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Abstract

Fuzziness (entropy) is a commonly used measure of uncertainty for type-1 fuzzy sets. For interval type-2 fuzzy sets (IT2
FSs), centroid, cardinality, fuzziness, variance and skewness are all measures of uncertainties. The centroid of an IT2 FS
has been defined by Karnik and Mendel. In this paper, the other four concepts are defined. All definitions use a Repre-
sentation Theorem for IT2 FSs. Formulas for computing the cardinality, fuzziness, variance and skewness of an IT2
FS are derived. These definitions should be useful in IT2 fuzzy logic systems design using the principles of uncertainty,
and in measuring the similarity between two IT2 FSs.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As pointed out by Zadeh [87], ‘‘uncertainty is an attribute of information’’. He proposed to use the general-
ized theory of uncertainty (GTU) to handle it. ‘‘In GTU, uncertainty is linked to information through the con-

cept of granular structure – a concept which plays a key role in human interaction with the real world

[26,78,86] . . . Informally, a granule of a variable X is a clump of values of X which are drawn together by indis-

tinguishability, equivalence, similarity, proximity or functionality. For example, an interval is a granule. So is a

fuzzy interval . . .’’
To use fuzzy sets (FSs) as granules in GTU, there is a need to quantify the uncertainty associated with

them. Klir [33] states that ‘‘once uncertainty (and information) measures become well justified, they can very

effectively be utilized for managing uncertainty and the associated information. For example, they can be utilized

for extrapolating evidence, assessing the strength of relationship between given groups of variables, assessing the

influence of given input variables on given output variables, measuring the loss of information when a system is

simplified, and the like’’.
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Three basic principles of uncertainty have been developed to guide the use of uncertainty measures in dif-
ferent situations [33,25]:

(1) The principle of minimum uncertainty, which states that solutions with the least loss of information
should be selected, can be used in simplification and conflict resolution problems.

(2) The principle of maximum uncertainty, which states that a conclusion should maximize the relevant
uncertainty within constraints given by the verified premises, is widely used within classical probability
framework [14,15,56].

(3) The principle of uncertainty invariance, which states that the amount of uncertainty should be preserved
in each transformation of uncertainty from one mathematical framework to another, is widely studied in
the context of probability–possibility transformations [21,32,35,65].

However, as pointed out by Cross and Sudkamp [17], ‘‘the quantification of the degree of uncertainty in a FS

depends upon the type of uncertainty one is trying to measure and on the particular measure selected for that type

of uncertainty’’. Many uncertainty measures of type-1 (T1) FSs have been proposed. Among them, fuzziness

(entropy) [17,34] is frequently used, and it will be studied in this paper.
In addition to fuzziness, centroid, cardinality, variance and skewness are also important characteristics of T1

FSs. For example, Dubois and Prade [19] point out that ‘‘cardinality is a natural tool for capturing the meaning

of linguistic quantifiers [80–85,77] and to provide satisfactory answers to queries pertaining to quantification, of

the form ‘How many X’s are A’ , ‘Are there more X’s which are A than X’s which are B,’ etc’’. These queries [74]
‘‘occur in computing with words, communication with data bases and information/intelligent systems, modeling

the meaning of imprecise quantifiers in natural language statements, decision-making in a fuzzy environment,

analysis of grey-tone images, clustering, etc’’. These four characteristics can also be used to measure the dis-
tance or similarity between two T1 FSs. For example, Wenstøp [64] uses the centroid and the cardinality of
T1 FSs to measure their distance. This enables one FS to be found from a group of T1 FSs Bi

ði ¼ 1; . . . ;NÞ that most resembles a target T1 FS A. Bonissone [6,7] uses a two-step approach to solve the
same problem. In his first step, four measures – centroid, cardinality, fuzziness and skewness – are used to
identify several FSs from the N Bi which are close to A.

Recently, there has been a growing interest in type-2 (T2) fuzzy set and system theory [79,46,47]. The mem-
bership grades of a T2 FS are T1 FSs in ½0; 1� instead of crisp numbers. Since the boundaries of T2 FSs are
blurred, they are especially useful in circumstances where it is difficult to determine an exact membership grade
[46]. To date, interval T2 (IT2) FSs are the most widely used T2 FSs, and have been used successfully for deci-
sion making [76,55,59,66], time-series forecasting [46,4], survey processing [46,3,42], document retrieval [8],
speech recognition [88,45], noise cancellation [12,54], word modeling [50,72,42], clustering [57], control
[71,70,38,24,13,43,20,41,58,11,44,1], wireless communication [40,60], webshopping [23], linguistic summariza-
tion of database [53,52], etc.

Though the above applications have demonstrated that IT2 FSs are better at modeling uncertainties than
T1 FSs, uncertainty measures for IT2 FSs have not been extensively studied. Centroid, cardinality, fuzziness,
variance and skewness are all uncertainty measures for IT2 FSs because each of them is an interval (see Sec-
tion 3), and the length of the interval is an indicator of uncertainty, i.e. the larger (smaller) the interval, the
more (less) the uncertainty. Once these uncertainty measures are defined for IT2 FSs, their applications in
T1 FSs can be extended to IT2 FSs, e.g. the centroid and cardinality of IT2 FSs have been used in [69] to define
a vector similarity measure for IT2 FSs.

