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Abstract

Fuzzy logic is frequently used in computing with words (CWW). When input words to a CWW engine are modeled by
interval type-2 fuzzy sets (IT2 FSs), the CWW engine’s output can also be an IT2 FS, eA, which needs to be mapped to a
linguistic label so that it can be understood. Because each linguistic label is represented by an IT2 FS eBi, there is a need to
compare the similarity of eA and eBi to find the eBi most similar to eA. In this paper, a vector similarity measure (VSM) is
proposed for IT2 FSs, whose two elements measure the similarity in shape and proximity, respectively. A comparative
study shows that the VSM gives more reasonable results than all other existing similarity measures for IT2 FSs for the
linguistic approximation problem. Additionally, the VSM can also be used for type-1 FSs, which are special cases of
IT2 FSs when all uncertainty disappears.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Zadeh coined the phrase ‘‘computing with words’’ (CWW) [48,49]. According to him, CWW is ‘‘a method-

ology in which the objects of computation are words and propositions drawn from a natural language’’. It is
‘‘inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without

any measurements and any computations.’’ Nikravesh [35] further pointed out that CWW is ‘‘fundamentally dif-

ferent from the traditional expert systems which are simply tools to ‘realize’ an intelligent system, but are not able
to process natural language which is imprecise, uncertain and partially true.’’

Our thesis is that words mean different things to different people and so there is uncertainty associated with
words, which means that fuzzy logic must somehow use this uncertainty when it computes with words [25,26].
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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Fig. 1. Conceptual structure of CWW.
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Hence, we argue that interval type-2 fuzzy sets (IT2 FSs) should be used in CWW [28]. We will limit our dis-
cussions to IT2 FSs in this paper.

A specific architecture is proposed in [27] for making judgements by CWW. A slightly modified architecture
is shown in Fig. 1. It will be called a perceptual computer – Per-C for short. Perceptions (i.e., granulated terms,
words) activate the Per-C and are also output by the Per-C; so, it is possible for a human to interact with the
Per-C just using a vocabulary of words. In Fig. 1, the encoder1 transforms linguistic perceptions into IT2 FSs
that activate a CWW engine. The decoder2 maps the output of the CWW engine into a word. Usually a vocab-
ulary (codebook) is available, in which every word is modeled as an IT2 FS. The output of the CWW engine is
mapped into a word (in that vocabulary) most similar to it.

The CWW engine, e.g. rules, the linguistic weighted average (LWA) [43], etc., maps IT2 FSs into IT2 FSs. If
the CWW engine is rule-based, its output may be a crisp number (e.g., after defuzzification), in which case the
decoder can map this number into a word in the vocabulary, as explained in [27]. On the other hand, if the
CWW engine uses the LWA, its output is an IT2 FS eA, or if the CWW engine is rule-based, but its output
is also an IT2 FS eA, then the decoder must also map eA into a word in the vocabulary. In this paper it is
assumed that the output of the CWW engine is an IT2 FS eA.

How to transform linguistic perceptions into IT2 FSs, i.e. the encoding problem, has been considered in
[30–32]. This paper considers the decoding problem, or, as called by Zadeh [48,49], linguistic approximation,
i.e. how to map an IT2 FS eA into a word (linguistic label). More specifically, given a vocabulary consisting of
N words with their associated IT2 FSs eBi ði ¼ 1; . . . ;NÞ, our goal is to find the eBi which most closely resembleseA, the output of the CWW engine. The word associated with that eBi will then be viewed as the output of the
Per-C. To do this, it must be possible to compare the similarity between two IT2 FSs. A vector similarity mea-
sure (VSM) for IT2 FSs is proposed in this paper.

The rest of this paper is organized as follows: Section 2 gives the definitions of similarity, proximity and
compatibility, which are closely related to each other. Section 3 reviews four existing similarity measures
for IT2 FSs. Section 4 proposes a VSM for IT2 FSs. Section 5 provides discussions on a number of issues
and shows that the VSM for IT2 FSs can also be used for type-1 (T1) FSs when all uncertainty disappears.
Section 6 draws conclusions. Some background material about IT2 FSs is given in Appendix A. Proofs of
the theorems are given in Appendix B.

2. Definitions

Similarity, proximity and compatibility are three closely related concepts. There are different definitions on
the meanings of them [8,12,20,24,38,45,46]. According to Yager [45], a proximity relationship between two T1
FSs A and B on a domain X is a mapping p: X � X ! T having the properties: (1) Reflexivity: pðA;AÞ ¼ 1;
and, (2) Symmetry: pðA;BÞ ¼ pðB;AÞ. Often T is the unit interval.
1 Zadeh calls this constraint explicitation in [48,49]. In [50] and some of his recent talks, he calls this precisiation.
2 Zadeh calls this linguistic approximation in [48,49].
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A similarity relationship between two FSs A and B on a domain X is a mapping s: X � X ! T having the
properties [45]: (1) Reflexivity: sðA;AÞ ¼ 1; (2) Symmetry: sðA;BÞ ¼ sðB;AÞ; (3) Transitivity: sðA;BÞP
sðA;CÞ ^ sðC;BÞ, where C is an arbitrary FS on domain X. Observe that here a similarity relationship adds
the additional requirement of transitivity, though whether this should be done is still under debate [22].

There are also some weakened forms of transitivity used in the literature, e.g. [6]
Weakened Transitivity Form 1: If A 6 B 6 C,3 then sðA;BÞP sðA;CÞ and sðB;CÞP sðA;CÞ.
Let c(A) denote the centroid of a FS A. In this paper the following two even more weakened forms of tran-

sitivity are also considered:
Weakened Transitivity Form 2: If A, B and C are of the same shape, and cðAÞ 6 cðBÞ 6 cðCÞ, then

sðA;BÞP sðA;CÞ and sðB;CÞP sðA;CÞ.
Weakened Transitivity Form 3: If cðAÞ ¼ cðBÞ ¼ cðCÞ and A 6 B 6 C, then sðA;BÞP sðA;CÞ and

sðB;CÞP sðA;CÞ.
Compatibility is a wider concept. According to Cross and Sudkamp [8], ‘‘the term compatibility is used to

encompass various types of comparisons frequently made between objects or concepts. These relationships include

similarity, inclusion, proximity, and the degree of matching.’’
In summary, similarity is included in proximity, and both similarity and proximity are included in compat-

ibility. In this paper we focus on similarity measures; however, some proximity and compatibility measures are
also included for comparison purpose.

3. Existing similarity/compatibility measures for IT2 FSs

The literature on similarity/compatibility measures for T1 FSs is quite extensive. According to Bustince [7],
‘‘there are approximately 50 expressions for determining how similar two fuzzy sets are.’’ Some commonly used
similarity/compatibility measures for T1 FSs are summarized in Table 1 because they will be used by some IT2
FS similarity measures. For more details on T1 similarity/compatibility measures, see [8] and its references.
Because compatibility measures for T1 FSs are not the focus of this paper, and there are too many of them,
we do not distinguish between compatibility, proximity and similarity in Table 1.

To the best knowledge of the authors, only four similarity/compatibility measures for IT2 FSs have
appeared to date, and they are briefly reviewed next. As pointed out by Cross and Sudkamp [8], ‘‘ideally,

the selection of a compatibility measure should be justifiable based upon the problem domain, the information

being processed, and the inherent properties of the particular measure.’’ The four similarity/compatibility mea-
sures were originally proposed for different problem domains; however, since the focus of this paper is the lin-
guistic approximation problem in CWW, their ability as a decoder is analyzed.

3.1. Mitchell’s IT2 FS similarity measure

Mitchell was the first to define a similarity measure for general T2 FSs [34]. For the purpose of this paper,
only its special case is explained, when both eA and eB are IT2 FSs:

(1) Discretize the primary variable’s universe of discourse, X, into L points, that are used by both eA and eB.
(2) Find M embedded T1 MFs (see (A.4) in Appendix A) for IT2 FS eA (m ¼ 1; 2; . . . ;M), i.e.
3 A 6
lAm
e
ðxlÞ ¼ rmðxlÞ � ½l~AðxlÞ � l~AðxlÞ� þ l~AðxlÞ l ¼ 1; 2; . . . ; L ð1Þ
where rmðxlÞ is a random number chosen uniformly in ½0; 1�, and l~AðxlÞ and l~AðxlÞ are the lower and
upper memberships of eA at xl.

