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A Fuzzy Logic Method for Modulation
Classification in Nonideal Environments

Wen Wei and Jerry M. Mendekellow, IEEE

Abstract—In this paper, we present a fuzzy logic modulation 20 : T T T r T T
classifier that works in nonideal environments in which it is
difficult or impossible to use precise probabilistic methods. We
. . . . 151+ Q
first transform a general pattern classification problem into one ? 0
of function approximation, so that fuzzy logic systems (FLS’s) can %o
be used to construct a classifier; then, we introduce the concepts 1 .
of fuzzy modulation type and fuzzy decision and develop a nons-
ingleton fuzzy logic classifier (NSFLC) by using an additive FLS sl 020 |
as a core building block. Our NSFLC uses two-dimensional (2-D) &?
fuzzy sets, whose membership functions are isotropic so that they o & x o °o o
are well suited for a modulation classifier (MC). We establish that or Oéo o &0 oo°d§’, o&{?f
our NSFLC, although completely based on heuristics, reduces to o %6
the maximum-likelihood modulation classifier (ML MC) in ideal &b ‘8&1) i
conditions. In our application of NSFLC to MC in a mixture of o
a-stable and Gaussian noises, we demonstrate that our NSFLC
performs consistently better than the ML MC and it gives the  -10f
same performance as the ML MC when no impulsive noise is 3&3’00
present. sl %

Index Terms—Fuzzy systems, impulse noise, pattern classifica-
tion, quadrature amplitude modulation. 20 ! L . 1 1 1 L

-20 -15 ~-10 -5 [} 5 10 15 20

Fig. 1. One hundred points of Star 8-QAM data at SNR20 dB.
I. INTRODUCTION

M ODULATION classification (MC) is a technique tofrequency and phase, symbol timing, signal power, noise

identify the modulation type of a modulated signal Corf)ower) are known. The method applies to any kind of digital

rupted by noise. It is an important problem in noncooperati odulation that can be described by a constellation, e.g.
communication applications such as electronic surveillance. SK, QPSK, 8-PSK, 16-PSK, 32-PSK, 64-PSK 16-(§AM '
forg“"]}! ‘?'t‘?sc”l"_’“cos'f‘ of MC is as f°"°""f' o< L V29, V32 (32-QAM), 64-QAM, V29c (Star 8-QAM), etc.
etinition - &Iven a measurementt) Stx7amod- Unfortunately, the ideal conditions that are assumed by the
ulation classifier is a system that recognizes the modulati MC are typically not the case in the real world. First, the
type of r(?) _from N p053|bl_e mOO.IUIat'OWIl.’ Lo, -+, Lo} signal parameters are typically not completely time-invariant,
The re_:cewed 5|gnazl=(t) Is typically con3|_der_ed as a mOd'a d, therefore, should be estimated from measurements and
ulated signal received through a communication channel ang. ' ; T . i
corrupted by additive noise. i.e adjusted in real time. The use of estimated parameters in-
P y T troduces degradations in classifier performance that can be

r(t) = s(t) +n(t) (1) very difficult to model precisely. Second, non-Gaussian noise,
especially impulsive noise, has been reported to exist in
wheres(t) is the signal anch(t) is the noise. many communication environments. Because impulsive noise

Various methods have been developed for this probldpehaves quite differently from Gaussian noise, a ML MC based
[1]-[7]. While most of the earlier works lean more toward then Gaussian noise may perform poorly in such noise. Since
practical side rather than the theoretical aspects, a maximuie exact statistical nature of the impulsive noise is, in general,
likelihood modulation classifier (ML MC) has been introducednknown, it is usually not possible to design a ML MC for
in [1], and the theoretical limits of that classifier have beeih A fuzzy logic (FL) MC is not based on a probability
developed. The ML MC assumes ideal conditions that tmeodel and is the main subject of this paper. Our goal is
noise is Gaussian and signal parameters (namely, cartierdevelop a classifier that gives comparable performance to

Manuscript received February 18, 1998; revised January 1, 1999 TtPat of a ML MC when ideal conditions hold (Gau§S|an) .and
material is based on work supported Yby the’University of Southe;’n Califorrﬁ’h‘%s_a more robust performance than the ML MC in nonideal
under Grant MIP-9419386 of the National Science Foundation. environments.
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Ca"fompia’ Los Angeles, CA 9005;39 USA_g y Y Mc; the dgrlvatlon of the ML MC is rewe;wed |n.Append|>§
Publisher Item Identifier S 1063-6706(99)04941-3. A. In Section Ill, we present a fuzzy logic classifier that is
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between time-domain and complex-domain representations of
the signal. This equivalence makes it possible for us to map
° a received time-domain signal back into the complex domain,

° o and match the received complex data to a library of given
o o o ° o o o 6 6 o o© constellations. When a sequence of received data is plotted
o o o o o o on a complex domain, cluster formations can be visually

4 o o o y o o o o recognized that resemble the original constellation, if signal

o quality is high enough. Fig. 1 shows an example of a Star 8-

QAM signal at a signal-to-noise ratio (SNR) of 20 dB. The

constellations of Star 8-QAM and three other modulations are

depicted in Fig. 2, where the real part and the imaginary

partz, are also called the in-phase and quadrature components

of the constellation, respectively.

0 When enough statistical information about the signal and

communication channel is known, the matching of a received

signal to the library of constellations can be done with likeli-

hood tests. Fig. 3 shows a diagram of a maximum-likelihood

modulation classifier (ML MC). Note that by working in

o the complex domain, we process only complex-domain

data for a time interval ofV symbols, instead of having to

2 2 A 0 1 process the continuous-time waveform. This greatly reduces
(©) (d) the complexity of the classifier.