The centroid of an IT2 FS has been well-defined and studied by Karnik and Mendel [28]. Because the
centroid of an IT2 FS has no closed-form solution, they developed iterative algorithms, now called Kar-
nik–Mendel (KM) Algorithms, to compute it. The cardinality of an IT2 FS was introduced in [69]. For com-
pleteness, the centroid and cardinality are again introduced in this paper. Additionally, the other three
uncertainty measures of IT2 FSs – fuzziness, variance and skewness – are defined and shown how to be
computed.

The rest of this paper is organized as follows: Section 2 provides background material. Section 3 gives def-
initions of centroid, cardinality, fuzziness, variance and skewness for IT2 FSs, and explains how to compute
them. Section 4 draws conclusions. The KM Algorithms are given in the Appendix.



Fig. 1. An IT2 FS. Ae is an embedded T1 FS.

5380 D. Wu, J.M. Mendel / Information Sciences 177 (2007) 5378–5393
2. Background

2.1. Interval type-2 fuzzy sets (IT2 FSs)

An IT2 FS, eA, is to-date the most widely used kind of T2 FS, and is the only kind of T2 FS that is con-
sidered in this paper. It is described as1
1 Th
eA ¼ Z
x2X

Z
u2Jx

1=ðx; uÞ ¼
Z

x2X

Z
u2Jx

1=u
� ��

x; ð1Þ
where x is the primary variable, Jx, an interval in ½0; 1�, is the primary membership of x, u is the secondary var-

iable, and
R

u2Jx
1=u is the secondary membership function (MF) at x. Note that (1) means: eA : X !

f½a; b� : 0 6 a 6 b 6 1g. Uncertainty about eA is conveyed by the union of all of the primary memberships,
called the footprint of uncertainty of eA [FOUðeAÞ], i.e.
FOUðeAÞ ¼[
x2X

J x: ð2Þ
An IT2 FS is shown in Fig. 1. The FOU is shown as the shaded region. It is bounded by an upper MF (UMF)
l~AðxÞ and a lower MF (LMF) l~AðxÞ, both of which are T1 FSs; consequently, the membership grade of each
element of an IT2 FS is an interval ½l~AðxÞ; l~AðxÞ�.

Note that an IT2 FS can also be represented as
eA ¼ 1=FOUðeAÞ ð3Þ

with the understanding that this means putting a secondary grade of 1 at all points of FOUðeAÞ.

For discrete universes of discourse X ¼ fx1; x2; . . . ; xNg and discrete Jx, an embedded T1 FS Ae has N ele-
ments, one each from J x1

; J x2
; . . . ; J xN , namely u1; u2; . . . ; uN , i.e.
Ae ¼
XN

i¼1

ui=xi ui 2 J xi � ½0; 1�: ð4Þ
Examples of Ae are l~AðxÞ and l~AðxÞ; see, also Fig. 1. Note that if each J xi is discretized into Mi levels, there will
be a total of nAAe, where
nA ¼
YN
i¼1

Mi: ð5Þ
2.2. Representation theorem

Mendel and John [49] have presented a Representation Theorem for a general T2 FS, which when special-
ized to an IT2 FS can be expressed as:
is background material is taken from [48]. See also [46].
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Representation Theorem for an IT2 FS: Assume that primary variable x of an IT2 FS eA is sampled at N

values, x1; x2; . . . ; xN , and at each of these values its primary memberships ui are sampled at Mi values,
ui1; ui2; . . . ; uiMi . Let Aj

e denote the jth embedded T1 FS for eA. Then eA is represented by (3), in which2
2 Alt
Doing

3 Th
cardin
FOUðeAÞ ¼[nA

j¼1

Aj
e ¼

[
x2X

fl~AðxÞ; . . . ; l~AðxÞg �
[
x2X

½l~AðxÞ; l~AðxÞ�: ð6Þ
This representation of an IT2 FS, in terms of simple T1 FSs, the embedded T1 FSs, is very useful for deriving
theoretical results; however, it is not recommended for computational purposes, because it would require the
enumeration of the nA embedded T1 FSs and nA (given in (5)) can be astronomical. The Representation The-
orem will be used heavily in defining the centroid, cardinality, fuzziness, variance and skewness of IT2 FSs.

3. Uncertainty measures for IT2 FSs

In this section T1 FS definitions of cardinality, fuzziness, variance and skewness are extended to IT2 FSs.3

Because defining the variance and skewness of an IT2 FS uses its centroid, the definition of the centroid of an
IT2 FS is reviewed first. Additionally, because discrete versions of these definitions are more frequently used in
practice, and one can easily deduce the corresponding continuous versions of these definitions from the dis-
crete versions, only discrete cases are considered in this paper.

As stated in Section 1, centroid, cardinality, fuzziness, variance and skewness are uncertainty measures for
IT2 FSs because each of them is an interval, and the length of the interval is an indicator of uncertainty.

