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Uncertainty Bounds and Their Use in the Design of
Interval Type-2 Fuzzy Logic Systems

Hongwei Wu and Jerry M. Mendel, Fellow, IEEE

Abstract—In this paper, we derive inner- and outer-bound
sets for the type-reduced set of an interval type-2 fuzzy logic
system (FLS), based on a new mathematical interpretation
of the Karnik–Mendel iterative procedure for computing the
type-reduced set. The bound sets can not only provide estimates
about the uncertainty contained in the output of an interval
type-2 FLS, but can also be used to design an interval type-2
FLS. We demonstrate, by means of a simulation experiment,
that the resulting system can operate without type-reduction and
can achieve similar performance to one that uses type-reduction.
Therefore, our new design method, based on the bound sets, can
relieve the computation burden of an interval type-2 FLS during
its operation, which makes an interval type-2 FLS useful for
real-time applications.

Index Terms—Interval type-2 fuzzy logic system (FLS), time-se-
ries forecasting, type reduction, uncertainty bound.

I. INTRODUCTION

T HE knowledge used to construct a fuzzy logic system
(FLS) is often uncertain. The uncertainties may arise from

the following sources: 1) the words used in the antecedents
and the consequents of rules can mean different things to
different people, 2) consequents obtained by polling a group
of experts may differ, 3) the training data are noisy, and 4) the
measurements that activate the FLS are noisy [5], [9], [10]. It
has been demonstrated that type-2 FLSs are capable of dealing
with all such uncertainties [4]–[8].

The most appropriate situations for applying type-2 FLSs are
summarized in [10] as follows:

• “Measurement noise is nonstationary, but the nature of the
nonstationarity cannot be expressed mathematically ahead
of time,” e.g., time-series forecasting under variable SNR
measurements [5].

• “A data-generating mechanism is time-varying, but the
nature of the time variations cannot be expressed mathe-
matically ahead of time,” e.g., equalization and co-channel
interference reduction for nonlinear and time-varying dig-
ital communication channels [6], [7].

• “Feature are described by statistical attributes that are non-
stationary, but the nature of the nonstationarity cannot be
expressed mathematically ahead of time,” e.g., rule-based
classification of video traffic [8].
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• “Knowledge is mined from experts usingIF-THEN ques-
tionnaires,” e.g., connection admission control for ATM
networks [4].

The four kinds of uncertainties mentioned above flow through
a type-2 FLS and produce uncertainties at its output. For an
interval type-2 FLS (the only kind that is practical to date), the
output is uncertain within an interval which is obtained through
some kind oftype-reductionmethod [2], [3], [10].

Type-reduction is an extension of type-1 defuzzification,
obtained by applying the Extension Principle [12] to a specific
defuzzification method. It represents a mapping of a type-2
fuzzy set into a type-1 fuzzy set. There exist many kinds of
type-reduction methods (e.g., centroid, center-of-sets, center-of-
sums, and height type-reduction); but, for an interval type-2
FLS, regardless of the type-reduction method and how its input

is modeled (e.g., as a singleton, type-1 fuzzy set, or type-2
fuzzy set), the type-reduced set is always an interval set and
is determined by its two end points and .

In information theory, the uncertainty of a random variable
is measured by its entropy [1]. Recall that a one-dimensional
random variable that is uniformly distributed over a region has
entropy equal to the logarithm of the length of the region. Com-
paring the membership function (MF), , of an interval
fuzzy set , where

y
otherwise

(1)

with the probability density function of a random vari-
able , which is uniformly distributed over , where

otherwise
(2)

we find that they are almost the same except for their ampli-
tudes. Therefore, it is reasonable to consider theextent of the
uncertaintyof the fuzzy set to be the same as (or propor-
tional to) that of the random variable . Since the output of
an interval type-2 FLS is uncertain within the type-reduced
set, which is an interval type-1 fuzzy set, thelength of the
type-reduced set can therefore be used to measure the extent
of the output’s uncertainty.

In an interval type-2 FLS, the result of the input and an-
tecedent operations is the firing set , which is an interval
type-1 fuzzy set, i.e.,

(3)
where and represent the lower and upper firing de-
grees of theth rule (formulas for which are given in Section II)
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and is the number of rules. When, for example, center-of-sets
type-reduction (described in Section II) is used, and
can be represented as

(4)

(5)

where and ( ) are the end points of the
centroid of the consequent type-2 fuzzy sets and and

are very important switching numbers which depend on
the input (how to compute them is also described in Sec-
tion II). Only after and are determined are the
end points of the type-reduced set determined. Unfortunately,
although and are related to the input data and the
MF parameters of an interval type-2 FLS, they cannot be prede-
termined as explicit functions of these quantities. To compute

and we need to implement two iterative proce-
dures, developed by Karnik and Mendel [2], [10], for each given
value of , one for and a similar one for . The com-
putation of and represents abottleneckfor interval
type-2 FLSs. The main result of this paper is a method for elim-
inating this bottleneck so that type-2 FLSs are then feasible for
real-time applications.