Fig. 2. Examples of normalized constellations. (a) V.29. (b) 16-QAM. (¢) The ML MC assumes the following ideal conditions.

32-QAM. (d) Star 8-QAM. 1) The communication channel can be perfectly equalized,

i.e., p(t) =1for 0 <t < T andp(t) = 0 otherwise.

The additive noise is white and Gaussian and its power

density Ng is known.
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based on a nonsingleton fuzzy logic system. In Section IV, 2)
we apply our fuzzy logic classifier to MC in impulsive noise

environments. Section V concludes the paper. 3) All signal parameters, i.e., carrier frequency and ref-
erence phase, symbol epoch, and signal amplitude, are
Il. REVIEW OF PROBABILISTIC MODULATION CLASSIFICATION knovyn. . . .
_ o o - 4) Carrier frequency is a multiple of symbol rate, i.£.7°
A Maximum-Likelihood Classifier in Ideal Conditiong is an integer.

digital amplitude-phase modulation uses the amplitude ands)
phase information of a signal during time segments (symbols)
to carry information. Each modulation is associated with a g
set of points on the complex plaq&, Sz, ---, Sn} called
a constellation The information to be carried by a signal isC
first coded into a sequence of complex data, each elemg&g
of which assumes a value from the constellation; then, t
modulator maps each complex datum into one symbol length
of continuous waveform.

A modulated signal, when received through a communica-
tion channel, can be expressed as

n=—oo

k
S(t)IRﬁ{ > AS‘np(t—nT)eJ'(?ﬂfctHc)}

KT <t<(k+1)T, k=0,1,2,--- (2

where f. and 8. are the carrier frequency and phase, re-
spectively, 7 is the symbol periodp(t) is a pulse-shape

All symbols of transmitted information are independent
of each other, i.e., the sequengg, } is white.
The signal is independent of the noise.

It is shown in [1] that under these ideal conditions, a suffi-
ient statistic for MC is the output sequence of a quadrature
eiver, which is shown as part of Fig. 3. The in-phagey{
fd quadraturerg, ;) outputs are

kT
TR = / r(t) cos(2m fot + 6.) dt
(k—1)T

function (which represents the impulse response of the overgliere

signal path, including transmitter, channel, and receivdr),

is the signal amplitude, anf,, assumes a value from the/
complex numbers in the constellation of the modulation. The
constellation is usually normalized so that it has unity average .
power, i.e. > |S;|2/M = 1. Note that the key property of
this family of signals is that the instantaneous frequency does
not change within each symbol, which ensures an equivalence

AT 4
:TRQ{Sk}‘FﬂI,k 3)
kT
O K= / r(t) sin(2m fot 4 6..) dt
(k=1)T
AT A
=-— Im{Si} +ng, x (4)
kT
np k= / n(t) cos(2n f.t + 0..) dt (5)
(k—1)T
KT
no k= n(t) sin(2w fot + 6.) dt (6)
(k—1)T
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NN symbols of complex data are generated for the time intengdace. Suppose there arepossible classeg;, I, - - -, Z..
[0, NT], i.e., One way to represent a pattern classifier is in terms of a set
) of discriminant functions{g;(x), ¢ = 1, 2, ---, ¢}, where
Xk =Tk —JTQ, k x is a feature vector. The classifier assigrsto class:i
:ﬂgk + ng, k=12 - N (7) if gi(x) > g;(x), Vj # i. The feature space is therefore
2 partitioned intoc disjoint regions,I'y, I's, ---, .. These

whereny = ns i — jng, x. In this paper, we refer te(¢) regions can be representeddgharacteristic functions defined
and n(t) astime-domainsignal and noise, respectively, andn the feature space as follows:
X andny ascomplex-domairsignal and noise, respectively. ]
In a noiseless case, plqtting al), on the complex plang will pr, (x) = {17 if xe Fz i=1,2 -, c (11)
produce a pattern that is the same as a scaled version of the 0, otherwise
constellation in Fig. 2, assuming that eaghhas appeared in
the data at least once.

Denote a group o€ possible constellations by

112{51175127"'7511\41}7 lI]., 2,---,0 (8)

Using the expressions in (11), the classification resulfor
can be expressed as a fuzzy singlef§nwhose membership
function is a function ofx, i.e.,

N M1y (X) _
where M; is the number of points in constellatidh. Classi- e, (Li) = = ’ t=1-c (12)
fication within the group of constellations can be considered Zurz (%)
as a test on the following hypotheses:
H;: the underlying constellation &, I =1, 2, c. Note that for eachx there is only one value of for which

B, (Z;) is nonzero; therefore, this classification output is a
The maX|mum Ilkel|h00d classmcatlon method chooses trp%rd decision

maximized, i.e., of classesV = {Z;, I», - - -, Z.} as a universe of discourse
HY = arg max In(L(Hi| X x)) on which fuzzy sets are defined to represent the concept of
H “vague classes.”

Hy)). 9) Definition 2: A fuzzy class is a fuzzy s&& C V with fuzzy
membership function(Z), whereZ € V.

