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A Fuzzy Logic Method for Modulation
Classification in Nonideal Environments
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Abstract—In this paper, we present a fuzzy logic modulation
classifier that works in nonideal environments in which it is
difficult or impossible to use precise probabilistic methods. We
first transform a general pattern classification problem into one
of function approximation, so that fuzzy logic systems (FLS’s) can
be used to construct a classifier; then, we introduce the concepts
of fuzzy modulation type and fuzzy decision and develop a nons-
ingleton fuzzy logic classifier (NSFLC) by using an additive FLS
as a core building block. Our NSFLC uses two-dimensional (2-D)
fuzzy sets, whose membership functions are isotropic so that they
are well suited for a modulation classifier (MC). We establish that
our NSFLC, although completely based on heuristics, reduces to
the maximum-likelihood modulation classifier (ML MC) in ideal
conditions. In our application of NSFLC to MC in a mixture of
���-stable and Gaussian noises, we demonstrate that our NSFLC
performs consistently better than the ML MC and it gives the
same performance as the ML MC when no impulsive noise is
present.

Index Terms—Fuzzy systems, impulse noise, pattern classifica-
tion, quadrature amplitude modulation.

I. INTRODUCTION

M ODULATION classification (MC) is a technique to
identify the modulation type of a modulated signal cor-

rupted by noise. It is an important problem in noncooperative
communication applications such as electronic surveillance. A
formal description of MC is as follows.

Definition 1: Given a measurement , a mod-
ulation classifier is a system that recognizes the modulation
type of from possible modulations .

The received signal is typically considered as a mod-
ulated signal received through a communication channel and
corrupted by additive noise, i.e.,

(1)

where is the signal and is the noise.
Various methods have been developed for this problem

[1]–[7]. While most of the earlier works lean more toward the
practical side rather than the theoretical aspects, a maximum-
likelihood modulation classifier (ML MC) has been introduced
in [1], and the theoretical limits of that classifier have been
developed. The ML MC assumes ideal conditions that the
noise is Gaussian and signal parameters (namely, carrier
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Fig. 1. One hundred points of Star 8-QAM data at SNR= 20 dB.

frequency and phase, symbol timing, signal power, noise
power) are known. The method applies to any kind of digital
modulation that can be described by a constellation, e.g.,
BPSK, QPSK, 8-PSK, 16-PSK, 32-PSK, 64-PSK, 16-QAM,
V29, V32 (32-QAM), 64-QAM, V29c (Star 8-QAM), etc.

Unfortunately, the ideal conditions that are assumed by the
ML MC are typically not the case in the real world. First, the
signal parameters are typically not completely time-invariant,
and, therefore, should be estimated from measurements and
adjusted in real time. The use of estimated parameters in-
troduces degradations in classifier performance that can be
very difficult to model precisely. Second, non-Gaussian noise,
especially impulsive noise, has been reported to exist in
many communication environments. Because impulsive noise
behaves quite differently from Gaussian noise, a ML MC based
on Gaussian noise may perform poorly in such noise. Since
the exact statistical nature of the impulsive noise is, in general,
unknown, it is usually not possible to design a ML MC for
it. A fuzzy logic (FL) MC is not based on a probability
model and is the main subject of this paper. Our goal is
to develop a classifier that gives comparable performance to
that of a ML MC when ideal conditions hold (Gaussian) and
has a more robust performance than the ML MC in nonideal
environments.

In Section II, we review the signal modeling of the ML
MC; the derivation of the ML MC is reviewed in Appendix
A. In Section III, we present a fuzzy logic classifier that is

1063–6706/99$10.00 1999 IEEE



334 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. 3, JUNE 1999

(a) (b)

(c) (d)

Fig. 2. Examples of normalized constellations. (a) V.29. (b) 16-QAM. (c)
32-QAM. (d) Star 8-QAM.

based on a nonsingleton fuzzy logic system. In Section IV,
we apply our fuzzy logic classifier to MC in impulsive noise
environments. Section V concludes the paper.

II. REVIEW OF PROBABILISTIC MODULATION CLASSIFICATION

A Maximum-Likelihood Classifier in Ideal Conditions:A
digital amplitude-phase modulation uses the amplitude and
phase information of a signal during time segments (symbols)
to carry information. Each modulation is associated with a
set of points on the complex plane called
a constellation. The information to be carried by a signal is
first coded into a sequence of complex data, each element
of which assumes a value from the constellation; then, the
modulator maps each complex datum into one symbol length
of continuous waveform.