3.1. Centroid of an IT2 FS

The centroid cðAÞ of the T1 FS A is defined as
cðAÞ ¼
PN

i¼1xilAðxiÞPN
i¼1lAðxiÞ

: ð7Þ
Definition 1. The centroid C~A of an IT2 FS eA is the union of the centroids of all its embedded T1 FSs Ae, i.e.,
C~A �
[
8Ae

cðAeÞ ¼ ½clðeAÞ; crðeAÞ�; ð8Þ
where
S

is the union operation, and
clð~AÞ ¼ min
8Ae

cðAeÞ; ð9Þ

crð~AÞ ¼ max
8Ae

cðAeÞ: ð10Þ
It has been shown [28,46,51] that clð~AÞ and crð~AÞ can be expressed as
clð~AÞ ¼
PL

i¼1xil~AðxiÞ þ
PN

i¼Lþ1xil~AðxiÞPL
i¼1l~AðxiÞ þ

PN
i¼Lþ1l~AðxiÞ

; ð11Þ

crð~AÞ ¼
PR

i¼1xil~AðxiÞ þ
PN

i¼Rþ1xil~AðxiÞPR
i¼1l~AðxiÞ þ

PN
i¼Rþ1l~AðxiÞ

: ð12Þ
Switch points xL and xR, as well as clðeAÞ and crðeAÞ, are computed by using the iterative KM Algorithms [46,28]
given in the Appendix.
hough there are a finite number of embedded T1 FSs, it is customary to represent FOUðeAÞ as an interval set ½l~AðxÞ;l~AðxÞ� at each x.
this is equivalent to discretizing with infinitesimally many small values and letting the discretizations approach zero.

e centroid of an IT2 FS has been well-defined by Karnik and Mendel [28] and Mendel [46]. A continuous version definition of the
ality of an IT2 FS was introduced in [69]. In this paper a discrete version definition of the cardinality is introduced.



Fig. 2. The embedded T1 FSs determining (a) centroid, (b) cardinality, (c) fuzziness (entropy), (d) variance, and (e) skewness of an IT2 FSeA. In each figure, the dashed curve determines the left bound of the corresponding uncertainty measure, and the solid curve determines the
right bound.
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Example 1. 4Consider the FOU shown in Fig. 2a. The domain of x, ½0; 7�, was discretized into 8 equally-
spaced points in the computation, i.e. N = 8. Note that N = 8 is only for illustrative purpose; in practice N is
usually chosen to be much larger so that the results are more accurate. In this example, C~A ¼ ½2:70; 3:92�.

Observe from Fig. 2a that

(1) The embedded T1 FS determining clðeAÞ switches from the UMF of eA to the LMF as x increases,
whereas the embedded T1 FS determining crðeAÞ switches from the LMF to the UMF as x increases.

(2) The embedded T1 FS determining clðeAÞ switches from the UMF to the LMF at xL ¼ 3, whereas
clðeAÞ ¼ 2:70. Similarly, xR ¼ 4 whereas crðeAÞ ¼ 3:92. clðeAÞ 6¼ xL and crðeAÞ 6¼ xR because discretization
is used. For the continuous case, we always have clðeAÞ ¼ xL and crðeAÞ ¼ xR [51].

(3) Generally the two embedded T1 FSs determining clðeAÞ and crðeAÞ are not convex.
3.2. Cardinality of an IT2 FS

Definitions of the cardinality of T1 FSs have been proposed by several authors, e.g. [18,30,22,82,5,31,73],
etc. Basically there are two kinds of proposals [19,74]: (1) those which assume that the cardinality of a T1 FS
4 Simple examples are used in this paper so that the embedded T1 FSs associated with the bounds of each uncertainty measure can be
shown clearly.
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could be a precise number; and, (2) those which claim that it should be a fuzzy integer. De Luca and Termini’s
[18] definition of cardinality, also called the power of a T1 FS, is the sum of all membership grades, i.e.
pDTðAÞ ¼
XN

i¼1

lAðxiÞ: ð13Þ
(13) is the most frequently used definition of cardinality; however, pDTðAÞ increases as N increases, and
limN!1pDTðAÞ does not exist. In this paper we define a normalized cardinality for a T1 FS by discretizing
De Luca and Termini’s cardinality definition in the continuous domain,

R
X lAðxÞdx, i.e.
pðAÞ ¼ jX j
N

XN

i¼1

lAðxiÞ; ð14Þ
where jX j ¼ xN � x1 is the length of the universe of discourse used in the computation. X can be part of the
complete universe of discourse because for some MFs (e.g., Gaussian, Bell) the complete universes of dis-
course are infinite. Usually xi (i ¼ 1; 2; . . . ;N ) are chosen equally-spaced in the domain of x; in this case,
pðAÞ converges to its continuous version,

R
X lAðxÞdx, as N increases.