In Appendix A, it is shown that when the nois€t) is white For example,

and Gaussian, the log-likelihood function is

= arg max ln(p(Xn
H,

i G ={0.9/1,,0.2/1,, 0.1/13} (13)

1
I(H| XN 1 — X — ASu* ) - . . -
(HilXw) Z n{ Z eXp( 2 b i )} is a fuzzy-set representation of “similar to class”

= (10) Now we generalize ther.(x)'s in (11) into fuzzy mem-
bership functions, i.eur,(x) assumes a value between zero

When all constellations are equally likely, the ML criterion iand one and.r,(x) can be nonzero for multiple values of
equivalent to the maximura posteriori criterion; therefore, for the samex. This makes the classification output in (12)
the ML MC is optimal in the sense of minimum error-a nonsingleton fuzzy set; therefor8, now becomes &oft
rate. However, as pointed out in the Introduction, the idedEcision
conditions assumed by the ML MC typically do not hold in Since the classifier is now defined by the functions in
a real-world MC problem. Examples of nonideal conditionfl2), the classification problem has been translated into the
are: 1) signal parameters are unknown and 2) the noisepi®blem of approximating these functions. FLS’s can be used
non-Gaussian, e.g., is impulsive. In case 1), the MC may uag& approximators for these functions.
estimated parameters, assuming that the noise is still Gaussian
(as studied in [8]), whereas in case 2), the ML MC wilg Modulation Classification Using Fuzzy Logic
not be applicable theoretically, because the expression for th
probability density in (58) relies on the fact that the naise
is Gaussian.

e1) Architecture: Because MC can be considered as a pat-
tern classification problem, we follow the definition of fuzzy
class to introduce some basic concepts for fuzzy logic mod-
ulation classification.

Let U denote the signal space and denote the set of
all modulation types of interest. Generally, is the set of all
possible time-domain waveforms. When we focus on complex-
domain datal’ is the set of all vectors of complex data. A

Before we proceed to use fuzzy logic for modulation claguzzy modulatioris then introduced as a fuzzy class in the
sification, we explore how a typical FLS structure [9] fitauniverse of all modulations.
into a general pattern classification problem. The input to aDefinition 3: A fuzzy modulation is a fuzzy seB C U
pattern classifier is usually represented by a vector in a featwith fuzzy membership functiops(Z), whereZ € V.

Ill. A Fuzzy LoaGIC CLASSIFIER
FOR MODULATION CLASSIFICATION

A. Pattern Classification Using Fuzzy Logic
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Likelihood Function

cos(27f,4+6,) Evaluators

kT
J. dt
k-1)T
kT
J a

(k-DT

sin(27f,t+6,)

Fig. 3. Block diagram of a maximum-likelihood modulation classifier.
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Fig. 4. Architecture of an FL MC.

Definition 4: A fuzzy decision of a modulation classifier ismodel-free system. Using this information, we can set up a
a fuzzy modulation orV. basic framework for the classifier, and use available training

Although MC and pattern classification are fundamentallyata to adjust the classifier so that it fits into individual
similar, they differ in that a typical pattern classifier makeworking environments. Consequently, the resulting fuzzy logic
a decision for each vector input, whereas an MC makes otlassifier will be able to mimic the ML MC in basic structure,
decision for input data from multiple symbols. Concatenatinghich ensures that the FL MC can achieve a comparable
the data from all symbols into a single vector will not make thperformance when ideal conditions hold. In the meantime, the
two problems the same because the resulting vector is then &aMC will also be applicable to nonideal conditions because
variable dimension that changes as more symbols are availalilis much easier to heuristically describe a nonideal condition
whereas the pattern classifier input has a fixed dimensidhan model it precisely.
Consequently, we use a two-dimensional (2-D) FLS as a coreConsider the geometric formation of the complex-domain
building block that processes one input complex datum atdata. Supposg” is the true constellation; then the data points
time and produces a fuzzy output for each input, andthe should formAZ* clusters centered at the original constellation
fuzzy outputs are then combined to obtain an overall resupoints scaled by an amplitude factor. For example, Fig. 1
Fig. 4 illustrates a batch-processing architecture of our FL M&hows a 100-point Star 8-QAM data set generated at SNR
In this architecture, the FLS has the structure of a typicdP dB. Observe that the clusters form a geometric pattern that
FLS [9] less a defuzzifier; its outp®,(k =1, 2, ---, N) is res_emples Fhe cons'tellation. in Fig. 2(d). Consequently, if each
a fuzzy modulation, i.e., a fuzzy decision based on a singh@Int in Z; Is .assoua'Fed with a cluster, then, whether every
datum. The fuzzy decisions from all FLS’s are then combind@Put data point falls into at least one of tiié; clusters can
by a fuzzy intersection operation to form an overall fuzzge_useOl as an indicator of whether the true constellatidi.is
decision,Y. The defuzzifier produces a hard decision fro his observation can be described by the following linguistic
the fuzzy decision. Details about the blocks shown in Fig. #l€:
are discussed below.

2) Generating Fuzzy RulesThere are two different infor- IF every received data poirik; ) belongs
mation sources for generating rules: 1) training data and 2)
heuristic interpretations of the ML MC. We consider the latter
as more significant because we still assume that there is an
underlying probability distribution for the received signal.
Heuristic interpretations of the ML MC can help captur&ote that the clusters in the above rule do not have clear
the structural information that is difficult to extract with aboundaries; therefore, whether a data point “belongs to” a

to one or more of thé; clusters
THEN the constellation is probabl;. (14)
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Fig. 5. Two-dimensional fuzzy sets. The membership functions are defined
on the complex domain. The value of each membership function at a certain

point depends on the distance between this point and the center of the fuzzy © (d)
set.

Fig. 6. Two-dimensional membership function. (a) Gaussian kernel and
Euclidean distance. (b) Exponential kernel with Hamming distance. (c)
cluster is a vague concept. Fuzzy sets can be used to mddiehgular kernel with Hamming distance. (d) Exponential kernel with

such clusters. distance.