Karnik, Mendel, and Liang [3] have observed that an interval
type-2 FLS can be interpreted as a collection of embedded
type-1 FLSs (Appendix I provides some background materials
about type-2 fuzzy sets, including a definition of embedded
type-1 fuzzy sets). We have found that embedded type-1 FLSs
play very important roles in understanding uncertainty in a
type-2 FLS. Two of them let us compute and ,
whereas some of the others let us compute theinner-bound
set and theouter-bound set for
the type-reduced set. Fig. 1 shows the type-reduced set and its
inner- and outer-bound sets, where and

. In this paper, we show how to compute
the inner-bound and the outer-bound sets, explain why they
are useful and important and demonstrate that they can be
computed without the computation of or .

In Section II, we provide a new mathematical interpretation to
the procedure for computing a type-reduced set. In Section III,
we derive the inner- and outer-bound sets for the type-reduced
set. In Section IV, we propose a design method for an interval
type-2 FLS based on the inner- and outer-bound sets. In Sec-
tion V, we apply the new design method to the problem of pre-
dicting the Mackey–Glass time series. Finally, in Section VI, we
draw conclusions.

II. TYPE-REDUCEDFUZZY SET FOR ANINTERVAL TYPE-2 FLS

A type-reduced fuzzy set for an interval type-2 FLS is a gen-
eralized centroid, which can be expressed as [2], [10]

Fig. 1. The type-reduced set[y (x); y (x)], its inner- and outer-bound
sets [�y (x); y (x)] and [y (x); �y (x)], and the defuzzified output of the
type-reduced set and of its approximation.� is the difference betweeny and
the average ofy and�y . � is the difference betweeny and the average of�y
andy . � is the difference between the two defuzzified values.

(6)

where is an interval type-1 fuzzy set determined by its
two end points and and is the number of rules.
For center-of-sets type-reduction, is the firing interval
and is the centroid of the consequent set of theth rule.
The meanings of and in other type-reduction
methods are explained in Appendix II.

The firing interval is determined by [5], [10]

(7)

and

(8)

where

(9)

(10)

In these equations, the inputis a -dimensional vector, i.e.,
, is the type-2 (which includes type-1

and type-0 as special cases) fuzzy model for theth input, is
the type-2 (which includes type-1 as a special case) antecedent
set of the th rule for the th input, and are lower
and upper membership functions (LMFs, UMFs) and,and
represent t-norm operations.

The end points of the type-reduced set, and , can
be computed using an iterative method, developed by Karnik
and Mendel [2], [10], which we reinterpret for the purposes of
this paper in the following:

Theorem 1: Assume and ( ) are reordered
(as required in [2] and [10]) such that

(11)

(12)
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and define and , for , , as

(13)

(14)

The end points and of the type-reduced fuzzy set
of an interval type-2 FLS, given by (6), are the minimum of all

and the maximum of all , respectively, i.e.,

(15)

where

(16)

and

(17)

where

(18)

The solutions of (16) and (18), and , are obtained
using the Karnik–Mendel iterative procedure [2], [10].

Equation (11) requires a reordering of the rules for the
calculation of and (12) requires another reordering of
the rules for the calculation of . In general, these
two reorderings are different. In (15) and (17), theand
are associated with the respective reordered rules for and

.
The Karnik–Mendel iterative procedure for determining

and is easy to implement and, is given in Ap-
pendix III. Karnik and Mendel have shown thatat most
iterations ( is the number of rules) are needed to determine

and iterations are needed to determine . In
[11], we have shown thaton average iterations
are needed to determine and iterations are
needed to determine . Although and can
be computed in parallel, we see that type-reduction represents
a major bottleneck to the use of an interval type-2 FLS in
real-time applications, especially when the rule base (i.e.,)
of the FLS and the number of input data are large.