(3) Similarly, find N embedded T1 MFs, lBn
e
ðn ¼ 1; 2; . . . ;NÞ, for IT2 FS eB, i.e.,
lBn
e
ðxlÞ ¼ rnðxlÞ � ½l~BðxlÞ � l~BðxlÞ� þ l~BðxlÞ l ¼ 1; 2; . . . ; L ð2Þ
B if and only if for 8x 2 X , lAðxÞ 6 lBðxÞ.



Table 1
Summary of similarity/compatibility measures for T1 FSs

Similarity/compatibility measure Equation

Set-theoretic

Tversky’s method [41] sTðA;BÞ ¼ f ðA \ BÞ=½f ðA \ BÞ þ a � f ðA� BÞ þ b � f ðB� AÞ�, where f is a function satisfying
f ðA [ BÞ ¼ f ðAÞ þ f ðBÞ for disjoint A and B

Jaccard’s method [17] sJðA;BÞ ¼ f ðA \ BÞ=f ðA [ BÞ, where f is defined above

Dubois and Prade’s method [10] sDðA;BÞ ¼ gððA [ BÞ \ ð�A [ �BÞÞ or sDðA;BÞ ¼ gðð�A [ BÞ \ ðA [ �BÞÞ, where g satisfies: (1)
gð;Þ ¼ 0, (2) gðX Þ ¼ 1, and (3) gðAÞ 6 gðBÞ if A � B

Proximity-based

• Minkowski’s r-metric based [52] drðA;BÞ � ð
Pn

i¼1jlAðxiÞ � lBðxiÞjrÞ1=r; r P 1
drðA;BÞ is a distance measure

Normalization approach [8] sNðA;BÞ ¼ 1� drðA;BÞ=n

Conversion function approach [36] sCðA;BÞ ¼ ½1þ ðdrðA;BÞ=sÞt��1, where s and t are positive constants

• Angular coefficient based

Bhattacharya’s distance [1]
sBðA;BÞ ¼

Pn
i¼1lAðxiÞ � lBðxiÞPn

i¼1lAðxiÞ2
� �1=2

�
Pn

i¼1lBðxiÞ2
� �1=2

• Interval-based Aa � ½a1ðaÞ; a2ðaÞ� and Ba � ½b1ðaÞ; b2ðaÞ� are a-cuts on A and B

qðAa;BaÞ � maxðja1ðaÞ � b1ðaÞj; ja2ðaÞ � b2ðaÞjÞ,
Hausdorff distance based [37,52] sHðA;BÞ ¼ ½1þ ðq�ðA;BÞ=sÞt��1, where q�ðA;BÞ can be qðA1;B1Þ,

R 1
0 qðAa;BaÞda, or

sup
aP0

qðAa;BaÞ

Dissemblance index based [8] dðAa;BaÞ � ½ja1ðaÞ � b1ðaÞj þ ja2ðaÞ � b2ðaÞj�=ð2jX jÞ, where jX j is the length of the domain
of A [ B. sDðA;BÞ ¼ dðA1;B1Þ, or

R 1
0 dðAa;BaÞda, or sup

aP0
dðAa;BaÞ

• Linguistic approximation based

Bonissone’s method [4] sBðA;BÞ ¼ ½1�
R

X ð
lAðxÞlBðxÞ

cardðAÞ�cardðBÞ Þ
1=2dx�1=2, where cardðAÞ ½cardðBÞ� is the cardinality of A (B)

Logic-based

Hirota and Pedrycz’s method [15,16] ½lAðxiÞ () lBðxiÞ� � ½lAðxiÞ ! lBðxiÞ� ^ ½lBðxiÞ ! lAðxiÞ�

½lAðxiÞ ¼ lBðxiÞ� � f½lAðxiÞ ! lBðxiÞ� ^ ½lBðxiÞ ! lAðxiÞ�

þ ½l�AðxiÞ ! l�BðxiÞ� ^ ½l�BðxiÞ ! l�AðxiÞ�g=2;

sL1ðA;BÞ ¼
Xn

i¼1

½lAðxiÞ ¼ lBðxiÞ�=n;

sL2ðA;BÞ ¼
Xn

i¼1

½lAðxiÞ () lBðxiÞ�=n

Fuzzy-valued

Dubois and Prade’s method [10]

sa
FðA;BÞ ¼

cardððAa \ BaÞ \ suppðA \ BÞÞ
cardððAa [ BaÞ \ suppðA [ BÞÞ ; where supp means support

Note that those measures involving a-cuts require the FSs to be convex.
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(4) Compute an IT2 FS similarity measure sMðeA; eBÞ as an average of T1 FS similarity measures smn that are
computed for all of the MN combinations of the embedded T1 FSs for eA and eB (this uses the Represen-
tation Theorem in (A.6)), i.e.,
sMðeA; eBÞ ¼ 1

MN

XM XN

smn; ð3Þ

m¼1 n¼1
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where
4 On
smn ¼ sðAm
e ;A

n
eÞ ð4Þ
and smn can be any T1 FS similarity measure, as in Table 1.

Mitchell’s IT2 FS similarity measure has the following problems:

(1) Generally sMðeA; eBÞ does not equal 1 even for the special case where eA and eB are exactly the same,
because the randomly generated embedded T1 FSs from eA and eB will not always be the same.

(2) Because there are random numbers involved, sMðeA; eBÞ may change from experiment4 to experiment.
When both M and N are large, some kind of stochastic convergence can be expected to occur (e.g., con-
vergence in probability); however, the computational cost is heavy because the computation of (3)
requires direct enumeration of all MN embedded T1 FSs.

3.2. Gorzalczany’s IT2 FS compatibility measure

Gorzalczany proposed a compatibility measure for interval-valued FSs (IVFSs) [13]. Because an IVFS is an
IT2 FS under a different name, the terms and symbols used in [13] are changed so that they are consistent with
those in this paper.

Gorzalczany defined the degree of compatibility, sGðeA; eBÞ, between two IT2 FSs eA and eB as
sGðeA; eBÞ¼ min
max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ
;
max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ

0@ 1A;
24 max

max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ
;
max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ

0@ 1A35:
ð5Þ
Main properties of sGðeA; eBÞ are: (1) sGðeA; eAÞ ¼ ½1; 1�; (2) sGðeA; eBÞ ¼ ½0; 0� if and only if eA and eB are disjoint;

and, (3) generally sGðeA; eBÞ 6¼ sGðeB; eAÞ.
As pointed out by Tsiporkova and Zimmermann [40], compatibility measures do not ‘‘perform consistently

as similarity measures of FSs.’’ It is easy to show that Gorzalczany’s compatibility measure may give counter-
intuitive results when used in linguistic approximation. Consider the example shown in Fig. 2, where
maxx2X l~AðxÞ ¼ maxx2X l~BðxÞ ¼ l1. Consequently,
max
x2X
fminðl~AðxÞ; l~BðxÞÞg ¼ max

x2X
l~AðxÞ ¼ l1 ð6Þ
and,
max
x2X
fminðl~AðxÞ; l~BðxÞÞg

max
x2X

l~AðxÞ
¼ l1

l1

¼ 1: ð7Þ
It is also easy to see that
max
x2X
fminðl~AðxÞ; l~BðxÞÞg

max
x2X

l~AðxÞ
¼ 1

1
¼ 1: ð8Þ
Hence, for eA and eB shown in Fig. 2, sGðeA; eBÞ ¼ ½1; 1�. Actually it can be shown that as long as
maxx2X l~AðxÞ ¼ maxx2X l~BðxÞ and maxx2X l~AðxÞ ¼ maxx2X l~BðxÞ, no matter how different the shapes of eA andeB are, Gorzalczany’s compatibility measure always gives sGðeA; eBÞ ¼ sGðeB; eAÞ ¼ ½1; 1�, which is counter-
intuitive.
e experiment is comprised of M (N) randomly chosen embedded T1 FSs for eA ðeBÞ.
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Fig. 2. Example for Gorzalczany’s compatibility measure, which gives sGðeA; eBÞ ¼ ½1; 1�.

386 D. Wu, J.M. Mendel / Information Sciences 178 (2008) 381–402
3.3. Bustince’s IT2 FS similarity measure

Bustince also proposed a similarity measure for IVFSs [6]. Again, the terms and symbols used in [6] are
changed so that they are consistent with those in this paper.

