y), and 3) Z vanishes at no point of U, i.e., for
cach z € U there exists f € Z such that f(z) # 0, then the
uniform closure of Z consists of all real continuous functions
on U; ie., (Z,doo) is dense in (C[U],dw).

Proof: First, we prove that (Y, ds) is an algebra. Let
fi1, fo € Y, so that we can write them as

Zﬁl (Elj | Pari (:l:l))
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which is again in the form of (4); hence, cf1 €Y. Therefore,
(Y,ds) is an algebra.

Next, we prove that (Y, do) separates points on U. We
prove this by constructing a required f; i.e., we specify f € Y
such that f(z°) # f(y°) for arbitrarily given 20, 4% € U with
20 # y°. We choose two fuzzy rules in the form of (1) for the
fuzzy rule base (e, M = 2). Let 2° = (29,29, -,23) and
P = (y?,yg, o, 10). If 2) # 9, we define two fuzzy sets
(All’ /‘A}) and (A?, /"’A?) with

B (z: — 29)°
Hal (z;) = exp [——T_

paa(:) = exp [— .

(A6)

(A7)

If 29 = o2, then A} = A7 and pai = paz; i.e., only one
fuzzy set is defined. We define two fuzzy sets (B', pp1) and
(B2,p,32) with

=i 2
ppi(z) = exp [— (i_;i] ,

where j = 1,2, and 7 will be specified later. Now we have
specified all the design parameters except (i =1,2), ie,
we have already obtained a function f which is in the form
of (4) with M = 2 and 14 given by (A6) and (A7). With

(A8)

filx) = 1 ( ) , (Al) this f, we have
Yo (Il #ans (29)
i=t . 1hAL . zZ! + 22 [T, exp [— (29 - y?)2/2]
Z;Sl (22] Hin=1 'U’AZ'?. (x’)) f($ ) = n 0 032
fo(z) = K2 - - ; (A2) 1+ [Ty exp [_(mi - %) /2]
Yin (Hi=1 szl (mi)) =0z +(1-a)2® (A9)
we therefore have (A3), shown at the bottom of the page.
Since p 4,51 and p 4,52 are Gaussian in form, their product )
[t 4151 b 405 1S alSO Gaussian in form (this can be verified by . 22+ 2 [, exp [— (29 —vd)"/ 2]
strafghtfof\vard algebraic operations); hence, (A3) is in the f (y ) = n 0 0v2
same form as (4), so that fi+f2 €Y. Similarly, we have (A4), 1+ [[izr exp [~ (= -9)"/ 2]
also shown at the bottom of the page, which is also in the same = oz’ + (1- a)zl (A10)
form of (4); hence, f1f; € Y. Finally, for arbitrary ¢ € R,
PR N where
Zj=1 (Cz 11) (Hi:l Hard (wi)) 1
cfi(z) = =1 " , (AS) a= - 5 PNk (A11)
R (D) L+ T exp [0 —)°/2]
K1 K2 (211 4 59] n
2ji=1 2j2=1 (217" + 727%) (Hi:l UAl{‘(xi)NA2{2 (zi))
hHi(z) + fa(z) = K — : (A3)
Y=t Y jamt (H¢=1 LSth (zi)l"m{’ (‘”i))
25{1;1 ]K;Z’:1 (21j172j2) (H?:l H 13t ("L'i)ll‘AQJ,’ (751))
filz) fo(z) = ' . (A4)

EKI K2
j1=1 2uj2=1

(H?:l l‘Alzl (-’”i)”Azf (-’Ez))
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Since 2° # y°, there must be some ¢ such that z? # g2, hence,
we have []7_; exp[—(z{ — y?)2/2] #1l,or,a# 1—a. If we
choose 7' = 0 and z* = 1, then f(2°) = 1—a # a = f(¥°).
Therefore, (Y, ds) separates points on U.

Finally, we prove that (Y,d.,) vanishes at no point of
U. By observing (4) and (5), we simply choose all z/ >
0(j =1,2,---,M); i, any f € Y with 27 > 0 serves as
the required f.

In summary, using the Stone—Weierstrass theorem and the
fact that Y is a set of real continuous functions on U (see (4)
and (5)), we have proven the theorem. Q.ED.
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