The cardinality of T2 FSs has not been studied by many researchers. Jang and Ralescu [27] defined a fuzzy-
valued cardinality of a FS-valued function, which can be viewed as a general T2 FS. Szmidt and Kacprzyk [62]
derived an interval cardinality for intuitionistic fuzzy sets (IFS). Though IFSs are different from IT2 FSs, Ata-
nassov and Gargov [2] showed that every IFS can be mapped to an interval valued FS, which is an IT2 FS
under a different name. Using Atanassov and Gargov’s mapping, Szmidt and Kacprzyk’s interval cardinality
for an IT2 FS eA is
P SKðeAÞ ¼ min
8Ae

pDTðAeÞ;max
8Ae

pDTðAeÞ
� �

� ½pDTðl~AÞ; pDTðl~AÞ�: ð15Þ
Note that (15) is defined based on (13). In the following an interval cardinality for an IT2 FS is defined based
on (14).

Definition 2. The cardinality of an IT2 FS eA is the union of all cardinalities of its embedded T1 FSs Ae, i.e.,
P ~A �
[
8Ae

pðAeÞ ¼ ½plðeAÞ; prðeAÞ�; ð16Þ
where
plðeAÞ ¼ min
8Ae

pðAeÞ; ð17Þ

prðeAÞ ¼ max
8Ae

pðAeÞ: ð18Þ
Note that this definition is quite similar to Szmidt and Kacprzyk’s (see (15)). The only difference is that a
different T1 cardinality measure is used in (16).

Theorem 1. plðeAÞ and prðeAÞ in (17) and (18) can be computed as
plðeAÞ ¼ pðl~AðxÞÞ; ð19Þ
prðeAÞ ¼ pðl~AðxÞÞ: ð20Þ
Proof. The proof is quite simple, and is
plðeAÞ ¼ min
8Ae

pðAeÞ ¼ min
8Ae

jX j
N

XN

i¼1

lAe
ðxiÞ

" #
¼ jX j

N

XN

i¼1

min
8Ae

lAe
ðxiÞ

� �

¼ jX j
N

XN

i¼1

l~AðxiÞ ¼ pðl~AðxÞÞ ð21Þ
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prðeAÞ ¼ max
8Ae

pðAeÞ ¼ max
8Ae

jX j
N

XN

i¼1

lAe
ðxiÞ

" #
¼ jX j

N

XN

i¼1

max
8Ae

lAe
ðxiÞ

� �

¼ jX j
N

XN

i¼1

l~AðxiÞ ¼ pðl~AðxÞÞ: � ð22Þ
Another useful concept is the average cardinality of eA, which is defined as the average of its minimum and
maximum cardinalities, i.e.,
ACðeAÞ ¼ pðl~AðxÞÞ þ pðl~AðxÞÞ
2

: ð23Þ
ACðeAÞ has been used in [69] to define a vector similarity measure for IT2 FSs. Note that Vlachos and Sergiadis
[63] have defined an average possible cardinality in the similar manner, except that pDTðl~AðxÞÞ and pDTðl~AðxÞÞ
were used in the numerator of (23).

Example 2. For the IT2 FS eA shown in Fig. 2b, which is the same as the one shown in Fig. 2a,
P ~A ¼ ½1:75; 3:92� and ACðeAÞ ¼ 2:84. Observe from Fig. 2b that P ~A is completely determined by the LMF and
UMF of ~A.
3.3. Fuzziness (entropy) of an IT2 FS

The fuzziness (entropy) of a T1 FS is used to quantify the amount of vagueness in it. A T1 FS C is most
fuzzy when all its memberships equal 0:5. A T1 FS A is more fuzzy than a T1 FS B if A is nearer to such a C

than B is.

Example 3. In Fig. 3, A is more fuzzy than B because the memberships of A are closer to l ¼ 0:5.

Many different fuzziness measures have been proposed [34] for T1 FSs. Three of them are summarized in
Table 1. It is straightforward to show that all of them are special cases of a general fuzziness measure [37].

Definition 3. A general fuzziness measure of a T1 FS A, f ðAÞ, is defined as
f ðAÞ ¼ h
XN

i¼1

gðlAðxiÞÞ
 !

; ð24Þ
where h is a monotonically increasing function from Rþ to Rþ, and, g : ½0; 1� ! Rþ is a function associated with
each xi. Additionally, (1) gð0Þ ¼ gð1Þ ¼ 0; (2) gð0:5Þ is a unique maximum of g; and, (3) g must be monoton-
ically increasing on ½0; 0:5� and monotonically decreasing on ½0:5; 1�.

Theoretically, f ðAÞ may be any T1 fuzziness definition satisfying the requirements in Definition 3; however,
a normalized version such as Yager’s definition is preferred by us because it converges as N increases.

Several researchers have proposed definitions of the fuzziness for IT2 FSs, as summarized in Table 2. Note
that Szmidt and Kacprzyk’s [62] definition and Cornelis and Kerre’s [16] definition are proposed for IFSs.
Fig. 3. A (solid lines) is more fuzzy than B (dashed lines).