First, Bustince defined a normal interval valued similarity measure sBðeA; eBÞ between two IT2 FSs eA and eB, as
one that satisfies the following five properties: (1) sBðeA; eBÞ ¼ sBðeB; eAÞ; (2) for a crisp set a and its complement

c(a), sBða; cðaÞÞ ¼ 0; (3) sBðeA; eAÞ ¼ ½1; 1�; (4) if eA 6 eB 6 eC , then sBðeA; eBÞP sBðeA; eCÞ and
sBðeB; eCÞP sBðeA; eCÞ; and, (5) if A and B are T1 FSs, then sBðA;BÞ 2 ½0; 1�, i.e. sBðA;BÞ reduces to a number.
Note that eA 6 eB if and only if for 8x 2 X , l~AðxÞ 6 l~BðxÞ and l~AðxÞ 6 l~BðxÞ.

He then proposed
sBðeA; eBÞ ¼ ½sLðeA; eBÞ; sUðeA; eBÞ� ð9Þ

as an interval-valued normal similarity measure, where
sLðeA; eBÞ ¼ � LðeA; eBÞH� LðeB; eAÞ ð10Þ

and
sUðeA; eBÞ ¼ �UðeA; eBÞH�UðeB; eAÞ; ð11Þ

w can be any t-norm (e.g., minimum), and ½� LðeA; eBÞ; �UðeA; eBÞ� is an interval valued inclusion grade indicator

[6] of eA in eB. � LðeA; eBÞ and �UðeA; eBÞ used in this paper (and taken from [6]) are computed as
� LðeA; eBÞ ¼ inf
x2X
f1;minð1� l~AðxÞ þ l~BðxÞ; 1� l~AðxÞ þ l~BðxÞÞg ð12Þ

�UðeA; eBÞ ¼ inf
x2X
f1;maxð1� l~AðxÞ þ l~BðxÞ; 1� l~AðxÞ þ l~BðxÞÞg ð13Þ
Both Bustince’s and Gorzalczany’s similarity measures, sBðeA; eBÞ and sGðeA; eBÞ, are intervals, and sBðeA; eBÞ has
the desirable property that sBðeA; eBÞ ¼ sBðeB; eAÞ whereas sGðeA; eBÞ does not.

Major differences between Bustince’s and Mitchell’s similarity measures, sBðeA; eBÞ and sMðeA; eBÞ, are: (1) the
former chooses sBðeA; eBÞ to satisfy a set of five similarity-measure properties whereas the latter does not; and,
(2) sBðeA; eBÞ is an interval whereas sMðeA; eBÞ is a point-value.

A problem with Bustince’s similarity measure is that when eA and eB are disjoint, no matter how far away
they are from each other, sBðeA; eBÞ will always be the same. For a simple example to demonstrate this, consider
the case where disjoint eA and eB have exactly the same shape, as shown in Fig. 3a. In this case,
1� l~AðxÞ þ l~BðxÞ and 1� l~AðxÞ þ l~BðxÞ are shown in Fig. 3b as the dashed lines and the solid lines, respec-
tively, and, minð1� l~AðxÞ þ l~BðxÞ; 1� l~AðxÞ þ l~BðxÞÞ and maxð1� l~AðxÞ þ l~BðxÞ; 1� l~AðxÞ þ l~BðxÞÞ are
shown in Fig. 3c as the dashed lines and solid lines, respectively. Substituting the two functions in Fig. 3c into
(12) and (13), observe that � LðeA; eBÞ ¼ 0 and �UðeA; eBÞ ¼ 1� l1 [indicated by a square in Fig. 3c]. In a similar
way (see Figs. 3d and e ), it is easy to show � LðeB; eAÞ ¼ 0 and �UðeB; eAÞ ¼ 1� l1. Consequently, in (10)

sLðeA; eBÞ ¼ 0H0 and in (11) sUðeA; eBÞ ¼ ð1� l1ÞHð1� l1Þ so that sBðeA; eBÞ ¼ ½0H0; ð1� l1ÞHð1� l1Þ�. As long
as eA and eB are disjoint, i.e. d P 0 in Fig. 3a, sBðeA; eBÞ is always ½0H0; ð1� l1ÞHð1� l1Þ� regardless of d, and
usually ð1� l1ÞHð1� l1Þ 6¼ 0. When eA and eB are disjoint, sBðeA; eBÞ is expected to either decrease as d

increases or be 0; hence, Bustince’s similarity measure is counter-intuitive for this situation.



Fig. 3. Example for Bustince’s similarity measure when eA and eB are disjoint. (a) eA and eB; (b) and (c) functions needed to compute
� LðeA; eBÞ and �UðeA; eBÞ in (12) and (13); and, (d) and (e) functions needed to compute � LðeB; eAÞ and �UðeB; eAÞ in (12) and (13).
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3.4. Zeng and Li’s IT2 FS similarity measure

Zeng and Li’s similarity measure was also proposed for IVFSs [51]. Again, the terms and symbols used in
[51] are changed so that they are consistent with those in this paper.

Zeng and Li defined a real function sZ: eA � eB ! ½0; 1� as a similarity measure of IT2 FSs, if sZ satisfies the
following properties: (1) sZðeA; eBÞ ¼ sZðeB; eAÞ; (2) for a crisp set a and its complement cðaÞ, sZða; cðaÞÞ ¼ 0; (3)
sZðeA; eBÞ ¼ 1() eA ¼ eB; and, (4) if eA 6 eB 6 eC , then sZðeA; eCÞ 6 sZðeA; eBÞ and sZðeA; eCÞ 6 sZðeB; eCÞ.

They then proposed the following similarity measure for IT2 FSs if the universes of discourse of eA and eB
are discrete:
sZðeA; eBÞ ¼ 1� 1

2n

Xn

i¼1

ðjl~AðxiÞ � l~BðxiÞj þ jl~AðxiÞ � l~BðxiÞjÞ; ð14Þ
and, if the universes of discourse of eA and eB are continuous in ½a; b�,
sZðeA; eBÞ ¼ 1� 1

2ðb� aÞ

Z b

a
ðjl~AðxÞ � l~BðxÞj þ jl~AðxÞ � l~BðxÞjÞdx: ð15Þ
Properties of Zeng and Li’s similarity measure are quite similar to those of Bustince’s. The main difference is
that the former treats the similarity measure as a crisp number, whereas the latter gives an interval. Zeng and
Li’s similarity measure has a problem similar to that of Bustince’s, but may be worse depending on the choice
of a and b (see (15)). For example in Fig. 4, eB and eB0 have the same shape but are at different distances fromeA; hence,

R b
a ðjl~AðxÞ � l~BðxÞj þ jl~AðxÞ � l~BðxÞjÞdx,

R b0

a ðjl~AðxÞ � l~BðxÞj þ jl~AðxÞ � l~BðxÞjÞdx and
R b0

a ðjl~AðxÞ�
l~B0 ðxÞj þ jl~AðxÞ � l~B0 ðxÞjÞdx are equal, and this value is denoted as c. There can be two methods in computing

sZðeA; eBÞ and sZðeA; eB0Þ:
(1) If the interval ½a; b� is used to compute sZðeA; eBÞ and ½a; b0� is used to compute sZðeA; eB0Þ, then

sZðeA; eBÞ¼ 1� c=½2ðb�aÞ� and sZðeA; eB0Þ ¼ 1� c=½2ðb0 �aÞ�. Because b0 �a> b�a, sZðeA; eBÞ< sZðeA; eB0Þ,
which means eB0 is more similar to eA than eB is. Additionally, as b0 �a increases, sZðeA; eB0Þ approaches 1.



A
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Fig. 4. An example of Zeng and Li’s similarity measure for disjoint IT2 FSs.
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(2) If the interval ½a; b0� is used to compute both sZðeA; eBÞ and sZðeA; eB0Þ, then sZðeA; eBÞ ¼ 1� c=½2ðb0 � aÞ� and
sZðeA; eB0Þ ¼ 1� c=½2ðb0 � aÞ�; hence, sZðeA; eBÞ ¼ sZðeA; eB0Þ > 0.

Both methods produce results that are counter-intuitive, because (Fig. 4) we should have sðeA; eBÞ > sðeA; eB0Þ.
If this is not true, another reasonable result is sðeA; eBÞ ¼ sðeA; eB0Þ ¼ 0, instead of a non-zero constant as given
by Method (2).

3.5. Summary

A summary of all similarity/compatibility measures for IT2 FSs introduced in this section is given in Table
2. It is worth noting that each of the four existing similarity/compatibility measures for IT2 FSs has its
problems:

– Mitchell’s similarity measure involves randomness which can lead to different answers, and the computa-
tional cost is high.