III. I NNER- AND OUTER-BOUND SETS FOR A

TYPE-REDUCED SET

A type-reduced set is not only associated with the uncer-
tainty of the output of an interval type-2 FLS, but is also
crucial to defuzzification. Unfortunately, the time-consuming
Karnik–Mendel iterative procedure must be used to obtain
the type-reduced set. In this section we provide inner- and
outer-bound sets for the type-reduced set, both of which can be
calculated without type-reduction. These two sets can not only
be used to estimate the uncertainty contained in the output of
an interval type-2 FLS, but can also be used to directly derive
the defuzzified output under certain conditions. Consequently
the inner- and outer-bound sets have the potential to eliminate
the computional bottleneck of an interval type-2 FLS.

An interval type-2 FLS can be interpreted as a collection
of embedded type-1 FLSs [5], [10]. The following embedded
type-1 FLSs only use the LMFs (or UMFs) of the input and an-
tecedent fuzzy sets, together with the left (or right) end points
of the centroids of the consequents:

LMFs left (19)

UMFs left (20)

LMFs right (21)

UMFs right (22)

We refer to them asboundary type-1 FLSs for an interval
type-2 FLS. We have found that boundary type-1 FLSs are very
important in deriving the inner- and outer-bound sets of a type-
reduced set.

Theorem 2: The end points and of the type-re-
duced set of an interval type-2 FLS for the input, are bounded
from below and above by (Fig. 1)

(23)

(24)

where

(25)

(26)

and

(27)
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(a) (b)

(c) (d)

Fig. 2. The mean values of
p
R and

p
R for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables I and II). (a) Means ofp

R for the designs based onR . (b) Means of
p
R for the designs based onR . (c) Means of

p
R for the designs based onR . (d)

Means of
p
R for the designs based onR .

(28)

A proof of Theorem 2 is given in Appendix IV.
We refer to [ , ] and [ , ] as the inner- and

outer-bound sets for the type-reduced set [ , ] of an in-
terval type-2 FLS. From (27) and (28), we see that the lengths
of the intervals and are deter-
mined by how different the lower and upper firing degrees are

and how the consequents are distributed. When
is small (i.e., the uncertainties contained in the firing intervals
are small) and/or the difference amongand the difference
among are small1 (i.e., the consequents
are distributed close to each other), then and

are small and consequently the differences of
, , and

are small. These observations are consistent with our
intuition.

Theorem 2 is true for all type-reduction methods; however,
because [ , ] and [ , ] have different meanings for
different type-reduction methods (Appendix II), (25)–(28)
may take different values for different type-reduction methods.
These values are given in Appendix II.

1Although (27) and (28) would then appear to have a 0/0 term, they actually
have a 0�0=0 term, hence, a careful analysis of this case reveals that the second
term in (27) and (28) goes to zero.
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(a) (b)

(c) (d)

Fig. 3. The standard deviations of
p
R and

p
R for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables I and II ). (a) SDs ofp

R for the designs based onR . (b) SDs of
p
R for the designs based onR . (c) SDs of

p
R for the designs based onR . (d) SDs

of
p
R for the designs based onR .

Our main goal is tonot perform type-reduction during the
real-time operation of a type-2 FLS. We propose, therefore, to
approximate the type-reduced set by its inner- and outer-bound
sets, i.e., to approximate [ , ] by [ ,

] and to compute the output of the FLS
as (Fig. 1). If
this is going to be acceptable, then the difference between

and the usual
defuzzified output, , must be small.

Corollary 1: The difference, , between the defuzzified
outputs of the type-reduced set and its approximation set for the
input , which is defined as

(29)

is bounded from above as

(30)

A proof of Corollary 1 appears in Appendix IV.
In Section IV, we shall propose two new risk functions for

the design of an interval type-2 FLS, one including and
another including . Here, we demonstrate that using
has advantages over using . Let (see Fig. 1)

(31)

(32)
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(a) (b)

(c)

Fig. 4. The mean values of
p
�,
p
�� and (

p
� +

p
� ) for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables III and IV). (a)

Means of
p
� for the designs based onR (solid lines) and for the designs based onR (dotted lines). (b) Means of

p
�� for the designs based on

R (solid lines) and for the designs based onR (dotted lines). (c) Means of (
p
� +

p
� ) for the designs based onR (solid lines) and for the

designs based onR (dotted lines).

Then, can be rewritten as the sum or difference of
and , as follows.

• When

(33)

• When

(34)

Whereas, for , since

(35)
and

(36)
which means and

in a similar way, we then have

(37)
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(a) (b)

(c)

Fig. 5. The standard deviations of
p
�,
p
�� and (

p
� +

p
� ) for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables III and

IV). (a) SDs of
p
� for the designs based onR (solid lines) and for the designs based onR (dotted lines). (b) SDs of

p
�� for the designs based on

R (solid lines) and for the designs based onR (dotted lines). (c) SDs of (
p
� +

p
� ) for the designs based onR (solid lines) and for the

designs based onR (dotted lines).