Now we need to develop the linguistic rule into a standard
form of fuzzy IF-THEN rules. First, thelM; clusters are is a more general form. Furthermore, the bivariate membership
modeled by M; fuzzy sets A;; each with the following functions in (15) and (16) are automatically isotropic, i.e.,

membership function: the membership functions are uniform in all directions with
di(x, s15) respect to their centers. This property is suited for MC because
Peay, (X) =1 <1—’”>, 1=1,2,---, M in most cases the distribution of the complex-domain noise is
g

isotropic. A 2-D membership function consists of two factors:
the kernel §) and the distance metric. Fig. 5 illustrates these

where ¢, (o) is an arbitrary membership functiot; (e, ¢) is UZZy Sets. . _

a distance metricx is a complex variable for the membership Ex@mple 1: Choices for kernel functions

function, s;; is the cluster center that takes into account the Triangular:

amplitude factor (i.e., if the signal amplitudéd is known, 1—|a|, if Jo| <1

thens; = ASy), ando is a parameter used to control the P(x) :{0 " otherwise (19)
dispersion of the fuzzy set. Moreover, each input datynis ’

1=1,2, -, ¢ (15)

fuzzified to form an input fuzzy setX;, with the following Gaussian: y
membership function: P(x) = exp(—x~/2) (20)
Exponential:
dQ(Xv Xk)
px, (X) = ¢2 <T>7 k=1,2,---,N (16) P(x) = exp(—|z|). (21)

where ¢,(e) is an arbitrary membership functiod (e, ) is Choices for distance metrics
a'distar]ce metric, and is a scale factor used to control the g\ clidean:
dispersion of the fuzzy set.

_ _ 2 - 211/2
Note that unlike a typical FLS, where fuzzy sets are defined . d(x, y) =[(z1 = 11)" + (22 — y2)°] (22)
and tuned on one-dimensional spaces, we use 2-D fuzzy setslamming:
here. To examine their difference, consider the following rules: d(x,y) =|z1 — y1| + |v2 — v2| (23)
RW: IFu is Fy andus is F, THENvis G (17) L
R®: IFwis E; THEN v is G (18) d(x, y) =[(z1 — y1)? + (22 — 12)?]"/?

. > 0. 24
whereuy, us are scalars, andg is 2-D. If we letE; = F} x 5, P 24)

i.e., g, (X) = pp (1) * pp, (22), [x = (21, 2)], then RY  The combination of the membership functions and distant
andR? are the same fuzzy implication. On the other hand, iibetrics lead to a large variety of 2-D membership functions.
is not always possible to decompose a bivariate membersBipme examples of these are depicted in Fig. 6. O
function into at-norm combination of two univariate func- In our FL MC, fuzzy sets4,, model the additive noise,
tions; therefore, a fuzzy IF-THEN rule using 2-D fuzzy setwhich is the major cause for why the received data forms
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clusters around the constellation points; therefore, the selectldnder the assumption that there is no preference for any
of ¢1(e) and o should be based on the type of the noismodulation type and for any point within a constellation, the
and the signal-to-noise ratio, respectively. Fuzzy s&s following is a choice for the weights that satisfies the above
play an auxiliary role in modeling the uncertainties thabrinciples:

are normally not accounted for by thé;;’s. Examples of )

these uncertainties are: 1) non-Gaussian noise distribution that % = 1/My, i=le, Mpi=1,-5c (29)
cannot be well modeled with a typical membership functiolqence, we have (see Fig. 4)

and 2) inaccurate constellation points caused by imperfect
modulators/demodulators, time-variant signal power, phase

c M,
1
drift, etc. Consequently, selection ¢f(e) is highly dependent O« (1) = Z Z M, S‘j{p(“Xk () * pras -, (%, 1)),

on individual applications. =1 i=1
individual applicati o . . k=12 .- N (30)
We can now translate the linguistic rule in (14) into the
following fuzzy rules: 4) Combining FLS OutputsEach Oy, represents a highly
‘ uncertain decision because it is based on only one datum.
R®: |F X is Ay, THENY is B, Now we use fuzzy intersection to combine A0y, to obtain

i=1,-, M,l=1 -, ¢ (25) an overall outputY, i.e.,
13 (D) =0y (D) % 10, (D) %+ = oy (D),

whereX is a fuzzy variable on the complex plaiéjs a fuzzy 1=1.2 . ¢ (31)
decision, andB; is a fuzzy modulation that is the fuzzy-set T
representation of “probabl{;.” This is a soft decision for MC. A hard decision can be found

3) Fuzzy InferenceWhen the rules in (25) are activated byoy a maximum defuzzifier, i.e.,
an inputX = Xy, the output of the rule represents the contri-
bution of datumx;, to the whole system and the classification

decision will be based on the overall contributions from all . the f f tellation ind
data points (i.e.k = 1,2, ---, N). or in the form of constellation index

I = arg max pyv () (32)

Denote the response oR‘) to X; as Oy, @ = I* = arg max py(Ty). (33)
1,2, ---, M;. The membership functions @ ; are given !
by compositional fuzzy inference as: Fig. 7 depicts a flow chart of our fuzzy logic classifier.
Because the input is not a singleton, we are actually using a
pioy; (T) = sup pux, (X) * pay, -5, (%, I), 1=1,2,---,¢c nonsingleton fuzzy logic system [11]; therefore, we call our FL

classifier a nonsingleton FL classifier (NSFLC). Nonsingleton
k=1,2,---,N,i=1,2---, M (26) FLS has not been widely used because the supremum in (26)
does not generally have a closed-form expression; however, it
wherex is at norm. The[[;_, M, outputs are then combinedis shown [11] that this supremum is solvable in some special
to form an overall outpu;, cases.
Example 2: Let all membership functions be Gaussian, i.e.,
c M;

T
1o, (1) = @ @ sup(px, (X) * pa,—5, (%, 1)) px, (X) = exp <—%), k=1,2,---, N (34)
=1 i=1 *
= S _ g2
k=1,2,---, N (27) foa,, (%) = exp<—|x2752h|>, i=1,2 -, M (35)
o

where is usually at conorm (e.g., the maximum operatonang letx = z1 + jxa, X = Tt + jTx2, aNdsy = s + jsia.
inan FLS or it can be a weighted average in an additive Flg% each data point, i is the arithmetic product and product