– Gorzalczany’s, Bustince’s, and Zeng and Li’s similarity/compatibility measures give counter-intuitive
results for some special cases.
Table 2
Summary of existing similarity/compatibility measures for IT2 FSs

Measure Equation

Mitchell’s method [34] sMðeA; eBÞ ¼ 1
MN

PM
m¼1

PN
n¼1smn, where smn ¼ sðAm

e ;A
n
eÞ, and s can be any similarity

measure for T1 FSs
Gorzalczany’s method [13]

sGðeA; eBÞ ¼ min
max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ
;
max
x2X
fminðl~AðxÞ; l~BðxÞÞg

max
x2X

l~AðxÞ

0@ 1A;
24

max
max
x2X
fminðl~AðxÞ;l~BðxÞÞg

max
x2X

l~AðxÞ
;
max
x2X
fminðl~AðxÞ; l~BðxÞÞg

max
x2X

l~AðxÞ

0@ 1A35
Bustince’s method [6]

sBðeA; eBÞ ¼ ½sLðeA; eBÞ; sUðeA; eBÞ�; where

sLðeA; eBÞ ¼ � LðeA; eBÞH� LðeB; eAÞ;
sUðeA; eBÞ ¼ �UðeA; eBÞH�UðeB; eAÞ

Examples of � L and �U are given in (12) and (13).
Zeng and Li’s method [51] For discrete universe of discourse,

sZðeA; eBÞ ¼ 1� 1

2n

Xn

i¼1

ðjl~AðxiÞ � l~BðxiÞj þ jl~AðxiÞ � l~BðxiÞjÞ

.For continuous universe of discourse,

sZðeA; eBÞ ¼ 1� 1

2ðb� aÞ

Z b

a
ðjl~AðxÞ � l~BðxÞj þ jl~AðxÞ � l~BðxÞjÞdx
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3.6. Proposed properties for a similarity measure

To avoid the problems just mentioned, the following four properties are proposed for a similarity measure
for IT2 FSs.

(P.1) Reflexivity: The similarity between two IT2 FSs is 1 if and only if they are exactly the same, i.e.
sðeA; eBÞ ¼ 1() eA ¼ eB.

(P.2) Symmetry: The similarity between two IT2 FSs should be a constant regardless of the order in which
they are compared, i.e. sðeA; eBÞ ¼ sðeB; eAÞ.

(P.3) Transitivity: (a) If three IT2 FSs have the same shape, then the similarity between two nearby IT2
FSs should be larger than the similarity between two further away IT2 FSs, i.e. if eA, eB and eC are of
the same shape and cðeAÞ < cðeBÞ < cðeCÞ (see the definition of cðeAÞ in (17)), then sðeA; eBÞ > sðeA; eCÞ
and sðeB; eCÞ > sðeA; eCÞ; (b) If cðeAÞ ¼ cðeBÞ ¼ cðeCÞ and eA < eB < eC , then sðeA; eBÞ > sðeA; eCÞ and
sðeB; eCÞ > sðeA; eCÞ.

(P.4) Overlap: If two IT2 FSs partially overlap, then there should be some similarity between them, i.e. if
there exists at least one x with non-zero memberships on both eA and eB, then sðeA; eBÞ > 0.

In the next section a vector similarity measure is proposed which possesses these properties.
4. A vector similarity measure for IT2 FSs

Recall that our goal is to find the Bi which most closely resembles eA; hence, when the similarity of two IT2
FSs eA and eB are compared, it is necessary to compare their shapes as well as proximity. In this section, a vec-
tor similarity measure (VSM) for IT2 FSs, svðeA; eBÞ, is proposed, one that has two components, i.e.,
svðeA; eBÞ ¼ ðs1ðeA; eBÞ; s2ðeA; eBÞÞT ð16Þ
where s1ðeA; eBÞ 2 ½0; 1� is a similarity measure on the shapes of eA and eB, and s2ðeA; eBÞ 2 ½0; 1� is a similarity
measure on the proximity of eA and eB.

4.1. Definition of s1ðeA; eBÞ
Because the proximity of eA and eB is considered in s2ðeA; eBÞ, in computing s1ðeA; eBÞ eA and eB are ‘‘aligned’’ so

that their shapes can be compared. Denote the centroids (see Appendix A) of eA and eB as C~A ¼ ½clðeAÞ; crðeAÞ�
and C~B ¼ ½clðeBÞ; crðeBÞ�, respectively, and the centers of C~A and C~B as
cðeAÞ ¼ ½clðeAÞ þ crðeAÞ�=2 ð17Þ
cðeBÞ ¼ ½clðeBÞ þ crðeBÞ�=2 ð18Þ
A reasonable alignment method is to move one or both of eA and eB so that cðeAÞ and cðeBÞ coincide (see Fig. 5).
The two IT2 FSs can be moved to any location as long as cðeAÞ and cðeBÞ coincide; this will not affect the value
of s1ðeA; eBÞ. In this paper eB is moved to eA and called eB0, as shown in Fig. 5b.

s1ðeA; eBÞ may be defined as a crisp number, or an interval; however, as shown next, there may be problems
when defining s1ðeA; eBÞ as an interval.

An intuitive interval realization of s1ðeA; eBÞ is to define it as an extension of Jaccard’s similarity measure (see
Table 1; note that f is chosen to be the cardinality in this paper) from T1 FSs to IT2 FSs by using the Rep-
resentation Theorem (Appendix A.1), i.e.
s1;intervalðeA; eBÞ ¼ [
8Ae;B0e

cardðAe \ B0eÞ
cardðAe [ B0eÞ

¼ ½s1;l; s1;r� ð19Þ



Fig. 5. An example for the proposed VSM. (a) cðeAÞ and cðeBÞ denote the center of the centroids of eA and eB, respectively; (b) eB 0 is obtained
by moving eB so that cðeBÞ coincides with cðeAÞ. The solid curves are for eA and the dashed curves are for eB 0.
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where Ae and B0e are embedded T1 FSs of eA and eB0, respectively, and
5 eAT
6 eAS
s1;l � min
8Ae;B0e

cardðAe \ B0eÞ
cardðAe [ B0eÞ

ð20Þ

s1;r � max
8Ae ;B0e

cardðAe \ B0eÞ
cardðAe [ B0eÞ

ð21Þ
Unfortunately, there are no closed-form solutions for s1;l and s1;r. Furthermore, even if we can compute s1;l

and s1;r, there is still a need to convert ½s1;l; s1;r� to a crisp number because in many applications ranking of
similarities are needed.

For simplicity, in this paper s1ðeA; eBÞ is defined as a crisp number equal to the ratio of the average cardinal-

ities (see (A.13)) of 5 FOUðeA \ eB0Þ and6 FOUðeA [ eB0Þ, i.e.
s1ðeA; eBÞ � AC½FOUðeA \ eB0Þ�
AC½FOUðeA [ eB0Þ� ð22Þ

¼
cardðl~AðxÞ \ l~B0 ðxÞÞ þ cardðl~AðxÞ \ l~B0 ðxÞÞ
cardðl~AðxÞ [ l~B0 ðxÞÞ þ cardðl~AðxÞ [ l~B0 ðxÞÞ

ð23Þ

¼
R

X minðl~AðxÞ; l~B0 ðxÞÞdxþ
R

X minðl~AðxÞ; l ~B0 ðxÞÞdxR
X maxðl~AðxÞ; l ~B0 ðxÞÞdxþ

R
X maxðl~AðxÞ; l ~B0 ðxÞÞdx

; ð24Þ
where l~B0 ðxÞ and l~B0 ðxÞ are illustrated in Fig. 5b. When all uncertainty disappears, eA and eB become T1 FSs A

and B, and (24) reduces to Jaccard’s similarity measure (see Table 1, in which f is chosen as the cardinality).

s1ðeA; eBÞ has the following properties:

Theorem 1. (a) 0 6 s1ðeA; eBÞ 6 1; (b) s1ðeA; eBÞ ¼ 1() eA ¼ eB0, i.e. eA and eB have the same shape; and, (c)

s1ðeA; eBÞ ¼ s1ðeB; eAÞ.
Proof. See Appendix B.1. h
4.2. Definition of s2ðeA; eBÞ
s2ðeA; eBÞ measures the proximity of eA and eB, and is defined as
s2ðeA; eBÞ � hðdðeA; eBÞÞ ð25Þ
eB0 ¼ 1=
S
8x2X :½l~AðxÞHl~B0 ðxÞ; l~AðxÞHl~B0 ðxÞ�, where w is a t-norm. In (24) the min t-norm is used [25].eB0 ¼ 1=

S
8x2X :½l~AðxÞ _ l~B0 ðxÞ;l~AðxÞ _ l~B0 ðxÞ�, where _ is a t-conorm. In (24) the max t-conorm is used [25].
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where dðeA; eBÞ ¼ jcðeAÞ � cðeBÞj is the Euclidean distance between the centers of the centroids of eA and eB (see
Fig. 5a), and h can be any function satisfying: (1) lim

x!1
hðxÞ ¼ 0; (2) hðxÞ ¼ 1 if and only if x = 0; and, (3) hðxÞ

decreases monotonically as x increases.