From (34), we see that being small does not necessarily
imply that both and are small; whereas, from (37),
we see that being small is sufficient for both and

[and, therefore, [from (33) and (34)] ] to be small, in
which case the approximation set [ ,

] is close to the type-reduced set [ , ], and
their defuzzified outputs are also close.

Why is this important? When using an interval type-2 FLS,
we must be concerned about its uncertainty range (i.e., the type-
reduced set) as well as its defuzzified output. Therefore, it is
important to make both the approximation set and its defuzzified
output approach the type-reduced set and its defuzzified output,
respectively. From this point of view, using is preferred to
using during the design.

IV. A PPLICATION OF THEINNER- AND OUTER-BOUND SETS TO

DESIGNING AN INTERVAL TYPE-2 FLS

The major advantage of the inner- and outer-bound sets is
they can be calculated without having to use the Karnik–Mendel
iterative procedure. If the type-reduced set could be approxi-
mated by its inner- and outer-bound sets, then type-reduction
could be eliminated and an interval type-2 FLS could lend itself
to real-time applications.

Theorem 3: For a group of input–output data and
an interval type-2 FLS, let therisk function (i.e., the sample
mean of the squared error), , associated with the type-re-
duced set [ , ], be given by



WU AND MENDEL: UNCERTAINTY BOUNDS AND THE DESIGN OF FLSs 629

TABLE Ip
R AND

p
R FOR THETIME-SERIESFORECASTINGEXPERIMENTSBASED ONR

(38)

and the risk function , associated with its approximation
set [ , ], be given by

(39)

where and
are the defuzzified outputs of the

type-reduced set and its approximation set, respectively. Then

(40)
where and are defined in (29) and (30).

Proof: Rewrite (38) and (39) as follows:

(41)

(42)

where , , , , , and are vectors consisting
of , , , , , and

, respectively. Observe that vectors ,
and

form a triangle in an -dimen-
sional vector space. Then according to the triangle inequality2

and Corollary 1

(43)

2The triangle inequality isky +y k � ky k+ky k, wherey andy are
two vectors in anN -dimensional space andk�k is the norm defined on the space.
From the basic inequality, we can deriveky k = k(y +y )�y k � ky +
y k+ ky k, which means thatky k�ky k � ky +y k � ky k+ ky k,
i.e.,jky +y k�ky kj � ky k. Wheny represents((y +�y )=2+(y +
�y )=2)=(2� y) andy represents(y + y )=2 � ((y + �y )=2 + (y +
�y )=2)=2, we obtain the inequality in (43).
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TABLE IIp
R AND

p
R FOR THETIME-SERIESFORECASTINGEXPERIMENTSBASED ONR

In the sequel, we use and to denote the sampled mean-
squared and respectively, i.e.,

(44)

(45)

We usually choose the parameters (e.g., the number of rules
and the shapes and parameters of the input, antecedent and con-
sequent MFs) of an interval type-2 FLS to minimize . If we
could incorporate the difference between the defuzzified outputs
of the type-reduced set and its approximation set, such asor

, during the design procedure, then it should be possible to
approximate the type-reduced set by its inner- and outer-bound
sets and eliminate type-reduction during the real-time operation
period of the interval type-2 FLS.

We propose the following two risk functions for the design of
an interval type-2 FLS:

(46)
and

(47)
where is a weight. When , and

are identical to and both the new design methods
reduce to the usual one.

V. DESIGNING AN INTERVAL TYPE-2 FL PREDICTOR FOR

THE MACKEY–GLASS TIME SERIES, BASED ON AND

An interval type-2 FLS has been used to predict the chaotic
Mackey-Glass time-series in [5]. Liang and Mendel have shown
that when the chaotic signal is corrupted bynonstationarynoise,
an interval type-2 FLS achieves much better performance than
a type-1 FLS. In this section, we shall design two groups of in-
terval type-2 FLSs, one group based on and the other
group based on , to predict the Mackey-Glass time-se-
ries. We let in (46) and (47) be 1, 0.8, 0.5, 0.2, and, 0 respec-
tively. We then choose the parameters of the FLS to minimize
the corresponding or . Since our goal
is to demonstrate that the two newly-proposed design methods
will permit an interval type-2 FLS to operate without type-re-
duction, we then compare the operating performance of the in-
terval type-2 FLS with and without type-reduction for all the
above values of and for both design methods.