A modulated signal, when received through a communica-
tion channel, can be expressed as

(2)

where and are the carrier frequency and phase, re-
spectively, is the symbol period, is a pulse-shape
function (which represents the impulse response of the overall
signal path, including transmitter, channel, and receiver),
is the signal amplitude, and assumes a value from the
complex numbers in the constellation of the modulation. The
constellation is usually normalized so that it has unity average
power, i.e., . Note that the key property of
this family of signals is that the instantaneous frequency does
not change within each symbol, which ensures an equivalence

between time-domain and complex-domain representations of
the signal. This equivalence makes it possible for us to map
a received time-domain signal back into the complex domain,
and match the received complex data to a library of given
constellations. When a sequence of received data is plotted
on a complex domain, cluster formations can be visually
recognized that resemble the original constellation, if signal
quality is high enough. Fig. 1 shows an example of a Star 8-
QAM signal at a signal-to-noise ratio (SNR) of 20 dB. The
constellations of Star 8-QAM and three other modulations are
depicted in Fig. 2, where the real part and the imaginary
part are also called the in-phase and quadrature components
of the constellation, respectively.

When enough statistical information about the signal and
communication channel is known, the matching of a received
signal to the library of constellations can be done with likeli-
hood tests. Fig. 3 shows a diagram of a maximum-likelihood
modulation classifier (ML MC). Note that by working in
the complex domain, we process only complex-domain
data for a time interval of symbols, instead of having to
process the continuous-time waveform. This greatly reduces
the complexity of the classifier.

The ML MC assumes the following ideal conditions.

1) The communication channel can be perfectly equalized,
i.e., for and otherwise.

2) The additive noise is white and Gaussian and its power
density is known.

3) All signal parameters, i.e., carrier frequency and ref-
erence phase, symbol epoch, and signal amplitude, are
known.

4) Carrier frequency is a multiple of symbol rate, i.e.,
is an integer.

5) All symbols of transmitted information are independent
of each other, i.e., the sequence is white.

6) The signal is independent of the noise.

It is shown in [1] that under these ideal conditions, a suffi-
cient statistic for MC is the output sequence of a quadrature
receiver, which is shown as part of Fig. 3. The in-phase ()
and quadrature ( ) outputs are

(3)

(4)

where

(5)

and

(6)
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symbols of complex data are generated for the time interval
, i.e.,

(7)

where . In this paper, we refer to
and as time-domainsignal and noise, respectively, and

and ascomplex-domainsignal and noise, respectively.
In a noiseless case, plotting all on the complex plane will
produce a pattern that is the same as a scaled version of the
constellation in Fig. 2, assuming that eachhas appeared in
the data at least once.

Denote a group of possible constellations by

(8)

where is the number of points in constellation. Classi-
fication within the group of constellations can be considered
as a test on the following hypotheses:

the underlying constellation is

The maximum-likelihood classification method chooses the
hypothesis whose likelihood or log-likelihood function is
maximized, i.e.,

(9)

In Appendix A, it is shown that when the noise is white
and Gaussian, the log-likelihood function is

(10)

When all constellations are equally likely, the ML criterion is
equivalent to the maximuma posteriori criterion; therefore,
the ML MC is optimal in the sense of minimum error-
rate. However, as pointed out in the Introduction, the ideal
conditions assumed by the ML MC typically do not hold in
a real-world MC problem. Examples of nonideal conditions
are: 1) signal parameters are unknown and 2) the noise is
non-Gaussian, e.g., is impulsive. In case 1), the MC may use
estimated parameters, assuming that the noise is still Gaussian
(as studied in [8]), whereas in case 2), the ML MC will
not be applicable theoretically, because the expression for the
probability density in (58) relies on the fact that the noise
is Gaussian.

III. A F UZZY LOGIC CLASSIFIER

FOR MODULATION CLASSIFICATION

A. Pattern Classification Using Fuzzy Logic

Before we proceed to use fuzzy logic for modulation clas-
sification, we explore how a typical FLS structure [9] fits
into a general pattern classification problem. The input to a
pattern classifier is usually represented by a vector in a feature

space. Suppose there arepossible classes .
One way to represent a pattern classifier is in terms of a set
of discriminant functions , , where

is a feature vector. The classifier assignsto class
if , . The feature space is therefore
partitioned into disjoint regions, , , , . These
regions can be represented bycharacteristic functions defined
on the feature space as follows:

if
otherwise

(11)

Using the expressions in (11), the classification result for
can be expressed as a fuzzy singletonwhose membership
function is a function of , i.e.,

(12)

Note that for each there is only one value of for which
is nonzero; therefore, this classification output is a

hard decision.
In our scheme of fuzzy classification, we consider the set

of classes as a universe of discourse
on which fuzzy sets are defined to represent the concept of
“vague classes.”

Definition 2: A fuzzy class is a fuzzy set with fuzzy
membership function , where .