Theorem 2. s2ðeA; eBÞ 2 ½0; 1�, and s2ðeA; eBÞ ¼ 1 if and only if cðeAÞ ¼ cðeBÞ:
Proof. Theorem 2 is obvious from (25) and the above constraints on hðxÞ. h

An example of s2ðeA; eBÞ is
7 Re
to our
s2ðeA; eBÞ ¼ e�rdð~A;~BÞ; ð26Þ

where r is a positive constant. s2ðeA; eBÞ is chosen as an exponential function because we believe the similarity
between two FSs should decrease rapidly as the distance between them increases.

4.3. On converting svðeA; eBÞ to the scalar similarity measure ssðeA; eBÞ
svðeA; eBÞ enables us to separately quantify the similarity of two features, shape and proximity. As mentioned

in Section 1, in CWW svðeA; eBiÞ ði ¼ 1; 2; . . . ;NÞ need to be ranked to find the eBi most similar to A. This can be
achieved by first converting the vector svðeA; eBiÞ to a scalar similarity measure ssðeA; eBiÞ and then ranking
ssðeA; eBiÞ ði ¼ 1; 2; . . . ;NÞ.

In this paper, the scalar similarity between two IT2 FSs eA and eB is computed as the product of their sim-
ilarities in shape and proximity,7 i.e.
ssðeA; eBÞ ¼ s1ðeA; eBÞ � s2ðeA; eBÞ ð27Þ

Properties of ssðeA; eBÞ include:

Theorem 3. (a) eA ¼ eB () ssðeA; eBÞ ¼ 1; (b) ssðeA; eBÞ ¼ ssðeB; eAÞ; (c) ssðeA; eBÞ > ssðeA; eCÞ and ssðeB; eCÞ >
ssðeA; eCÞ if eA, eB and eC have the same shape and cðeAÞ < cðeBÞ < cðeCÞ; (d) ssðeA; eBÞ > ssðeA; eCÞ and

ssðeB; eCÞ > ssðeA; eCÞ if cðeAÞ ¼ cðeBÞ ¼ cðeCÞ and eA < eB < eC ; and, (e) ssðeA; eBÞ > 0.

Proof. See Appendix B.2. h

Theorem 3 shows that ssðeA; eBÞ satisfies the four properties stated in Section 3.6.

4.4. Example

Comparisons of all the similarity measures for IT2 FSs introduced in this paper are given in Table 3 for IT2
FSs eA � eG depicted in Fig. 6. Note that eA � eE have the same shape. The domain of x (e.g., the support ofeA [ eB in computing sðeA; eBÞ) was discretized into 500 equal-length intervals, M � N ¼ 10 in Mitchell’s similar-
ity measure, Method (1) in Section 3.4 was used to choose xi in Zeng and Li’s similarity measure, and
r � 4=jX j (jX j is the length of the support of eA [ eB) in the VSM (see (26)).

Observe from Table 3 that the outputs of the VSM are reasonable for all six cases, according to the four
properties proposed in Section 3.6. Observe also that:

(1) Using Mitchell’s method, sðeF ; eF Þ ¼ 0:6007, which should be 1.
(2) Using Gorzalczany’s method, sðeF ; eGÞ ¼ ½1; 1�, which should be less than 1.
(3) Using Bustince’s method, sðeA; ~DÞ ¼ sðeA; eEÞ 6¼ ½0; 0�, which should be sðeA; ~DÞ > sðeA; eEÞ, or at least,

sðeA; ~DÞ ¼ sðeA; eEÞ ¼ ½0; 0�. Besides, sðeA; eBÞ, sðeA; eCÞ and sðeA; ~DÞ are difficult to distinguish.
(4) Using Zeng and Li’s method, sðeA; eBÞ < sðeA; ~DÞ < sðeA; eEÞ, which should be sðeA; eBÞ > sðeA; ~DÞ > sðeA; eEÞ,

and, sðeA; eCÞ < sðeA; ~DÞ < sðeA; eEÞ, which should be sðeA; eCÞ > sðeA; ~DÞ > sðeA; eEÞ.

cently, Bonissone et al. [5] defined a similarity measure as a weighted minimum of several sub-similarity measures. Although similar
idea, their objective is quite different from our objective; hence, their similarity measure is not used in this paper.



Table 3
Comparison of similarity measures for IT2 FSs eA � eG shown in Fig. 6

Similarity measure sðeA; eBÞ sðeA; eCÞ sðeA; ~DÞ sðeA; eEÞ sðeF ; eF Þ sðeF ; eGÞ
Mitchell’s method (sM) 0.1494 0.0124 0 0 0.6007 0.5762
Gorzalczany’s method (sG) [0,0.5980] [0,0.1967] [0,0] [0,0] [1,1] [1,1]
Bustince’s method (sB) [0.0017,0.2016] [0.0010,0.2016] [0,0.2016] [0,0.2016] [1,1] [0.3337,1]
Zeng and Li’s method (sZ) 0.6578 0.6452 0.7006 0.7467 1 0.7782
VSM (ss) 0.2013 0.0406 0.0082 0.0017 1 0.5732
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Fig. 6. Examples used in the comparative study: (a) eA � eE, which have the same shape; (b) eF (solid lines) and eG (dashed lines).
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Finally, observe that the VSM does not have any of the short-comings of these four similarity measures.
This example demonstrates that our VSM has the potential to succeed when it is used as the decoder in the
Per-C shown in Fig. 1.

5. Discussions

5.1. More about an interval VSM for IT2 FSs

Scalar similarity measures are used for T1 FSs, so, it may be more reasonable to use interval similarity mea-
sures for IT2 FSs, as Gorzalczany and Bustince have done, because an IT2 FS has an extra degree of freedom
than a T1 FS. However, recall that the objective of this paper is to identify an IT2 FS, eBk, from a group of IT2
FSs, eBi (i ¼ 1; . . . ;N ), so that eBk is most similar to a target IT2 FS, eA. Consequently, a crisp similarity mea-
sure is needed so that sðeA; eBiÞ can be ranked. Even if an interval VSM for IT2 FSs was developed, its outputs
would have to be converted to scalars before a ranking could be made. This may increase the computational
cost. Besides, simulation results have shown that the output of svðeA; eBÞ is reasonable. So, it is unnecessary to
develop an interval VSM for our application.

5.2. The VSM for T1 FSs

Because T1 FSs are special cases of IT2 FSs when all uncertainty disappears, the VSM for IT2 FSs devel-
oped in Section 4 can also be used for T1 FSs, as shown in this subsection.

When eA and eB reduce to T1 FSs, A and B, svðeA; eBÞ becomes a VSM for T1 FSs, svðA;BÞ, i.e.,
svðA;BÞ ¼ ðs1ðA;BÞ; s2ðA;BÞÞT; ð28Þ

where s1ðA;BÞ 2 ½0; 1� is a similarity measure on the shapes of A and B, and s2ðA;BÞ 2 ½0; 1� is a similarity mea-
sure on the proximity of A and B. Again, to define svðA;BÞ, s1ðA;BÞ and s2ðA;BÞ must first be defined.