Table 1
Three fuzziness (entropy) measures for T1 FSs

Authors Formulas

De Luca and Termini [18] fDTðAÞ ¼ �
PN

i¼1½lAðxiÞlog2ðlAðxiÞÞ þ ð1� lAðxiÞÞlog2ð1� lAðxiÞÞ�
Kaufmann [29] fKðAÞ ¼

hPN
i¼1jlAðxiÞ � lAnear

ðxiÞjr
i1

r
,

where lAnear
ðxÞ ¼ 0; if lA 6 0:5;

1; otherwise:

�
Yager [75] fY ðAÞ ¼ 1�

PN

i¼1

��2lAðxiÞ�1Þjr
� �1

r

N
1
r

, where r is a positive constant.

Table 2
Five existing fuzziness (entropy) measures for IT2 FSs

Authors Formulas

Burillo and Bustince [9] F BBð~AÞ ¼
PN

i¼1½l~AðxiÞ � l~AðxiÞ�

Szmidt and Kacprzyk [62] F SKð~AÞ ¼ 1
N

PN
i¼1

1�max½1�l~AðxiÞ;l~AðxiÞ�
1�min½1�l~AðxiÞ;l~AðxiÞ�

Zeng and Li [89] F ZLð~AÞ ¼ 1� 1
N

PN
i¼1jl~AðxiÞ þ l~AðxiÞ � 1j

Vlachos and Sergiadis [63] F VSð~AÞ ¼ pð~A\~AcÞ
pð~A[~AcÞ, where eAc is the complementary set of ~A.

Cornelis and Kerre [16] F CKð~AÞ ¼ 2
N

PN
i¼1 minðl~AðxiÞ; 1� l~AðxÞÞ; 2

N

PN
i¼1 minð0:5; 1� l~AðxiÞ;l~AðxÞÞ

h i
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They are converted to fuzziness measures for IT2 FSs by Atanassov and Gargov’s [2] mapping. Note also that
the first four methods give crisp measures, whereas the last one gives an interval measure.

In the following an interval fuzziness definition based on the Mendel–John Representation Theorem is
proposed.

Definition 4. The fuzziness F ~A of an IT2 FS eA is the union of the fuzziness of all its embedded T1 FSs Ae, i.e.,
F ~A �
[
8Ae

f ðAeÞ ¼ ½flðeAÞ; frðeAÞ�; ð25Þ
where flðeAÞ and frðeAÞ are the minimum and maximum of the fuzziness of all Ae, respectively, i.e.
flðeAÞ ¼ min
8Ae

f ðAeÞ; ð26Þ

frðeAÞ ¼ max
8Ae

f ðAeÞ; ð27Þ
and f ðAeÞ satisfies Definition 3.

Theorem 2. Let Ae1 be defined as
lAe1
ðxÞ ¼

l~AðxÞ; l~AðxÞ is further away from 0:5 than l~AðxÞ;
l~AðxÞ; otherwise;

(
ð28Þ
and Ae2 be defined as
lAe2
ðxÞ ¼

l~AðxÞ; both l~AðxÞ and l~AðxÞ are below 0:5;

l~AðxÞ; both l~AðxÞ and l~AðxÞ are above 0:5;

0:5; otherwise:

8><>: ð29Þ
Then (26) and (27) can be computed as
flðeAÞ ¼ f ðAe1Þ; ð30Þ
frðeAÞ ¼ f ðAe2Þ; ð31Þ
where f ðAÞ is defined in (24).
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Proof. According to Definition 3, the further away lAe
ðxÞ is from 0.5, the smaller the fuzziness is; and the clo-

ser lAe
ðxÞ is to 0.5, the larger the fuzziness is. Consequently, flðeAÞ is achieved when every lAe1

ðxÞ is as far away
as possible from 0.5, and frðeAÞ is achieved when every lAe2

ðxÞ is as close as possible to 0.5.
Because lAe

ðxÞ 2 ½l~AðxÞ; l~AðxÞ�, lAe
ðxÞ furthest away from 0.5 can only be achieved at the two boundaries,

l~AðxÞ and l~AðxÞ; hence, we only need to compare which of them is further away from 0.5. If l~AðxÞ is further
away from 0.5 than l~AðxÞ, we should set lAe1

ðxÞ ¼ l~AðxÞ; otherwise, we set lAe1
ðxÞ ¼ l~AðxÞ. This proves (30).

The proof of (31) is also straightforward. When the entire interval ½l~AðxÞ; l~AðxÞ� is below 0.5, l~AðxÞ is closest
to 0.5, so we should set lAe2

ðxÞ ¼ l~AðxÞ; when the entire interval ½l~AðxÞ; l~AðxÞ� is above 0.5, l~AðxÞ is closest to
0.5, so we should set lAe2

ðxÞ ¼ l~AðxÞ; finally, when 0:5 2 ½l~AðxÞ; l~AðxÞ�, we set lAe2
ðxÞ ¼ 0:5. h

Observe that Cornelis and Kerre’s fuzziness measure [16] (see Table 2) is a special case of (25) when
f ðAÞ ¼ 2

N

PN
i¼1AðxiÞ \ �AðxiÞ. The two embedded T1 FSs determining the left and right bounds of F CKðeAÞ are

the same as Ae1 and Ae2 in Theorem 2.