For example,

(13)

is a fuzzy-set representation of “similar to class.”
Now we generalize the ’s in (11) into fuzzy mem-

bership functions, i.e., assumes a value between zero
and one and can be nonzero for multiple values of
for the same . This makes the classification output in (12)
a nonsingleton fuzzy set; therefore, now becomes asoft
decision.

Since the classifier is now defined by the functions in
(12), the classification problem has been translated into the
problem of approximating these functions. FLS’s can be used
as approximators for these functions.

B. Modulation Classification Using Fuzzy Logic

1) Architecture: Because MC can be considered as a pat-
tern classification problem, we follow the definition of fuzzy
class to introduce some basic concepts for fuzzy logic mod-
ulation classification.

Let denote the signal space and denote the set of
all modulation types of interest. Generally, is the set of all
possible time-domain waveforms. When we focus on complex-
domain data, is the set of all vectors of complex data. A
fuzzy modulationis then introduced as a fuzzy class in the
universe of all modulations.

Definition 3: A fuzzy modulation is a fuzzy set
with fuzzy membership function , where .
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Fig. 3. Block diagram of a maximum-likelihood modulation classifier.

Fig. 4. Architecture of an FL MC.

Definition 4: A fuzzy decision of a modulation classifier is
a fuzzy modulation on .

Although MC and pattern classification are fundamentally
similar, they differ in that a typical pattern classifier makes
a decision for each vector input, whereas an MC makes one
decision for input data from multiple symbols. Concatenating
the data from all symbols into a single vector will not make the
two problems the same because the resulting vector is then of a
variable dimension that changes as more symbols are available,
whereas the pattern classifier input has a fixed dimension.
Consequently, we use a two-dimensional (2-D) FLS as a core
building block that processes one input complex datum at a
time and produces a fuzzy output for each input, and the
fuzzy outputs are then combined to obtain an overall result.
Fig. 4 illustrates a batch-processing architecture of our FL MC.
In this architecture, the FLS has the structure of a typical
FLS [9] less a defuzzifier; its output is
a fuzzy modulation, i.e., a fuzzy decision based on a single
datum. The fuzzy decisions from all FLS’s are then combined
by a fuzzy intersection operation to form an overall fuzzy
decision, . The defuzzifier produces a hard decision from
the fuzzy decision. Details about the blocks shown in Fig. 4
are discussed below.

2) Generating Fuzzy Rules:There are two different infor-
mation sources for generating rules: 1) training data and 2)
heuristic interpretations of the ML MC. We consider the latter
as more significant because we still assume that there is an
underlying probability distribution for the received signal.
Heuristic interpretations of the ML MC can help capture
the structural information that is difficult to extract with a

model-free system. Using this information, we can set up a
basic framework for the classifier, and use available training
data to adjust the classifier so that it fits into individual
working environments. Consequently, the resulting fuzzy logic
classifier will be able to mimic the ML MC in basic structure,
which ensures that the FL MC can achieve a comparable
performance when ideal conditions hold. In the meantime, the
FL MC will also be applicable to nonideal conditions because
it is much easier to heuristically describe a nonideal condition
than model it precisely.

Consider the geometric formation of the complex-domain
data. Suppose is the true constellation; then the data points
should form clusters centered at the original constellation
points scaled by an amplitude factor. For example, Fig. 1
shows a 100-point Star 8-QAM data set generated at SNR
20 dB. Observe that the clusters form a geometric pattern that
resembles the constellation in Fig. 2(d). Consequently, if each
point in is associated with a cluster, then, whether every
input data point falls into at least one of the clusters can
be used as an indicator of whether the true constellation is.
This observation can be described by the following linguistic
rule:

IF every received data point belongs

to one or more of the clusters

THEN the constellation is probably (14)

Note that the clusters in the above rule do not have clear
boundaries; therefore, whether a data point “belongs to” a
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Fig. 5. Two-dimensional fuzzy sets. The membership functions are defined
on the complex domain. The value of each membership function at a certain
point depends on the distance between this point and the center of the fuzzy
set.

cluster is a vague concept. Fuzzy sets can be used to model
such clusters.

Now we need to develop the linguistic rule into a standard
form of fuzzy IF–THEN rules. First, the clusters are
modeled by fuzzy sets each with the following
membership function:

(15)

where is an arbitrary membership function, is
a distance metric, is a complex variable for the membership
function, is the cluster center that takes into account the
amplitude factor (i.e., if the signal amplitude is known,
then ), and is a parameter used to control the
dispersion of the fuzzy set. Moreover, each input datumis
fuzzified to form an input fuzzy set, , with the following
membership function:

(16)

where is an arbitrary membership function, is
a distance metric, and is a scale factor used to control the
dispersion of the fuzzy set.