[10]. In our FL MC, we use a weighted average, i.e., inference is used, then
c M HOy; & (I)
Ho,, (I) = Z Z W4 SUP(NXk (X) * HA;— B (X7 I)) (28) = sup px, (X)NA” (X)NBZ (I)
=1 i=1 x x
(21 —a11)? + (352—3%2)2)
) = 7) sup |exp|—
wherew;; € [0, 1] is a weight factor associated with ruf®). ol )xl,gz [ p< 20
Because the fuzzy rules come from heuristic interpretations (21 — 5i1)% + (22 — 842)?
of the data formation for each modulation type, we use the X expl = 252
following principles in determininguy;. (z1—231)? (21 —si1)?
1) The total weight of each constellation is based on the = 15, (Z) sup eXP{‘( 202 20—; )}

preference of the modulation type. ) )
2) Within each constellation, the weight reflects the prefer- X sup exp{_ <(“72_“72k2) + (“72_5;2) )} (36)
ence of each constellation point. @3 2 20
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Fig. 7. Flow chart of NSFLC.

According to [11], the supremum is reached at

" 02xk1 + OéQSil

X =
1 a2 + o2
and
2 2
.T*_O— Tp2 + S50
2 o? 4 o2

By substitutingz} and 3} into (36), we obtain

vou (@) = (D) exp(—

x5 — s
2 +02) )"

(37)

(38)

(39)

339

Hence, from (30) and (31) the overall inferred result is

-8 o)

k=1 \i=1 =1
c M,
T3S o ()
l 2 2 )
k=1 \il=1 =1 M 2(06 +0)
(40)

Unfortunately, Gaussian membership functions will not be
adequate for all situations. Consider a new FLS in which
we use a singleton fuzzifier and use the same Gaussian
membership functions for the antecedent fuzzy sets as in our
NSFLC except that is replaced withy/c2 + 2. It is easy to
see that this new FLS is equivalent to the FLS in our NSFLC;
in other words, our NSFLC reduces to a singleton FL MC. This
reduces the capability of the NSFLC to model complex types
of noise such as a mixture of Gaussian and impulsive noises.
On the other hand, (40) reveals an important relation between
the NSFLC and the ML MC as we explain in Section IlI-C.

Example 3: Let 4, (x) be Gaussian, as in (35) and,
be exponential with Hamming distance, i.e.,

_ |71 — 24| |2 — @2l
HXx (X) =—exp|l ————Jexp| ———
o o

k=1,2,--, N (41)

wherez; andz- are the real and imaginary partefLemma 1

in Appendix B shows that the supremum in (27) has a closed-
form expression if is product. This result will be used when
we apply our NSFLC in impulsive noise environments.

C. Relation Between FL and ML Classifiers

Supposear = 0, ¢ = 1, sy = ASy, and pp,(Z
(5k(I—Il), Whereék(I—Il) =1ifZT=1 andék(I—Il)
otherwise. Then, from (32) and (40) we see that

N M,
« X 1 |Xk — ASl7‘,|2
A arg InIaX kl;[l {M E exp<—f

L
(42)
Because logarithm is a monotonic function, we can take the
logarithm of the right-hand side of (42); therefore

N
I* = arg max Z ln{
k=1
(43)

):
=0,

M, 2
1 [xr — ASi]
M; Z eXp<_f

i=1

By comparing (43) with the combination of (9) and (10), we
see that the FL and MC classifiers give the same hard decision.
Consequently, we have the following.

Theorem 1: The FL classifier reduces to the ML classifier
if «, o, sy, and B, are properly selected. O

This is important, because it guarantees that the NSFLC can
match the performance of the ML MC when ideal conditions
hold.

Compared to the ML MC, the FL classifier has much
more flexibility, because it is not dependent on armpriori
probability model, i.e., it is heuristic. We are free to choose
membership functions, norms, andt conorms to make the
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classifier adapt to different nonideal environments. Of courdenction. The density function in (46) can be expressed as a

the disadvantage of a heuristic method is also obvious—thgm@wer series by using polar coordinates [12].

is no analytical guarantee of good performance except forAlthough aS«.S density behaves approximately the same as

the above special case. The only way we can evaluate th&aussian density near the origin, its tails decay at a lower rate

performance is through simulations. In the following sectiothan the Gaussian tails. The smaller the characteristic exponent

we apply our FL classifier in an impulsive noise environment is the heavier the tails of th8«.S density.

and compare its performance against the ML classifier. An important property of theS«S distributions is that
only moments of an order less than exist for the non-

IV. UsING NSFLCIN IMPULSIVE NOISE ENVIRONMENTS ~ Gaussian members. This means that all non-GausSiaf

distributions have infinite variances. In other words, a tde

A. Impulsive Noise stable random sequence carries infinite energy. In this paper,

. . L we consider a milder impulsive environment, one in which the
It is known that in communication channels there often

. ) ) o . . nPise is modeled as a Gaussian noise plus a small percentage
exists non-Gaussian noise, which is typically some kind Qf;

) . . ; T f impulsive noise.
impulsive noise. In the literaturey-stable distributions [12] of IMpUISIVE NoIse s :

. : . . Because the two components of a bivariate isotropic random
have been widely used to model such impulsive noise.