5.2.1. Definition of s1ðA;BÞ
Because the proximity of A and B is considered in s2ðA;BÞ, when computing s1ðA;BÞ A and B are also

‘‘aligned’’ so that their shapes can be compared. In the IT2 FSs case one or both of eA and eB are moved so
that cðeAÞ coincided with cðeBÞ. When A and B are T1 FSs, one or both of A and B are moved so that their
centroids cðAÞ and cðBÞ coincide. In this paper B is moved to A, and called B 0, as shown in Fig. 7. Once



Fig. 7. An example of the VSM for T1 FSs. cðAÞ and cðBÞ are the centroids of A and B, respectively. B0 is obtained by moving B so that
cðBÞ coincides with cðAÞ. Note that the shaded region can also be obtained by moving cðAÞ to cðBÞ.
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the two T1 FSs are ‘‘aligned’’, s1ðA;BÞ is computed by replacing the IT2 FSs eA and eB in s1ðeA; eBÞ, given in (24)
by T1 FSs A and B, i.e. by substituting l~A ¼ l~A ¼ lA and l~B0 ¼ l~B0 ¼ lB0 into (24), so that
8 It i
s1ðA;BÞ ¼
cardðA \ B0Þ
cardðA [ B0Þ ¼

R
X minðlAðxÞ; lB0 ðxÞÞdxR
X maxðlAðxÞ; lB0 ðxÞÞdx

: ð29Þ
Note (29) is Jaccard’s unparameterized ratio model of similarity8 [17].
From Theorem 1, observe that s1ðA;BÞ has the following properties: (1) 0 6 s1ðA;BÞ 6 1; (2)

s1ðA;BÞ ¼ 1() A ¼ B0; and, (3) s1ðA;BÞ ¼ s1ðB;AÞ.

5.2.2. Definition of s2ðA;BÞ
s2ðA;BÞ measures the proximity of A and B. When IT2 FSs eA and eB become T1 FSs A and B, s2ðeA; eBÞ in

(25) becomes
s2ðA;BÞ ¼ hðdðA;BÞÞ ð30Þ

where
dðA;BÞ ¼ jcðAÞ � cðBÞj ð31Þ

is the Euclidean distance between the centroids of A and B (see Fig. 7). The definition of h is the same as the
one given in Section 4.2.

Again, s2ðA;BÞ 2 ½0; 1�. An example of s2ðA;BÞ is
s2ðA;BÞ ¼ e�rdðA;BÞ; ð32Þ

where r is a positive constant.

5.2.3. On converting svðA;BÞ to ssðA;BÞ
The method proposed in Section 4.3 can also be used to convert svðA;BÞ to ssðA;BÞ, i.e.
ssðA;BÞ ¼ s1ðA;BÞ � s2ðA;BÞ: ð33Þ
5.2.4. Comparison with Bonissone’s linguistic approximation distance measure
Bonissone’s [3,4] linguistic approximation distance measure was also proposed to identify the linguistic

label which most closely resembles a given FS A; however, Bonissone modeled linguistic labels as T1 FSs,
whereas we have modeled them as IT2 FSs.

The first step of Bonissone’s method eliminates from further consideration those linguistic labels deter-
mined to be very far away from A. For a given T1 FS A, the distances between A and Bi, d1ðA;BiÞ, are com-
puted to identify M Bi that are close to A (according to some tolerance parameter). Bonissone [4] first
computed four T1 FS features, centroid, cardinality, fuzziness and skewness, for A and Bi, and then defined
d1ðA;BiÞ as the weighted Euclidean distance between the two four-dimensional points [ðp1

A; p
2
A; p

3
A; p

4
AÞ

T and
ðp1

Bi
; p2

Bi
; p3

Bi
; p4

Bi
ÞT] represented by the values of the four features for each T1 FS, i.e.,
s called coefficient of similarity by Sneath in [39]. The term index of communality has also been used [8].
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d1ðA;BiÞ ¼
X4

j¼1

w2
j ðp

j
A � pj

Bi
Þ2

" #1=2

: ð34Þ
The weights9 wj ðj ¼ 1; 2; 3; 4Þ have to be pre-specified.
After pre-screening linguistic labels far away from A, Bonissone’s second step uses the modified Bhattach-

arya distance [18] to discriminate between the M linguistic labels close to A, i.e.,
d2ðA;BkÞ ¼ 1�
Z

X

lAðxÞlBk
ðxÞ

cardðAÞ � cardðBkÞ

� �1=2

dx

" #1=2

k ¼ 1; . . . ;M ð35Þ
The linguistic label corresponding to the smallest d2ðA;BkÞ is considered most similar to A.
Both svðA;BÞ and Bonissone’s method consider the shapes and proximity of A and B. The main differences

between them are:

(1) svðA;BÞ is a one-step method, whereas Bonissone’s method is a two-step method.
(2) svðA;BÞ considers two features of A and B (shape and proximity). In Bonissone’s first step, four features

(centroid, cardinality, fuzziness and skewness) are considered, and in his second step, only one feature is
considered (the modified Bhattacharya distance).

(3) svðA;BÞ measures the similarity between A and B, i.e. a larger svðA;BÞ means A and B are more similar.
On the other hand, Bonissone’s method measures the distance (or difference) between A and B, i.e. a
larger d2ðA;BÞ means A and B are less similar.

5.2.5. Comparison with Wenstøp’s linguistic approximation method
Wenstøp [42], who considered the same problem as Bonissone, states: ‘‘a linguistic approximation routine is

a function from the set of fuzzy subsets to a set of linguistic values.’’ Wenstøp used two parameters of a T1 FS,
its imprecision (cardinality) and its location (centroid). The imprecision (p1) was defined as the sum of mem-
bership values, whereas the location (p2) was defined as the center of gravity. He then computed
dWðA;BiÞ ¼ ½ðp1
A � p1

Bi
Þ2 þ ðp2

A � p2
Bi
Þ2�1=2 i ¼ 1; . . . ;N ð36Þ
and chose Bi with the smallest dWðA;BiÞ as the one most similar to A. Observe that Wenstøp’s method is a
simplified version of Bonissone’s first step, and his method is quite similar to the VSM method in that both
of them use the centroid and cardinality. The differences are:

(1) The VSM computes the similarity between two T1 FSs, whereas Wenstøp’s method computes the differ-
ence between two T1 FSs.

(2) The VSM first aligns A and B and then computes the cardinalities of A \ B0 and A [ B0, whereas Wen-
støp’s method computes cardinalities of A and B directly.

(3) The VSM can be used for T1 FSs of any shapes, whereas, as shown in [42], the two parameters in Wen-
støp’s method are insufficient criteria for satisfactory linguistic approximation. As a further refinement,
he includes other characteristics of FSs, e.g. non-normality, multi-modality, fuzziness and dilation [42].

5.2.6. Comparison with Tsiporkova and Zimmermann’s similarity measure

Tsiporkova and Zimmermann [40] proposed a similarity measure ‘‘resulting from the aggregation of the

compatibility and the equality of FSs’’
sTZðA;BÞ ¼ AggðComðA;BÞ;EqlðA;BÞÞ ð37Þ
show w2
j in (34) rather than wj, because this is the way the equation is stated in [4].
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where ComðA;BÞ is a compatibility measure defined as
ComðA;BÞ ¼
sup
x2X
ðlAðxÞHlBðxÞÞ

sup
x2X
ðlAðxÞ _ lBðxÞÞ

; ð38Þ
EqlðA;BÞ is an equality measure defined as
EqlðA;BÞ ¼ IncðA;BÞHIncðB;AÞ ð39Þ
IncðA;BÞ ¼ inf

x2X
IðlAðxÞ; lBðxÞÞ ð40Þ

Iða; bÞ ¼ supfcjc 2 ½0; 1� and aHc 6 bg ð41Þ
and Aggða; bÞ is an aggregation operator defined as
Aggða; bÞ ¼ aHðb _ kÞ ð42Þ
where k is an adjustable parameter.
Tsiporkova and Zimmermann [40] did not specify an application for sTZðA;BÞ. It is of interest in this paper

because sTZðA;BÞ is quite similar to the VSM in that it also consists of two elements, and a crisp similarity is
obtained by aggregating the two elements; however, the aggregation operator in sTZðA;BÞ is more difficult to
understand than the product operator used in the VSM. Additionally, special attention should be paid to the
choice of k in the aggregation operator. As pointed out by Tsiporkova and Zimmermann [40], ‘‘� � � the choice

of k should be application-oriented. However, the use of a constant parameter for a compensation between the

compatibility and the equality of FSs, does not seem to guarantee that the similarity measure will always be very

sensitive to the different degrees of similarity or dissimilarity.’’ For example, when ComðA;BÞ ¼ 1 and
EqlðA;BÞ ¼ 0, the similarity is always k (examples are shown in the next subsection). They continue to point
out that ‘‘� � � though such values for the compatibility and the equality can be obtained for many different pairs of
FSs and it is rather strange to consider them similar to the same degree.’’ Consequently, they suggested to use a
dynamic k, e.g., k ¼ cardðA \ BÞ=cardðA [ BÞ. Unfortunately, generally we lose the transitivity property of the
similarity measure if dynamic k is used [40].