Note that unlike a typical FLS, where fuzzy sets are defined
and tuned on one-dimensional spaces, we use 2-D fuzzy sets
here. To examine their difference, consider the following rules:

IF is and is THEN is (17)

IF is THEN is (18)

where are scalars, and is 2-D. If we let ,
i.e., , [ ], then
and are the same fuzzy implication. On the other hand, it
is not always possible to decompose a bivariate membership
function into a -norm combination of two univariate func-
tions; therefore, a fuzzy IF–THEN rule using 2-D fuzzy sets

(a) (b)

(c) (d)

Fig. 6. Two-dimensional membership function. (a) Gaussian kernel and
Euclidean distance. (b) Exponential kernel with Hamming distance. (c)
Triangular kernel with Hamming distance. (d) Exponential kernel withL3
distance.

is a more general form. Furthermore, the bivariate membership
functions in (15) and (16) are automatically isotropic, i.e.,
the membership functions are uniform in all directions with
respect to their centers. This property is suited for MC because
in most cases the distribution of the complex-domain noise is
isotropic. A 2-D membership function consists of two factors:
the kernel ( ) and the distance metric. Fig. 5 illustrates these
fuzzy sets.

Example 1: Choices for kernel functions

Triangular:

if
otherwise

(19)

Gaussian:

(20)

Exponential:

(21)

Choices for distance metrics

Euclidean:

(22)

Hamming:

(23)

:

(24)

The combination of the membership functions and distant
metrics lead to a large variety of 2-D membership functions.
Some examples of these are depicted in Fig. 6.

In our FL MC, fuzzy sets model the additive noise,
which is the major cause for why the received data forms
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clusters around the constellation points; therefore, the selection
of and should be based on the type of the noise
and the signal-to-noise ratio, respectively. Fuzzy sets
play an auxiliary role in modeling the uncertainties that
are normally not accounted for by the ’s. Examples of
these uncertainties are: 1) non-Gaussian noise distribution that
cannot be well modeled with a typical membership function
and 2) inaccurate constellation points caused by imperfect
modulators/demodulators, time-variant signal power, phase
drift, etc. Consequently, selection of is highly dependent
on individual applications.

We can now translate the linguistic rule in (14) into the
following fuzzy rules:

IF is THEN is

(25)

where is a fuzzy variable on the complex plane,is a fuzzy
decision, and is a fuzzy modulation that is the fuzzy-set
representation of “probably .”

3) Fuzzy Inference:When the rules in (25) are activated by
an input , the output of the rule represents the contri-
bution of datum to the whole system and the classification
decision will be based on the overall contributions from all
data points (i.e., ).

Denote the response of to as ,
. The membership functions of are given

by compositional fuzzy inference as:

(26)

where is a norm. The outputs are then combined
to form an overall output

(27)

where is usually a conorm (e.g., the maximum operator)
in an FLS or it can be a weighted average in an additive FLS
[10]. In our FL MC, we use a weighted average, i.e.,

(28)

where is a weight factor associated with rule .
Because the fuzzy rules come from heuristic interpretations

of the data formation for each modulation type, we use the
following principles in determining .

1) The total weight of each constellation is based on the
preference of the modulation type.

2) Within each constellation, the weight reflects the prefer-
ence of each constellation point.

Under the assumption that there is no preference for any
modulation type and for any point within a constellation, the
following is a choice for the weights that satisfies the above
principles:

(29)

Hence, we have (see Fig. 4)

(30)

4) Combining FLS Outputs:Each represents a highly
uncertain decision because it is based on only one datum.
Now we use fuzzy intersection to combine all to obtain
an overall output , i.e.,

(31)

This is a soft decision for MC. A hard decision can be found
by a maximum defuzzifier, i.e.,

(32)

or in the form of constellation index

(33)

Fig. 7 depicts a flow chart of our fuzzy logic classifier.
Because the input is not a singleton, we are actually using a

nonsingleton fuzzy logic system [11]; therefore, we call our FL
classifier a nonsingleton FL classifier (NSFLC). Nonsingleton
FLS has not been widely used because the supremum in (26)
does not generally have a closed-form expression; however, it
is shown [11] that this supremum is solvable in some special
cases.

Example 2: Let all membership functions be Gaussian, i.e.,

(34)

(35)

and let , , and .
For each data point, if is the arithmetic product and product
inference is used, then

(36)
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Fig. 7. Flow chart of NSFLC.

According to [11], the supremum is reached at

(37)

and

(38)

By substituting and into (36), we obtain

(39)

Hence, from (30) and (31) the overall inferred result is

(40)

Unfortunately, Gaussian membership functions will not be
adequate for all situations. Consider a new FLS in which
we use a singleton fuzzifier and use the same Gaussian
membership functions for the antecedent fuzzy sets as in our
NSFLC except that is replaced with . It is easy to
see that this new FLS is equivalent to the FLS in our NSFLC;
in other words, our NSFLC reduces to a singleton FL MC. This
reduces the capability of the NSFLC to model complex types
of noise such as a mixture of Gaussian and impulsive noises.
On the other hand, (40) reveals an important relation between
the NSFLC and the ML MC as we explain in Section III-C.