First, we introduce the basic probability model for impulyeCtor are not independent, we need a special model to

. . . o . 0 g((]anerate isotropic noises in our simulations. We will use an
sive noises. Time-domain impulsive noise is usually model ihtropic SeS random number generator described in [13]
by one-dimensional symmetrig-stable (denoted by5«.S) P 9 '

distributions [12] with characteristic function in the form
o(w) = exp(jaw — vw|®) (44) B. Performance Degradation of ML MC in Impulsive Noise

In practical applications, the actual nature of the impulsive
noise is usually unknown, so it is impossible to use a rigorous

location parameter. The location parametecorresponds to probabilistic method. A commonly used way for dealing
P ' P P with an unknown probability density function (pdf) is to

the median of the distribution. The dispersion parameter retend that it is Gaussian and, therefore, only first- and

determines the spread of the distribution around its location ;
e . . - .. second-order moments need to be estimated. Unfortunately,
parameter, similar to the variance of the Gaussian distributign

The distribution in (44) is callestandardif ¢ — 0 andy — 1. CeCRUSe impulsive noise has infinite second-order moments, it
is, imaginable that this naive method will lead to poor results.

Unfortunately, no closed-form expression exists for genergl iol dv is t the | | in th :

SaS probability distribution functions other than Cauch){ possible remedy Is 1o suppress the Impuises in the noise so

(a« = 1) and Gaussiana( = 2). In general, the density of hat the noise is reasonably closg to being Gausgan. Thls_ can

a standardSas is given by ' be done by preprocessing the noise samples using a nonlinear
function. In the following, we use an example to show the

( X (—1)k1 results for both methods.
Ly~ U7 pak 4 1)t <km> y

where0 < « < 2 is the characteristic exponent, > 0 is
the dispersion of the distribution, andx < a < oo is the

S

T k! Because the noise is a mixture of impulsive and Gaussian

kIfO ca<l noise, we will no longer be able to use the noise power for

1 the definition of SNR. In our discussion, we use the signal-to-

- Ifa=1 Gaussian-noise ratio (this will be referred to as SNR later) in

fo= m(1+ %) conjunction with the percentage of impulsive noise to describe
@ 1 &N (—1)kt 2%k +1\ the real S_NR. The pgrcent.age of imp_ulsive.noise.is defined
P Z o < o )95 ) as the ratio of the dispersion of the impulsive noise to the

standard deviation of the Gaussian noise (multiplied by 100).
Note that this percentage of impulsive noise does not represent
1 < x2> B a typical ratio of impulsive noise amplitude to Gaussian noise
—— exp| —— |, Ifa=2 .
L 2V 4 amplitude.
(45)  We conducted simulations to study the effect of impulsive
When the noise isSaS, the equivalent noise output ofnoise on ML MC in which the ML MC was assumed to have
the quadrature receiver, i.e., the complex-domain noise, hg$ knowledge of the actual pdf of the noise; it treated the
a bivariate isotropie-stable distribution, which has a characnpise as Gaussian and used the maximum-likelihood method
teristic function of the form to estimate the variance of the noise. The latter was done
_ : _ 2 2\a/2 using a set of noise training samples that contain pure noise. In
lwr, wz) = exp(j(awn + azwz) — (o] +w3)*/?). (46) reality, such data may be obtained from measurements of noise
Again, « and~ are the characteristic exponent and the disperhen the channel is silent. The following three modulations
sion, respectively, and; anda, are the location parameterswere used: 16-QAM, V.29, and 32-QAM. The SNR is 10 dB.
Note that the marginal distributions of the isotropic stable di&ive hundred symbols of noise were used for training and 100
tribution areS«.S with parameterga;, v, «) and(az, v, «). symbols were used for classification.
As in the case of univariat§ «S, no closed-form expression The impulsive noise suppressor we used is the following
exists for the density function of the bivariatevS density zero-memory-nonlinearity (ZMNL), which was suggested by

fl<a<?2
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Fig. 8. Performance of ML MC for 16-QAM/V.29/32-QAM classification in a mixture of Gaussian and impulsive noises. Solid: ML MC using a naive
ML estimate of noise standard deviation; dash dot: ML MC with ZMNL.

Ljung [14], and was used in [15] and [16] for handlingC. Performance of NSFLC in Impulsive Noise

impulsive noise. This ZMNL is Recall that the NSFLC can handle two kinds of uncertain-

—§ exp(—(u+6)2/20%) u< =6 ties. Here we utilize this property to model the structure of
du) =< u lu| < 6 (47) the additive noise; i.e., we use the fuzzifier to model the
8 exp(—(u — 8)2/202)  w>6 uncertainty caused by impulsive noise, and the antecedent

. . . . o fuzzy sets to model the uncertainty of the Gaussian noise.
In "Yh'Ch o is a tuning parameter that we arbitrarily set equalyeifically, we use a Gaussian kernel with Euclidean distance
to &n where for the antecedent fuzzy sets and use an exponential kernel

on =5/V0.7 (48) with Hamming distance for the fuzzifier, i.e.,
7 =mediaf |« — media{«}|} (49) |x — s 2

NAzi(x):eXp<_721>’ i=1,2 -, M (51)

and 2ox

. and
§=36n. (50) |21 — zp1] |22 — zaal
. . o opx(x)=exp|—— Jexp| —— ),
The outputs of this ZMNL were used to estimate the variance i i
of the noise (the maximume-likelihood estimate of the variance k=1,2,---, N. (52)

for a zero-mean Gaussian distribution is the sample average ] ]
of signal power), which, in turn, was used by the Gaussizﬁpe reason why we chose the exponential membership func-
distribution-based ML MC. tion for px, (x) is that it has a heavy tail that mimics the
Fig. 8 depicts the classification results for various percerfté@vy tail in the pdf of impulsive noise. Fuzzy st is used
ages of Cauchy noise. The results were obtained from 10@paccount for the Gaussian noise; therefore, we use Gaussian
Monte Carlo simulations for each percentage of Cauchy noignctions for its membership functions. As a result, from (30),
Observe that even a small amount of Cauchy noise can lead§ FLS output forx, is
disastrous results for the naive ML MC (solid curve) and that a e M
bo_ost in performancg is obtaineq_b_y using the ZMNL impulse 1o (I) = Z — sup
noise suppressor without sacrificing performance when no =i M o,
impulsive noise is present. However, in spite of this improve- o [_<|$1 —am| (@1 — Sm)gﬂ