Example 4. Consider the IT2 FS eA in Fig. 2c, which is the same as the IT2 FS shown in Fig. 2a. According to
(28) and (29), Ae1 and Ae2 are as shown in Fig. 2c. When Yager’s definition is used and r = 1, F ~A ¼ ½0:07; 0:63�.

Observe from Fig. 2c that both Ae1 and Ae2 may switch between the LMF and UMF of eA, and Ae2 may have
portions that belong to neither the LMF nor the UMF.
3.4. Variance of an IT2 FS

The variance of a T1 FS A measures its compactness, i.e. a smaller (larger) variance means A is more (less)
compact.

Example 5. In Fig. 4, A has smaller variance than B because it is more compact.

One definition of the (possibilistic) variance of a T1 FS A is given by Carlsson and Fullér [10] as ‘‘the

expected value of the squared deviations between the arithmetic mean and the endpoints of its level sets’’, i.e.,
5 In
becaus
vðAÞ ¼
Z 1

0

a
a1ðaÞ þ a2ðaÞ

2
� a1ðaÞ

� �2

þ a1ðaÞ þ a2ðaÞ
2

� a2ðaÞ
� �2

 !
da

¼ 1

2

Z 1

0

a½a2ðaÞ � a1ðaÞ�2 da; ð32Þ
where ½a2ðaÞ; a1ðaÞ� is an a-cut [36] on A.
Lee and Li [39] defined the variance of a T1 FS based on the probability measures of fuzzy events. When the

fuzzy events are uniformly distributed, their definition becomes5
vðAÞ ¼
PN

i¼1½xi � cðAÞ�2lAðxiÞPN
i¼1lAðxiÞ

; ð33Þ
where cðAÞ is defined in (7).
One way to define the variance V ~A of an IT2 FS eA is to find the union of the variances of all its embedded

T1 FSs Ae, i.e.,
V ~A �
[
8Ae

vðAeÞ ¼
[
8Ae

PN
i¼1½xi � cðAeÞ�2lAe

ðxiÞPN
i¼1lAe

ðxiÞ

" #
: ð34Þ
There does not seem to be any practical way to compute V ~A except to compute the variances of all Ae and to
then find their union. Because there are an uncountable number of Ae, this method is not possible. The fol-
lowing relative variance of Ae to eA is introduced, after which it is used to define the variance of eA.
[67] a different form of (33) is used, where the denominator is N instead of
PN

i¼1lAðxiÞ; however, we prefer the definition in (33)
e of its analogy to the variance definition in probability theory.



Fig. 4. Illustration of the variance of T1 FSs.
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Definition 5. The relative variance of an embedded T1 FS Ae to an IT2 FS eA, v~AðAeÞ, is defined as
v~AðAeÞ ¼
PN

i¼1½xi � cðeAÞ�2lAe
ðxiÞPN

i¼1lAe
ðxiÞ

; ð35Þ
where
cðeAÞ ¼ clðeAÞ þ crðeAÞ
2

ð36Þ
is the center of the centroid of eA, C~A, that is given in (8).

The difference between (35) and (34) is that in (35) the variance of Ae is evaluated relative to cðeAÞ, the center
of the centroid of eA, whereas in (34) the variance of Ae is evaluated relative to cðAeÞ, the centroid of Ae, and,
cðeAÞ is computed one time, whereas cðAeÞ has to be computed for each Ae.

Definition 6. The variance of an IT2 FS eA, V ~A, is the union of relative variance of all its embedded T1 FSs Ae,
i.e.,
V ~A �
[
8Ae

v~AðAeÞ ¼ ½vlðeAÞ; vrðeAÞ�; ð37Þ
where vlðeAÞ and vrðeAÞ are the minimum and maximum relative variance of all Ae, respectively, i.e.
vlðeAÞ ¼ min
8Ae

v~AðAeÞ; ð38Þ

vrðeAÞ ¼ max
8Ae

v~AðAeÞ: ð39Þ
Note the analogy of vlðeAÞ [vrðeAÞ] to clðeAÞ defined in (9) [crðeAÞ in (10)], and observe also that (35) is the same
as (7) except that ½xi � cðeAÞ�2 in (35) takes the place of xi in (7). Consequently, the iterative KM Algorithms
can also be used to compute vlðeAÞ and vrðeAÞ; however, ½xi � cðeAÞ�2 ði ¼ 1; 2; . . . ;NÞ need to be sorted in
ascending order before the KM Algorithms can be used. The details will be illustrated in Example 6.

Definition 7. The standard deviation of an IT2 FS eA, STDðeAÞ, is defined as
STDðeAÞ ¼ V 1=2
~A
¼

ffiffiffiffiffiffiffiffiffiffiffi
vlðeAÞq

;

ffiffiffiffiffiffiffiffiffiffiffi
vrðeAÞq� �

: ð40Þ
The relationship between the centroid and standard deviation of eA is shown in Fig. 5.
ffiffiffiffiffiffiffiffiffiffiffi
vlðeAÞq ffiffiffiffiffiffiffiffiffiffiffi

vrðeAÞq� �
is an

indicator of the compactness of the most (least) compact embedded T1 FS of eA, and
ffiffiffiffiffiffiffiffiffiffiffi
vrðeAÞq

�
ffiffiffiffiffiffiffiffiffiffiffi
vlðeAÞq

is an

indicator of the area of the FOU.