5.2.7. Examples

For T1 FSs shown in Fig. 8, the results of Bonissone’s linguistic approximation distance measure, Wen-
støp’s linguistic approximation measure, Tsiporkova and Zimmermann’s similarity measure and the VSM
are shown in Table 4. The domain of x was discretized into 201 equally-spaced points in all three methods.
Note that all Bk ðk ¼ 1; . . . ; 4Þ are assumed to survive Bonissone’s first step, hence (35) was used to compute
Bonissone’s distance measure. Observe that Tsiporkova and Zimmermann’s similarity measure with k ¼ 0:5
indicates sðA;B1Þ ¼ sðA;B2Þ ¼ k ¼ 0:5, which is counter-intuitive. This is an example of the problem pointed
out at the end of Section 5.2.6. All other methods indicate B2 is more similar to A than B1 is, which seems
reasonable.
A 2B

1B

(x)μ

x
0 104                93 14 1615

3B
4B

1

17 20 21 242

Fig. 8. T1 FSs used in the comparative study.



Table 4
Comparisons of distance/similarity measures for T1 FSs A and Bk ðk ¼ 1; . . . ; 4Þ shown in Fig. 8

Measure k = 1 k = 2 k = 3 k = 4

d2ðA;BkÞ 0.1086 0.7183 1 1
dWðA;BkÞ 9.0889 15.8994 20.6216 37.5736
sTZðA;BkÞ ðk ¼ 0:5Þ 0.5 0.5 0 0
sTZðA;BkÞ kk ¼ cardðA\Bk Þ

cardðA[Bk Þ

� �
a 0.8394 0.1825 0 0

ssðA;BkÞ 0.8394 0.1615 0.0201 0.0013

Note that d2ðA;BkÞ and dWðA;BkÞ are distance measures.
a In this case, k1 ¼ 0:8394, k2 ¼ 0:1825 and k3 ¼ k4 ¼ 0. Observe that sTZðA;BkÞ ¼ kk .
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6. Conclusions

In this paper, our goal has been to solve the linguistic approximation problem, i.e., to find the eBi which
most closely resembles eA. After reviewing four existing similarity measures for IT2 FSs and pointing out their
short-comings, a vector similarity measure for IT2 FSs was proposed. Because a T1 FS is a special cases of an
IT2 FS (when all uncertainty disappears), the proposed VSM can also be used for T1 FSs.

The VSM is the first IT2 FS similarity measure that has a vector form. It is easy to understand, and its two
components enable us to consider the similarity between shapes and proximity separately and explicitly. One
reviewer mentioned the problem of looking for a particular shape in a figure. In this context, proximity and
rotation are not important, and only the shape should be considered. The VSM cannot handle this case
because it is a similarity measure of FSs, and it may not be useful as a similarity measure of points, vectors,
figures, functions, etc. Our comparative study showed that the VSM gives reasonable similarity measures in
linguistic approximation and does not have the short-comings of the four existing similarity measures. It
has already been used in [43] as the decoder in the Per–C (Fig. 1).
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Appendix A. Background on interval type-2 fuzzy sets

A.1. Interval type-2 fuzzy sets (IT2 FS)

An IT2 FS, eA, is to-date the most widely used kind of T2 FS, and is the only kind of T2 FS that is con-
sidered in this paper. It is described as10
10 Th
eA ¼ Z
x2X

Z
u2Jx

1=ðx; uÞ ¼
Z

x2X

Z
u2Jx

1=u
� ��

x ðA:1Þ
where x is the primary variable, Jx, an interval in ½0; 1�, is the primary membership of x, u is the secondary var-

iable, and
R

u2Jx
1=u is the secondary membership function (MF) at x. Note that (A.1) means:eA : X ! f½a; b� : 0 6 a 6 b 6 1g. Uncertainty about eA is conveyed by the union of all of the primary member-

ships, called the footprint of uncertainty of eA [FOUðeAÞ], i.e.
FOUðeAÞ ¼[
x2X

J x ¼
[
x2X

½l~AðxÞ; l~AðxÞ� ðA:2Þ
is background material is taken from [33]. See also [25].



1

0
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Fig. 9. An interval type-2 fuzzy set. Ae is an embedded type-1 fuzzy set.
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An IT2 FS is shown in Fig. 9. The FOU is shown as the shaded region. It is bounded by an upper MF (UMF)
l~AðxÞ and a lower MF (LMF) l~AðxÞ, both of which are T1 FSs; consequently, the membership grade of each
element of an IT2 FS is an interval ½l~AðxÞ; l~AðxÞ�.

Note that an IT2 FS can also be represented as
11 Alt
Doing
eA ¼ 1=FOUðeAÞ ðA:3Þ

with the understanding that this means putting a secondary grade of 1 at all points of FOUðeAÞ.

For discrete universes of discourse X and U, an embedded T1 FS Ae has N elements, one each from
J x1
; J x2

; . . . ; J xN , namely u1; u2; . . . ; uN , i.e.
Ae ¼
XN

i¼1

ui=xi ui 2 J xi � U ¼ ½0; 1� ðA:4Þ
Examples of Ae are l~AðxÞ and l~AðxÞ; see, also Fig. 9. Note that if each ui is discretized into Mi levels, there will
be a total of nA Ae, where
nA ¼
YN
i¼1

Mi ðA:5Þ
Mendel and John [29] have presented a Representation Theorem for a general T2 FS, which when specialized
to an IT2 FS can be expressed as:

Representation Theorem for an IT2 FS: Assume that primary variable x of an IT2 FS eA is sampled at N

values, x1; x2; . . . ; xN , and at each of these values its primary memberships ui are sampled at Mi values,
ui1; ui2; . . . ; uiMi . Let Aj

e denote the jth embedded T1 FS for eA. Then eA is represented by (A.3), in which11
FOUðeAÞ ¼[nA

j¼1

Aj
e ¼ fl~AðxÞ; . . . ; l~AðxÞg � ½l~AðxÞ; l~AðxÞ�: ðA:6Þ
This representation of an IT2 FS, in terms of simple T1 FSs, the embedded T1 FSs, is very useful for deriving
theoretical results; however, it is not recommended for computational purposes, because it would require the
enumeration of the nA embedded T1 FSs and nA [given in (A.5)] can be astronomical.

A.2. Centroid of an IT2 FS

The centroid of an IT2 FS has been well-defined by Karnik and Mendel [19]. Let Ae be an embedded T1 FS
of an IT2 FS eA. The centroid of eA is defined as the union of the centroids of all Ae, i.e.,
C~A �
[
8Ae

cðAeÞ ¼
[
8Ae

R
X x � lAe

ðxÞdxR
X lAe
ðxÞdx

¼ ½clðeAÞ; crðeAÞ� ðA:7Þ
hough there are a finite number of embedded T1 FSs, it is customary to represent FOUðeAÞ as an interval set ½l~AðxÞ;l~AðxÞ� at each x.
this is equivalent to discretizing with infinitesimally many small values and letting the discretizations approach zero.
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where cðAeÞ is the centroid of Ae, and clðeAÞ and crðeAÞ are the minimum and maximum centroids of all Ae,
respectively. clðeAÞ and crðeAÞ can be computed by using the Karnik–Mendel (KM) algorithms [25].

A.3. Cardinality of an IT2 FS

Definitions of the cardinality of T1 FSs have been proposed by several authors, e.g. De Luca and Termini
[9], Kaufmann [21], Gottwald [14], Zadeh [47], Blanchard [2], Klement [23], Wygralak [44], etc. Basically there
are two kinds of proposals [11]: (1) those which assume that the cardinality of a T1 FS can be a crisp number;
and, (2) those which claim that it should be a fuzzy number. De Luca and Termini’s definition [9] is the most
frequently used definition of cardinality for T1 FSs:
cardðAÞ ¼
Z

X
lAðxÞdx: ðA:8Þ
It is adopted in this paper.
The cardinality of an IT2 FS eA is defined as the union of all cardinalities of its embedded T1 FSs Ae, i.e.,
cardðeAÞ �[
8Ae

cardðAeÞ ¼
[
8Ae

Z
X

lAe
ðxÞdx ¼ min

8Ae

Z
X

lAe
ðxÞdx;max

8Ae

Z
X

lAe
ðxÞdx

� �
: ðA:9Þ
(A.9) can be easily computed by:
Theorem A.1: cardðeAÞ in (A.9) can be re-expressed as
cardðeAÞ ¼ ½cardðl~AðxÞÞ; cardðl~AðxÞÞ�: ðA:10Þ
Proof
min
8Ae