1

ment, the performance still degrades rapidly as the percentage
of Cauchy noise increases. In the next section, we develop
a new MC that is based on FL and demonstrate significantly X sup exp [_<M
improved performance for it. zz @

o 202
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+ (@2 — Sli2)2>:|ﬂB ) and postprocessed training data will be very close. In this
202 B case, (54) and (55) give] = x; and x5 = x40; therefore,
1=1,2,--,¢, k=1,2,---, N the effects of the exponential membership function in (53) are
i=1,2, -, M, (53) nullified. Consequently, the results for the NSFLC and ML
MC are about the same.
From Lemma 1 in Appendix B, the supremum is at Experiments: Three modulations were used in our simula-
. o2 o2 tions: V.29, 16-QAM, and 32-QAM. We used 500 symbols
Spi1 — —, i mpy < sy — — of noise for training, SNR (Gaussian noise) ranging from 6
. % “ g4 0 14 dB in 2-dB step size and Cauchy noise ranging from
= sl + 0_7 if 2r1 > su1+ 7 (54) 0% to 5%. For each SNR and Cauchy-noise percentage, 1000
@ . @ Monte Carlo simulations were run for each of the three signal
\ Tk, otherwise types. Fig. 9 compares the percentage of correct classification,
( o2 o2 averaged over the three signal types, of the NSFLC and the
Stz = if Tro < sp2 — o ML MC. Note that the plots for SNR= 10 dB compare the
z = o2 o2 (55) result of NSFLC with those shown in Fig. 8. Observe that
Sti2 + o if zx2 > su2 + o the NSFLC performs consistently better than the ML MC.
| 240, otherwise The more |mpyIS|ve noise that is present, the larger is the
performance difference.
where the ranges of &, and! are as in (53). The experiments demonstrate that the NSFLC is more
The values ofo and « are determined by analyzing therobust in impulsive noise environments than the ML MC
training set of noiset™ = {t,, n = 1,2,---, K}. As in wijth ZMNL. Moreover, this is accomplished without using

Section IV-B, we use a ZMNL to process the training data ¢f priori information on the statistics of the impulsive noise, or
pure noise in order to have more stable values-fanda. The  knowing in advance whether or not impulsive noise is present.
following training procedure is proposed for the calculation ofhe experiments demonstrate that our NSFLC is capable of
o and a. dealing with complicated noise environments by using vague
1) Form a2K-dimensional vector by concatenating the reahformation (i.e., the noise is impulsive), something that is

and imaginary parts of th& complex training data. This difficult to do using probabilistic methods.

vector will be used as if it were a sample population

of a one-dimensional distribution. Calculate its standard

deviation denoted byD;. V. CONCLUSIONS
2) Usethe ZMNL, as described in Section IV-B, to produce we have developed a fuzzy logic modulation classifier that
a new training se{t;,, n =1, 2, ---, 2K}. works in nonideal environments in which it is difficult or
3) Calculate the standard deviation of the new training sghpossible to use precise probabilistic methods. We began
and use this value as. by transforming a general pattern classification problem into
4) Computec, as one of function approximation, so that FLS’s can be used to
2K construct a classifier. After introducing the concepts of fuzzy
Z ] modulation type and fuzzy decision, we set up an architecture
o = min | D} -0 5 (56) for an NSFLC by using an additive nonsingleton FLS as a
2 7 2K ’ core building block. Our NSFLC uses 2-D fuzzy sets that are

defined on the complex domain whose membership functions

are isotropic so that they are well suited for MC.
Equation (56) comes from a heuristic decomposition of the We have discovered an important property of our NSFLC,
noise mixture. The first term in thenin function is an i.e., it reduces to the ML MC when relevant parameters
attempt to estimate the parameter of an exponential distributiare properly selected. Specifically, when the ideal conditions
by using second-order moments. Note that, if the noise hsld, the known parameters can be used in our NSFLC and
a mixture of independent Gaussian and exponential noisdsjng this makes our NSFLC the same as the ML MC. This
whereo? is the variance of the Gaussian noise, tigh— o2 guarantees that the NSFLC can match the performance of ML
is the variance of the exponential noise portion. Of course, tMC when ideal conditions hold. It is interesting to note that our
noise we are considering is impulsive rather than exponentiBISFLC is not constructed using a probability model; instead,
so there is no guarantee that this estimate is the best. This constructed using heuristic interpretations of the clustering
second term in thenin function limits the value ofx to a formation of complex-domain data.
reasonable level, because the first term can become infinitelfCompared to the ML MC, the FL classifier has much more
large for an impulsive noise. flexibility because it is not dependent onapriori probability

Note that the NSFLC has a built-in mechanism to guarante®del, i.e., it is heuristic. We are free to choose membership

that it works virtually the same as the ML MC (with ZMNL) functionst norms andt conorms to make the classifier adapt
when no impulsive noise is present. Specifically, it can be seendifferent nonideal environments.
from (56), thata will be very small if no impulsive noise is  One situation that we have identified as not appropriate for
present because the standard deviations of the preprocesssdg the ML MC is when impulsive noise is present. We
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Fig. 9. Performance of ML MC and NSFLC for 16-QAM/V.29/32-QAM classification in a mixture of Gaussian and impulsive noises. Number of symbols
= 100. Solid: NSFLC; dash: ML MC.