Example 3: Let be Gaussian, as in (35) and
be exponential with Hamming distance, i.e.,

(41)

where and are the real and imaginary part of. Lemma 1
in Appendix B shows that the supremum in (27) has a closed-
form expression if is product. This result will be used when
we apply our NSFLC in impulsive noise environments.

C. Relation Between FL and ML Classifiers

Suppose , , , and
, where if and ,

otherwise. Then, from (32) and (40) we see that

(42)
Because logarithm is a monotonic function, we can take the
logarithm of the right-hand side of (42); therefore

(43)

By comparing (43) with the combination of (9) and (10), we
see that the FL and MC classifiers give the same hard decision.
Consequently, we have the following.

Theorem 1: The FL classifier reduces to the ML classifier
if , , , and are properly selected.

This is important, because it guarantees that the NSFLC can
match the performance of the ML MC when ideal conditions
hold.

Compared to the ML MC, the FL classifier has much
more flexibility, because it is not dependent on ana priori
probability model, i.e., it is heuristic. We are free to choose
membership functions, norms, and conorms to make the
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classifier adapt to different nonideal environments. Of course,
the disadvantage of a heuristic method is also obvious—there
is no analytical guarantee of good performance except for
the above special case. The only way we can evaluate the
performance is through simulations. In the following section,
we apply our FL classifier in an impulsive noise environment
and compare its performance against the ML classifier.

IV. USING NSFLC IN IMPULSIVE NOISE ENVIRONMENTS

A. Impulsive Noise

It is known that in communication channels there often
exists non-Gaussian noise, which is typically some kind of
impulsive noise. In the literature,-stable distributions [12]
have been widely used to model such impulsive noise.

First, we introduce the basic probability model for impul-
sive noises. Time-domain impulsive noise is usually modeled
by one-dimensional symmetric -stable (denoted by )
distributions [12] with characteristic function in the form

(44)

where is the characteristic exponent, is
the dispersion of the distribution, and is the
location parameter. The location parametercorresponds to
the median of the distribution. The dispersion parameter
determines the spread of the distribution around its location
parameter, similar to the variance of the Gaussian distribution.
The distribution in (44) is calledstandardif and .
Unfortunately, no closed-form expression exists for general

probability distribution functions other than Cauchy
( ) and Gaussian ( ). In general, the density of
a standard is given by

(45)
When the noise is , the equivalent noise output of

the quadrature receiver, i.e., the complex-domain noise, has
a bivariate isotropic -stable distribution, which has a charac-
teristic function of the form

(46)

Again, and are the characteristic exponent and the disper-
sion, respectively, and and are the location parameters.
Note that the marginal distributions of the isotropic stable dis-
tribution are with parameters and .
As in the case of univariate , no closed-form expression
exists for the density function of the bivariate density

function. The density function in (46) can be expressed as a
power series by using polar coordinates [12].

Although a density behaves approximately the same as
a Gaussian density near the origin, its tails decay at a lower rate
than the Gaussian tails. The smaller the characteristic exponent

is the heavier the tails of the density.
An important property of the distributions is that

only moments of an order less than exist for the non-
Gaussian members. This means that all non-Gaussian
distributions have infinite variances. In other words, a true-
stable random sequence carries infinite energy. In this paper,
we consider a milder impulsive environment, one in which the
noise is modeled as a Gaussian noise plus a small percentage
of impulsive noise.

Because the two components of a bivariate isotropic random
vector are not independent, we need a special model to
generate isotropic noises in our simulations. We will use an
isotropic random number generator described in [13].

B. Performance Degradation of ML MC in Impulsive Noise

In practical applications, the actual nature of the impulsive
noise is usually unknown, so it is impossible to use a rigorous
probabilistic method. A commonly used way for dealing
with an unknown probability density function (pdf) is to
pretend that it is Gaussian and, therefore, only first- and
second-order moments need to be estimated. Unfortunately,
because impulsive noise has infinite second-order moments, it
is imaginable that this naive method will lead to poor results.
A possible remedy is to suppress the impulses in the noise so
that the noise is reasonably close to being Gaussian. This can
be done by preprocessing the noise samples using a nonlinear
function. In the following, we use an example to show the
results for both methods.

Because the noise is a mixture of impulsive and Gaussian
noise, we will no longer be able to use the noise power for
the definition of SNR. In our discussion, we use the signal-to-
Gaussian-noise ratio (this will be referred to as SNR later) in
conjunction with the percentage of impulsive noise to describe
the real SNR. The percentage of impulsive noise is defined
as the ratio of the dispersion of the impulsive noise to the
standard deviation of the Gaussian noise (multiplied by 100).
Note that this percentage of impulsive noise does not represent
a typical ratio of impulsive noise amplitude to Gaussian noise
amplitude.