Z
X

lAe
ðxÞdx ¼

Z
X
½min
8Ae

lAe
ðxÞ�dx ¼

Z
X

l~AðxÞdx ¼ cardðl~AðxÞÞ ðA:11Þ

max
8Ae

Z
X

lAe
ðxÞdx ¼

Z
X
½max
8Ae

lAe
ðxÞ�dx ¼

Z
X

l~AðxÞdx ¼ cardðl~AðxÞÞ: ðA:12Þ
(A.10) is obtained by substituting (A.11) and (A.12) into (A.9). h

Additionally, we define the average cardinality of eA as the average of its minimum and maximum cardinal-
ities, i.e.,
ACðeAÞ ¼ cardðl~AðxÞÞ þ cardðl~AðxÞÞ
2

: ðA:13Þ
Appendix B. Proof of theorems

B.1. Proof of theorem 1

B.1.1. Proof of (a)

Because
0 6 minðl~AðxÞ; l~B0 ðxÞÞ 6 maxðl~AðxÞ; l~B0 ðxÞÞ ðB:1Þ
0 6 minðl~AðxÞ; l~B0 ðxÞÞ 6 maxðl~AðxÞ; l~B0 ðxÞÞ; ðB:2Þ
it follows that
0 6

Z
X

minðl~AðxÞ; l~B0 ðxÞÞdx 6
Z

X
maxðl~AðxÞ; l~B0 ðxÞÞdx ðB:3Þ

0 6

Z
X

minðl~AðxÞ; l~B0 ðxÞÞdx 6
Z

X
maxðl~AðxÞ; l~B0 ðxÞÞdx ðB:4Þ
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Consequently,
s1ðeA; eBÞ ¼ RX minðl~AðxÞ; l~B0 ðxÞÞdxþ
R

X minðl~AðxÞ; l ~B0 ðxÞÞdxR
X maxðl~AðxÞ; l ~B0 ðxÞÞdxþ

R
X maxðl~AðxÞ; l ~B0 ðxÞÞdx

2 ½0; 1�: ðB:5Þ
B.1.2. Proof of (b)eA ¼ eB0 means l~AðxÞ ¼ l~B0 ðxÞ and l~AðxÞ ¼ l~B0 ðxÞ for 8x 2 X . Substituting these two equations into (24),
s1ðeA; eBÞ ¼ RX l~AðxÞdxþ
R

X l~AðxÞdxR
X l~AðxÞdxþ

R
X l~AðxÞdx

¼ 1; ðB:6Þ
which proves the necessity of Theorem 1b.
To prove the sufficiency of the result, observe, from (24), that s1ðeA; eBÞ ¼ 1 means
Z

X
minðl~AðxÞ;l~B0 ðxÞÞdxþ

Z
X

minðl~AðxÞ;l ~B0 ðxÞÞdx

¼
Z

X
maxðl~AðxÞ; l ~B0 ðxÞÞdxþ

Z
X

maxðl~AðxÞ; l ~B0 ðxÞÞdx: ðB:7Þ
For IT2 FSs eA and eB,
R

X minðl~AðxÞ; l ~B0 ðxÞÞdx 6¼
R

X maxðl~AðxÞ; l ~B0 ðxÞÞdx and
R

X minðl~AðxÞ; l ~B0 ðxÞÞdx 6¼R
X maxðl~AðxÞ; l ~B0 ðxÞÞdx. So, (B.7) holds only when
Z

X
minðl~AðxÞ; l~B0 ðxÞÞdx ¼

Z
X

maxðl~AðxÞ; l~B0 ðxÞÞdx ðB:8ÞZ
X

minðl~AðxÞ; l~B0 ðxÞÞdx ¼
Z

X
maxðl~AðxÞ; l~B0 ðxÞÞdx ðB:9Þ
(B.8) holds if and only if
l~AðxÞ ¼ l~B0 ðxÞ 8x 2 X : ðB:10Þ

(B.9) holds if and only if
l~AðxÞ ¼ l~B0 ðxÞ 8x 2 X : ðB:11Þ
(B.10) and (B.11) together mean eA ¼ eB0.
B.1.3. Proof of (c)

s1ðeA; eBÞ ¼ s1ðeB; eAÞ is obvious because the min and max operators in (24) do not concern the order of l~AðxÞ
and l~B0 ðxÞ, i.e. minðl~AðxÞ; l~B0 ðxÞÞ ¼ minðl~B0 ðxÞ; l~AðxÞÞ and maxðl~AðxÞ; l~B0 ðxÞÞ ¼ maxðl~B0 ðxÞ; l~AðxÞÞ, and, they
do not concern the order of l~AðxÞ and l~B0 ðxÞ either, i.e. minðl~AðxÞ; l~B0 ðxÞÞ ¼ minðl~B0 ðxÞ; l~AðxÞÞ and
maxðl~AðxÞ; l~B0 ðxÞÞ ¼ maxðl~B0 ðxÞ; l~AðxÞÞ. h

B.2. Proof of theorem 3

B.2.1. Proof of (a)

Sufficiency: eA ¼ eB means s1ðeA; eBÞ ¼ 1 and s2ðeA; eBÞ ¼ 1; hence, ssðeA; eBÞ ¼ 1.
Necessity: ssðeA; eBÞ ¼ 1 if and only if s1ðeA; eBÞ ¼ 1 and s2ðeA; eBÞ ¼ 1. s1ðeA; eBÞ ¼ 1 means the shapes of eA andeB are the same, and s2ðeA; eBÞ ¼ 1 means the distance between eA and eB is zero. Consequently, eA ¼ eB. h

B.2.2. Proof of (b)

Because neither s1ðeA; eBÞ nor s2ðeA; eBÞ concern the order of eA and eB, i.e. s1ðeA; eBÞ ¼ s1ðeB; eAÞ and
s2ðeA; eBÞ ¼ s2ðeB; eAÞ, it follows that ssðeA; eBÞ ¼ ssðeB; eAÞ. h
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B.2.3. Proof of (c)eA, eB and eC having the same shape means
s1ðeA; eBÞ ¼ s1ðeA; eCÞ ¼ s1ðeB; eCÞ ¼ 1: ðB:12Þ

cðeAÞ < cðeBÞ < cðeCÞ means dðeA; eBÞ < dðeA; eCÞ and dðeB; eCÞ < dðeA; eCÞ; consequently,
s2ðeA; eBÞ > s2ðeA; eCÞ: ðB:13Þ

and
s2ðeB; eCÞ > s2ðeA; eCÞ: ðB:14Þ

Hence,
s1ðeA; eBÞ � s2ðeA; eBÞ > s1ðeA; eCÞ � s2ðeA; eCÞ; ðB:15Þ

and
s1ðeB; eCÞ � s2ðeB; eCÞ > s1ðeA; eCÞ � s2ðeA; eCÞ; ðB:16Þ

i.e., ssðeA; eBÞ > ssðeA; eCÞ and ssðeB; eCÞ > ssðeA; eCÞ. h

B.2.4. Proof of (d)

cðeAÞ ¼ cðeBÞ ¼ cðeCÞ means
s2ðeA; eBÞ ¼ s2ðeA; eCÞ ¼ s2ðeB; eCÞ ¼ 1: ðB:17Þ
eA < eB means
s1ðeA; eBÞ ¼ R
X minðl~AðxÞ; l~BðxÞÞdxþ

R
X minðl~AðxÞ; l~BðxÞÞdxR

X maxðl~AðxÞ; l~BðxÞÞdxþ
R

X maxðl~AðxÞ; l~BðxÞÞdx
¼
R

X l~AðxÞdxþ
R

X l~AðxÞdxR
X l~BðxÞdxþ

R
X l~BðxÞdx

; ðB:18Þ
eA < eC means
s1ðeA; eCÞ ¼ RX l~AðxÞdxþ
R

X l~AðxÞdxR
X l~CðxÞdxþ

R
X l~CðxÞdx

; ðB:19Þ
and, eB < eC means
Z
X

l~BðxÞdxþ
Z

X
l~BðxÞdx <

Z
X

l~CðxÞdxþ
Z

X
l~CðxÞdx ðB:20Þ
Substituting (B.20) into (B.18) and (B.19), it follows that s1ðeA; eBÞ > s1ðeA; eCÞ; consequently,
ssðeA; eBÞ > ssðeA; eCÞ. Similarly, we can prove ssðeB; eCÞ > ssðeA; eCÞ. h

B.2.5. Proof of (e)
Observe that s1ðeA; eBÞ > 0 and s2ðeA; eBÞ > 0. Consequently, ssðeA; eBÞ > 0. �
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