examined the behavior of the maximum-likelihood modulation Using the total probability formula, we have
classifier in a mixture of Gaussian and impulsive noises, and M,
found that the naive way of treating the noise as Gaussian _ ‘ ‘
led to severe degradation in performance. This problem could ploculHi) = 3 P(SulTp(oeel ) ®7)
be alleviated by using a zero-memory nonlinear system to ) o N )
preprocess the training set of noisy data; but there was sfiiereP(5;|1Z;) is thea priori probability of Sy; in Z;. From
significant degradation in performance. We applied our fuz4y), We have
logic classifier to this situation and found that our NSFLC 1 1 )
performed consistently better than the ML MC, and it gave P(Xx|Su) = ANoT eXP(‘m % — ATS50 /2| ) (58)
the same performance as the ML MC when no impulsive noise
was present. It did this without using aaypriori information Assuming that the data from different symbols are indepen-
about whether impulsive noise was or was not present. @§nt, then the likelihood function is
addition, the performance differences between the NSFLC and N
the ML MC widened as the percentage of impulsive noise L(H;|Xy)= H p(x|Hy)
k=1

i=1

increased.

The major drawback to the NSFLC is that no performance 1 N M,
analysis exists for it; however, the same is true for an ML MC = NN H {P(SML) Z
in a non-Gaussian noise environment. (mNoT') k=1 i=1

Finally, we wish to note that this is only one example of an 1
application of our NSFLC, and that the general form of the eXp(—ﬁ %z — ATSH,/2|2> } (59)
NSFLC can lead to many variations, if heuristic information 0
for other applications guides us to select different membershigfine SNR as
functions,t norms, andt conorms for the NSFLC.

AT
SNR= ——. 60
5No (60)
APPENDIX A It can be shown (e.g., [1]) that the likelihood function depends
DERIVATION OF LOG-LIKELIHOOD FUNCTION only on SNR instead afi, Ny, and?” individually. To simplify

Usi h . hat th ise is G . d hIhe notation, we letl’ = 2 and Ny = 1 and use onlyA
sing the assumption that the noise Is Gaussian and w 'represent SNR. As a result, the log-likelihood function

it can easily be shown that; . andn, ) are zero-mean white |\«
Gaussian sequences each with variance equalytb/2 and
that they are mutually independent. I(Hi| X n)
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M 9 [6] , “Automatic modulation classification using zero crossirigdc.
= Z ln < P(Su|Zi) Z exp(—% |x — ASy| ) . (61) Inst. Elect. Eng.vol. 137, no. 6, pp. 459-464, Dec. 1990.
i—1 [7] S. Soliman and S.-Z. Hsue, “Signal classification using statistical
moments,”IEEE Trans. Communvol. 40, pp. 908-916, May 1992.
It is common sense that all points in a constellation should bl W. Wei, “Classification of digital modulations using constellation an-

. alyzes,” Ph.D. dissertation, Univ. Southern California, Los Angeles,
used equally, i.e.P(Sy;|Z;) = 1/M;; hence, we then arrive at 1908,

the expression fot( H;|Xn) in (10). [9] J. Mendel, “Fuzzy logic systems for engineering: A tutorialtoc.
IEEE, vol. 83, pp. 345-377, Mar. 1995.
[10] B. Kosko, Neural Network And Fuzzy Systems, A Dynamical Systems

APPENDIX B Approach to Machine Intelligence.Englewood Cliffs, NJ: Prentice-
‘The f ; Hall, 1992.
Lemma 1: The function [11] G. Mouzouris and J. Mendel, “Non-singleton fuzzy logic systems:
2 Theory and application,IEEE Trans. Fuzzy Systvol. 5, pp. 56-71,
|z —t1] | (z—t2) Feb. 1997
f(z)=exp|— + (62) en. 1997. . . ) -
« 202 [12] C. Nikias and M. ShaoSignal Processing with Alpha-Stable Distribu-

tions and Applications. New York: Wiley, 1995.
reaches its maximum at [13] X.Maand C. Nikias, “Parameter estimation and blind channel identifica-
9 9 tion in impulsive signal environments|EEE Trans. Signal Processing,
o — o if £, <ty — - vol. 43, pp. 2884-2897, Dec. 1995.
2 a 1 2 o [14] L.Ljung, System Identification: Theory for the UserEnglewood Cliffs,
NJ: Prentice-Hall, 1987.

*
T = . o? it 4>t o? (63) [15] B. Sadler, “Detection in correlated impulsive noise using fourth-order
2+ o 1 2 + o cumulants,”IEEE Trans. Signal Processingpol. 44, pp. 2793-2800,
Nov. 1996.

t1 otherwise. [16] A. Swami, “Tde, doa, and related parameter estimation problems in

impulsive noise,” inHigher Order Statistics: IEEE Signal Processing

Proof: Suppose; < t,. It is easy to see [from a sketch WorkshopBanff. Canada, July 1997, pp. 273-279.

of the two components of (x)] that the supremum has to
occur at a pointt* € [t1, t=]. Whenz > ¢, the derivative

of f(z) is
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o2
f(z)= —% <a: —t2 + ;)f(a:) (64)

Since f(x) is always positive,f’(x) is negative whenr >
ta — (o /o), and positive whem < t, — (a?/o); therefore, if
to—(a?/o) fallsin [ty, to], i.e., ift; < t2—(a?/0), thenf(x)
reaches its maximum at = t, — («?/o). On the other hand,
if t1 > t2 — (a?/o), then f/(z) is always negative ofty, t2],
which means thatf(z) is decreasing ort;, 3]; therefore,
f(z) is maximum atx = ¢;.

The result for the case wheh > ¢, can be obtained
similarly.
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