We conducted simulations to study the effect of impulsive
noise on ML MC in which the ML MC was assumed to have
no knowledge of the actual pdf of the noise; it treated the
noise as Gaussian and used the maximum-likelihood method
to estimate the variance of the noise. The latter was done
using a set of noise training samples that contain pure noise. In
reality, such data may be obtained from measurements of noise
when the channel is silent. The following three modulations
were used: 16-QAM, V.29, and 32-QAM. The SNR is 10 dB.
Five hundred symbols of noise were used for training and 100
symbols were used for classification.

The impulsive noise suppressor we used is the following
zero-memory-nonlinearity (ZMNL), which was suggested by
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Fig. 8. Performance of ML MC for 16-QAM/V.29/32-QAM classification in a mixture of Gaussian and impulsive noises. Solid: ML MC using a naive
ML estimate of noise standard deviation; dash dot: ML MC with ZMNL.

Ljung [14], and was used in [15] and [16] for handling
impulsive noise. This ZMNL is

(47)

in which is a tuning parameter that we arbitrarily set equal
to where

(48)

median median (49)

and

(50)

The outputs of this ZMNL were used to estimate the variance
of the noise (the maximum-likelihood estimate of the variance
for a zero-mean Gaussian distribution is the sample average
of signal power), which, in turn, was used by the Gaussian
distribution-based ML MC.

Fig. 8 depicts the classification results for various percent-
ages of Cauchy noise. The results were obtained from 1000
Monte Carlo simulations for each percentage of Cauchy noise.
Observe that even a small amount of Cauchy noise can lead to
disastrous results for the naive ML MC (solid curve) and that a
boost in performance is obtained by using the ZMNL impulse
noise suppressor without sacrificing performance when no
impulsive noise is present. However, in spite of this improve-
ment, the performance still degrades rapidly as the percentage
of Cauchy noise increases. In the next section, we develop
a new MC that is based on FL and demonstrate significantly
improved performance for it.

C. Performance of NSFLC in Impulsive Noise

Recall that the NSFLC can handle two kinds of uncertain-
ties. Here we utilize this property to model the structure of
the additive noise; i.e., we use the fuzzifier to model the
uncertainty caused by impulsive noise, and the antecedent
fuzzy sets to model the uncertainty of the Gaussian noise.
Specifically, we use a Gaussian kernel with Euclidean distance
for the antecedent fuzzy sets and use an exponential kernel
with Hamming distance for the fuzzifier, i.e.,

(51)

and

(52)

The reason why we chose the exponential membership func-
tion for is that it has a heavy tail that mimics the
heavy tail in the pdf of impulsive noise. Fuzzy set is used
to account for the Gaussian noise; therefore, we use Gaussian
functions for its membership functions. As a result, from (30),
the FLS output for is
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(53)

From Lemma 1 in Appendix B, the supremum is at

if

if

otherwise

(54)

if

if

otherwise

(55)

where the ranges of, , and are as in (53).
The values of and are determined by analyzing the

training set of noise , . As in
Section IV-B, we use a ZMNL to process the training data of
pure noise in order to have more stable values forand . The
following training procedure is proposed for the calculation of

and .

1) Form a -dimensional vector by concatenating the real
and imaginary parts of the complex training data. This
vector will be used as if it were a sample population
of a one-dimensional distribution. Calculate its standard
deviation denoted by .

2) Use the ZMNL, as described in Section IV-B, to produce
a new training set .

3) Calculate the standard deviation of the new training set
and use this value as.

4) Compute , as

(56)

Equation (56) comes from a heuristic decomposition of the
noise mixture. The first term in the function is an
attempt to estimate the parameter of an exponential distribution
by using second-order moments. Note that, if the noise is
a mixture of independent Gaussian and exponential noises,
where is the variance of the Gaussian noise, then
is the variance of the exponential noise portion. Of course, the
noise we are considering is impulsive rather than exponential,
so there is no guarantee that this estimate is the best. The
second term in the function limits the value of to a
reasonable level, because the first term can become infinitely
large for an impulsive noise.

Note that the NSFLC has a built-in mechanism to guarantee
that it works virtually the same as the ML MC (with ZMNL)
when no impulsive noise is present. Specifically, it can be seen
from (56), that will be very small if no impulsive noise is
present because the standard deviations of the preprocessed

and postprocessed training data will be very close. In this
case, (54) and (55) give and ; therefore,
the effects of the exponential membership function in (53) are
nullified. Consequently, the results for the NSFLC and ML
MC are about the same.