Fig. 5. The standard deviation of eA.
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Example 6. 6Consider the IT2 FS ~A in Fig. 2d, which is the same as the IT2 FS shown in Fig. 2a. From
Example 1 it is known that cð~AÞ ¼ ðclð~AÞ þ crð~AÞÞ=2 ¼ 3:31. The original xi and yi � ½xi � cðeAÞ�2 (i ¼ 1; . . . ; 8)
are shown in the first part of Table 3. Before KM Algorithms can be used, yi need to be sorted in
ascending order. The sorted yi, which are called y0j, and the corresponding x0j, l~Aðx0jÞ and l~Aðx0jÞ are shown in
the second part of Table 3. V ~A computed by the KM Algorithms is ½0:76; 2:47�, and consequently,
STDðeAÞ ¼ ½0:87; 1:57�.

If we map ðy0j; l~Aðx0jÞ; l~Aðx0jÞÞ to an FOU as shown in Fig. 6, where the lower membership for y0j is
l~Aðx0jÞ and the upper membership is l~Aðx0jÞ, then computing V ~A in (37) is equivalent to computing the centroid
of this FOU. The y0 domain embedded T1 FSs determining vlð~AÞ and vrð~AÞ are also depicted in Fig. 6.

We can also visualize the corresponding two embedded T1 FSs in the x domain. Because the switch point
for vlð~AÞ in the y0 domain is y02, we see from Table 3 that the upper memberships of x01 ¼ 3 and x02 ¼ 4 and the
lower memberships of all other x0j should be used to compute vlð~AÞ. The corresponding embedded T1 FS is
shown in Fig. 2d as the dashed curve. Similarly, because the switch point for vrð~AÞ in the y0 domain is y03, from
Table 3 we see that the lower memberships of x01 ¼ 3, x02 ¼ 4 and x03 ¼ 2 and the upper memberships of all
other x0j should be used to compute vrð~AÞ. The embedded T1 FS for determining vrð~AÞ is shown in Fig. 2d as
the solid curve. Observe that both T1 FSs in the x domain have two switch points.

Note that in this example we plot Fig. 6 only for illustration purpose. In practice, only Table 3 is needed to
compute V ~A, and there is no need to visualize the embedded T1 FSs.
3.5. Skewness of an IT2 FS

The skewness of a T1 FS A, sðAÞ, is an indicator of its symmetry. sðAÞ is smaller than zero when A skews to
the right, is larger than zero when A skews to the left, and is equal to zero when A is symmetrical.

Example 7. In Fig. 7, A has skewness smaller than zero because it skews to the right, B has skewness larger
than zero because it skews to the left, and C has skewness zero because it is symmetrical.

There are a few different definitions of skewness for T1 FSs. Subasic and Nakatsuyama’s [61] used
6 Un
switch

7 In
becaus
sSNðAÞ ¼ mcðAÞ � msðAÞ; ð41Þ

where mcðAÞ is the center of the core of A and msðAÞ is the center of the support of A.

In [7] Bonissone used the following definition:
sBðAÞ ¼
XN

i¼1

½xi � cðAÞ�3lAðxiÞ: ð42Þ
Since the centroid, variance and skewness of an IT2 FS may be viewed as its first-, second- and third-order
moments, respectively, their definitions should be consistent. Consequently, in this paper the following defi-
nition is used7:
sðAÞ ¼
PN

i¼1½xi � cðAÞ�3lAðxiÞPN
i¼1lAðxiÞ

: ð43Þ
like other examples, this example is explained in greater detail because the embedded T1 FSs determining vlðeAÞ and vrðeAÞ have two
points. This is the first time that the use of the KM Algorithms gives more than one switch point.
[67] a different form of (43) is used, where the denominator is N instead of

PN
i¼1lAðxiÞ; however, we prefer the definition in (43)

e of its analogy to the skewness definition in probability theory.



Fig. 6. The y0 domain embedded T1 FSs determining vlðeAÞ (dashed curve) and vrðeAÞ (solid curve).

Fig. 7. Illustration of the skewness of T1 FSs.

Table 3
xi and yi � ½xi � cðeAÞ�2 (i ¼ 1; . . . ; 8) for IT2 FS eA shown in Fig. 2d

i 1 2 3 4 5 6 7 8

xi 0 1 2 3 4 5 6 7
yi � ½xi � cðeAÞ�2 10.94 5.33 1.71 0.09 0.48 2.86 7.25 13.63

j 1 2 3 4 5 6 7 8
y0j 0.09 0.48 1.71 2.86 5.33 7.25 10.94 13.63
x0j 3 4 2 5 1 6 0 7
l~Aðx0jÞ 1 1 1 0.67 0.5 0.33 0 0
l~Aðx0jÞ 0.8 0.53 0.4 0.27 0 0 0 0

The sorted y0j and the corresponding x0j, l~Aðx0jÞ and l~Aðx0jÞ are shown in the second part of the table.
Note that cð~AÞ ¼ 3:31.
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One way to define the skewness of an IT2 FS eA, S~A, is to find the union of the skewness of all its embedded T1
FSs Ae, i.e.,
S~A �
[
8Ae

sðAeÞ ¼
[
8Ae

PN
i¼1½xi � cðAeÞ�3lAe

ðxiÞPN
i¼1lAe

ðxiÞ

" #
: ð44Þ
Again, there does not seem to be any practical way to compute S~A except to compute the skewness of all Ae

and to then find their union. Because there are an uncountable number of Ae, this method is also not possible.
The following relative skewness of Ae to eA is introduced, after which it is used to define the skewness of eA.