Experiments:Three modulations were used in our simula-
tions: V.29, 16-QAM, and 32-QAM. We used 500 symbols
of noise for training, SNR (Gaussian noise) ranging from 6
to 14 dB in 2-dB step size and Cauchy noise ranging from
0% to 5%. For each SNR and Cauchy-noise percentage, 1000
Monte Carlo simulations were run for each of the three signal
types. Fig. 9 compares the percentage of correct classification,
averaged over the three signal types, of the NSFLC and the
ML MC. Note that the plots for SNR 10 dB compare the
result of NSFLC with those shown in Fig. 8. Observe that
the NSFLC performs consistently better than the ML MC.
The more impulsive noise that is present, the larger is the
performance difference.

The experiments demonstrate that the NSFLC is more
robust in impulsive noise environments than the ML MC
with ZMNL. Moreover, this is accomplished without using
a priori information on the statistics of the impulsive noise, or
knowing in advance whether or not impulsive noise is present.
The experiments demonstrate that our NSFLC is capable of
dealing with complicated noise environments by using vague
information (i.e., the noise is impulsive), something that is
difficult to do using probabilistic methods.

V. CONCLUSIONS

We have developed a fuzzy logic modulation classifier that
works in nonideal environments in which it is difficult or
impossible to use precise probabilistic methods. We began
by transforming a general pattern classification problem into
one of function approximation, so that FLS’s can be used to
construct a classifier. After introducing the concepts of fuzzy
modulation type and fuzzy decision, we set up an architecture
for an NSFLC by using an additive nonsingleton FLS as a
core building block. Our NSFLC uses 2-D fuzzy sets that are
defined on the complex domain whose membership functions
are isotropic so that they are well suited for MC.

We have discovered an important property of our NSFLC,
i.e., it reduces to the ML MC when relevant parameters
are properly selected. Specifically, when the ideal conditions
hold, the known parameters can be used in our NSFLC and
doing this makes our NSFLC the same as the ML MC. This
guarantees that the NSFLC can match the performance of ML
MC when ideal conditions hold. It is interesting to note that our
NSFLC is not constructed using a probability model; instead,
it is constructed using heuristic interpretations of the clustering
formation of complex-domain data.

Compared to the ML MC, the FL classifier has much more
flexibility because it is not dependent on ana priori probability
model, i.e., it is heuristic. We are free to choose membership
functions norms and conorms to make the classifier adapt
to different nonideal environments.

One situation that we have identified as not appropriate for
using the ML MC is when impulsive noise is present. We
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Fig. 9. Performance of ML MC and NSFLC for 16-QAM/V.29/32-QAM classification in a mixture of Gaussian and impulsive noises. Number of symbols
= 100. Solid: NSFLC; dash: ML MC.

examined the behavior of the maximum-likelihood modulation
classifier in a mixture of Gaussian and impulsive noises, and
found that the naive way of treating the noise as Gaussian
led to severe degradation in performance. This problem could
be alleviated by using a zero-memory nonlinear system to
preprocess the training set of noisy data; but there was still
significant degradation in performance. We applied our fuzzy
logic classifier to this situation and found that our NSFLC
performed consistently better than the ML MC, and it gave
the same performance as the ML MC when no impulsive noise
was present. It did this without using anya priori information
about whether impulsive noise was or was not present. In
addition, the performance differences between the NSFLC and
the ML MC widened as the percentage of impulsive noise
increased.

The major drawback to the NSFLC is that no performance
analysis exists for it; however, the same is true for an ML MC
in a non-Gaussian noise environment.

Finally, we wish to note that this is only one example of an
application of our NSFLC, and that the general form of the
NSFLC can lead to many variations, if heuristic information
for other applications guides us to select different membership
functions, norms, and conorms for the NSFLC.

APPENDIX A
DERIVATION OF LOG-LIKELIHOOD FUNCTION

Using the assumption that the noise is Gaussian and white,
it can easily be shown that and are zero-mean white
Gaussian sequences each with variance equal to and
that they are mutually independent.

Using the total probability formula, we have

(57)

where is thea priori probability of in . From
(7), we have

(58)

Assuming that the data from different symbols are indepen-
dent, then the likelihood function is

(59)

Define SNR as

SNR (60)

It can be shown (e.g., [1]) that the likelihood function depends
only on SNR instead of , , and individually. To simplify
the notation, we let and and use only
to represent SNR. As a result, the log-likelihood function
becomes
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(61)

It is common sense that all points in a constellation should be
used equally, i.e., ; hence, we then arrive at
the expression for in (10).

APPENDIX B

Lemma 1: The function

(62)

reaches its maximum at

if

if

otherwise.

(63)

Proof: Suppose . It is easy to see [from a sketch
of the two components of ] that the supremum has to
occur at a point . When , the derivative
of is

(64)

Since is always positive, is negative when
, and positive when ; therefore, if
falls in , i.e., if , then

reaches its maximum at . On the other hand,
if , then is always negative on ,
which means that is decreasing on ; therefore,

is maximum at .
The result for the case when can be obtained

similarly.

REFERENCES

[1] W. Wei and J. M. Mendel, “Maximum-likelihood classification for
digital amplitude-phase modulations,”IEEE Trans. Commun., to be
published.

[2] Y.-C. Lin and C.-C. Kuo, “Classification of quadrature amplitude
modulation (qam) signals via sequential probability ratio test (sprt),”
Signal Processing,vol. 60, no. 3, pp. 263–280, 1997.

[3] A. Polydoros and K. Kim, “On the detection and classification of quadra-
ture digital modulations in broad-band noise,”IEEE Trans. Commun.,
vol. 38, pp. 1199–1211, Aug. 1990.

[4] C.-Y. Huang and A. Polydoros, “Likelihood methods for MPSK mod-
ulation classification,”IEEE Trans. Commun., vol. 43, pp. 1144–1154,
Feb. 1995.

[5] S.-Z. Hsue and S. Soliman, “Automatic modulation recognition of
digitally modulated signals,” inIEEE Military Communicat. Conf.,
Boston, MA, Oct. 1989, pp. 645–650.

[6] , “Automatic modulation classification using zero crossing,”Proc.
Inst. Elect. Eng., vol. 137, no. 6, pp. 459–464, Dec. 1990.

[7] S. Soliman and S.-Z. Hsue, “Signal classification using statistical
moments,”IEEE Trans. Commun., vol. 40, pp. 908–916, May 1992.

[8] W. Wei, “Classification of digital modulations using constellation an-
alyzes,” Ph.D. dissertation, Univ. Southern California, Los Angeles,
1998.

[9] J. Mendel, “Fuzzy logic systems for engineering: A tutorial,”Proc.
IEEE, vol. 83, pp. 345–377, Mar. 1995.

[10] B. Kosko, Neural Network And Fuzzy Systems, A Dynamical Systems
Approach to Machine Intelligence.Englewood Cliffs, NJ: Prentice-
Hall, 1992.

[11] G. Mouzouris and J. Mendel, “Non-singleton fuzzy logic systems:
Theory and application,”IEEE Trans. Fuzzy Syst., vol. 5, pp. 56–71,
Feb. 1997.

[12] C. Nikias and M. Shao,Signal Processing with Alpha-Stable Distribu-
tions and Applications. New York: Wiley, 1995.

[13] X. Ma and C. Nikias, “Parameter estimation and blind channel identifica-
tion in impulsive signal environments,”IEEE Trans. Signal Processing,
vol. 43, pp. 2884–2897, Dec. 1995.

[14] L. Ljung, System Identification: Theory for the User.Englewood Cliffs,
NJ: Prentice-Hall, 1987.

[15] B. Sadler, “Detection in correlated impulsive noise using fourth-order
cumulants,” IEEE Trans. Signal Processing,vol. 44, pp. 2793–2800,
Nov. 1996.

[16] A. Swami, “Tde, doa, and related parameter estimation problems in
impulsive noise,” inHigher Order Statistics: IEEE Signal Processing
Workshop,Banff, Canada, July 1997, pp. 273–279.

Wen Wei was born in Wenchang, China, on October
1, 1966. He received the B.S. and M.S. degrees in
electronic engineering from the Tsinghua Univer-
sity, Beijing, China, in 1986 and 1989, respectively,
and the Ph.D. degree in electrical engineering from
the University of Southern California, Los Angeles,
in 1998.

His research work was on fuzzy logic systems
and their applications in modulation classification.
He is now with Netscreen Technologies, Inc., Santa
Clara, CA.

Jerry M. Mendel (S’59–M’61–SM’72–F’78) re-
ceived the Ph.D. degree in electrical engineering
from the Polytechnic Institute, Brooklyn, NY, in
1963.

Currently, he is a Professor of electrical engi-
neering and an Associate Director of Education at
the Integrated Media Systems Center, University
of Southern California, Los Angeles, where he has
been since 1974. He has published more than 370
technical papers and is the author and/or editor of
seven books. His current research interests include

type-2 fuzzy logic systems, higher order statistics, and neural networks and
their applications to a wide range of signal processing problems.

Dr. Mendel is a Distinguished Member of the IEEE Control Systems
Society. He was President of the IEEE Control Systems Society in 1986.
Among his awards are the 1983 Best Transactions Paper Award of the IEEE
Geoscience and Remote Sensing Society, the 1992 Signal Processing Society
Paper Award, and a 1984 IEEE Centennial Medal.