Definition 8. The relative skewness of an embedded T1 FS Ae to an IT2 FS eA, s~AðAeÞ, is defined as
s~AðAeÞ ¼
PN

i¼1½xi � cðeAÞ�3lAe
ðxiÞPN

i¼1lAe
ðxiÞ

; ð45Þ
where cðeAÞ is the center of the centroid of eA [see (36)].
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The difference between (45) and (44) is that in (45) the skewness of Ae is evaluated relative to cðeAÞ, the cen-
ter of the centroid of eA, whereas in (44) the skewness of Ae is evaluated relative to cðAeÞ, the centroid of Ae,
and, cðeAÞ is computed one time, whereas cðAeÞ has to be computed for each Ae.

Definition 9. The skewness of an IT2 FS eA, S~A, is the union of relative skewness of all its embedded T1 FSs Ae,
i.e.,
S~A �
[
8Ae

s~AðAeÞ ¼ ½slðeAÞ; srðeAÞ�; ð46Þ
where slðeAÞ and srðeAÞ are the minimum and maximum relative skewness of all Ae, respectively, i.e.
slðeAÞ ¼ min
8Ae

s~AðAeÞ; ð47Þ

srðeAÞ ¼ max
8Ae

s~AðAeÞ: ð48Þ
Observe that (45) is the same as (7) except that ½xi � cðeAÞ�3 in (45) takes the position of xi in (7). Conse-
quently, the iterative KM Algorithms can also be used to compute slðeAÞ and srðeAÞ.
Example 8. Consider the IT2 FS eA in Fig. 2e, which is the same as the IT2 FS shown in Fig. 2a. From
Example 6 it is known that cðeAÞ ¼ 3:31. S~A computed by the KM Algorithms is ½�2:23; 3:28�.

Observe from Fig. 2e that the embedded T1 FS determining slðeAÞ switches from the UMF of eA to the LMF
as x increases, whereas the embedded T1 FS determining srðeAÞ switches from the LMF to the UMF as x

increases.
4. Conclusions

In this paper, five uncertainty measures for IT2 FSs-centroid, cardinality, fuzziness (entropy), variance and
skewness – have been introduced. The latter four were newly defined. All measures used the Mendel–John
Representation Theorem for IT2 FSs. Formulas for computing these measures were also obtained. Interest-
ingly, observe from Fig. 2 that different embedded T1 FSs are used to compute each of these measures,
and the LMF and UMF, which completely determine the FOU, are only used in computing the cardinality
of an IT2 FS.

These measures can be used to extend the principles of uncertainty [33,25] from T1 FSs to IT2 FSs, and this
remains to be done. Finally, the centroid and cardinality have already been used to compute the similarity of
two IT2 FSs in [69].

Appendix A. The KM Algorithms

The KM Algorithm for computing clðeAÞ is [28,46]

(1) Initialize hi by setting
hi ¼ ½l~AðxiÞ þ l~AðxiÞ�=2; i ¼ 1; 2; . . . ;N ðA:1Þ

and then compute
c0l ¼
PN

i¼1xihiPN
i¼1hi

: ðA:2Þ
(2) Find k (1 6 k 6 N � 1) such that
xk 6 c0l 6 xkþ1: ðA:3Þ

(3) Set
hi ¼
l~AðxiÞ; i 6 k;
l~AðxiÞ; i > k;

�
ðA:4Þ
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and compute
c00l ¼
PN

i¼1xihiPN
i¼1hi

: ðA:5Þ
(4) Check if c00l ¼ c0l. If yes, stop, set clðeAÞ ¼ c0l and call k L. If no, go to Step 5.
(5) Set c0l ¼ c00l and go to Step 2.

The KM Algorithm for computing crðeAÞ is [28,46]

(1) Initialize hi as in (A.1) and then compute the right hand side of (A.2), calling it c0r.
(2) Find k (1 6 k 6 N � 1) such that
xk 6 c0r 6 xkþ1: ðA:6Þ

(3) Set
hi ¼
l~AðxiÞ; i 6 k;

l~AðxiÞ; i > k;

�
ðA:7Þ
and compute the right hand side of (A.5), calling it c00r .
(4) Check if c00r ¼ c0r. If yes, stop, set crðeAÞ ¼ c0r and call k R. If no, go to Step 5.
(5) Set c0r ¼ c00r and go to Step 2.

An enhanced version of the KM algorithms has been proposed in [68]. On average it can save about 39% of
the computation time.
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