The Mackey–Glass time series is modeled as

(48)

When , this series exhibits chaotic behavior. After dis-
cretization, (48) can be rewritten as

(49)

and

(50)
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TABLE IIIp
�,
p
��, AND

p
� +

p
� FOR THETIME-SERIESFORECASTINGEXPERIMENTSBASED ONR

where is a small number and the initial values of for
are set randomly.

In our simulations, we chose and . We assumed
was corrupted by uniformly distributed, zero mean, nonsta-

tionary additive noise , so that the available measurements
were

(51)

where dB SNR dB. Let and
denote the standard deviations of the noise corresponding to

10 dB and 10 dB SNR, respectively. Then, at each value of,
was assumed to be uniformly distributed in the interval

[ , ] that was broken into 100 levels.
In each interval type-2 FLS designed as follows, four an-

tecedents were used for forecasting; namely, , ,
, and were used to predict and, two fuzzy

sets were used for each antecedent; hence, there were a total
of 16 rules. Gaussian primary membership functions of uncer-
tain means ( ) were chosen for the antecedents,
Gaussian primary membership functions with uncertain stan-
dard deviations ( ) were chosen for the input mea-

surements (i.e., the measurements were modeled as type-2 fuzzy
numbers) and center-of-sets type-reduction was used. The pa-
rameters to be tuned in each rule included: 1) two mean values
for each antecedent ( , , , );
2) two standard deviation values for each input measurement
( , , ); and 3) two end points of the centroid
of each consequent set (, , ). Hence, there were

parameters for each interval
type-2 FLS to be determined during the tuning procedure.

Each interval type-2 FLS was designed based on the first
1000 noisy data: . The first 504 design
data were used to tune the parameters
using a steepest descent algorithm so as to minimize the asso-
ciated risk function [ or ]; whereas, the
remaining 496 design data [ ] were used
for testing. The design procedure (training + testing) was im-
plemented for 6 epochs and in each epoch we computed the fol-
lowing quantities for the design testing data:

• the root-mean-squared error between the desired output
and the output of the interval type-2 FLS with type-reduc-
tion, ;
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TABLE IVp
�,
p
��, AND

p
� +

p
� FOR THETIME-SERIESFORECASTINGEXPERIMENTSBASED ONR

• the root-mean-squared error between the desired output
and the output of the interval type-2 FLS without type-
reduction, ;

• the root-mean-squared difference between the outputs of
the interval type-2 FLS with and without type-reduction,

and its upper bound ;
• the sum of the root-mean-squared difference between the

left end points and the root-mean-squared difference be-
tween the right end points of the type-reduced set and
its approximation set, , defined as follows
(Fig. 1):

(52)

(53)

where is the number of testing or validating data (
in our simulation). This quantity reveals the difference between
the type-reduced set and its approximation set.

Afterwards, each interval type-2 FLS wasvalidatedusing an-
other set of 496 noisy data [ ], for which
we also computed the above 5 quantities. Validation was done to
test our hypothesis that type-reduction is not needed during the
real-time operation of an interval type-2 FLS when it is properly
designed.

Because the design and validation data are random, we re-
peated this entire procedure 50 times (50 Monte-Carlo real-
izations). The means and standard deviations (SDs) of the five
quantities , , , , and for 50
realizations are summarized in Tables I–IV and Figs. 2–5. From
these results, we make the following observations.

1) From Tables I and II, we see that for both groups of ex-
periments, based on and , respectively,
the mean values and the standard deviations of
and , corresponding to the designs are
much worse than those of the other designs, both for the
testing data and the validating data (so we only plot the
mean values and the standard deviations of and

for the designs in Figs. 2 and 3; and we
only discuss the results for the designs in the fol-
lowing observations). This shows that we should not use
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TABLE V
MEANINGS OFy , y , f , �f , AND M IN (63) FOR DIFFERENTTYPE-REDUCTION METHODS

1. Prior to calculating the centroid type-reduced set, the fired type-2 fuzzy sets are unioned.

2. Prior to calculating the center-of-sums type-reduced set, the membership functions of the fired type-2 fuzzy sets are added (or a linear combination of them

is formed).

or by themselves to tune the parameters of an in-
terval type-2 FLS.

2) From Tables I–IV, we see that the mean values and the
SDs of , , , and
for the testing data and the validating data are identical
for the designs based on and .
This is because the designs based on and
reduce to the usual one when (so we only plot the
mean values and the standard deviations of, and

for the designs in Figs. 4 and 5).
3) From Figs. 2 and 3, we see that for both groups of ex-

periments, based on and , respectively,
the mean values and the standard deviations of
and for the testing data decrease and seem to
approach the same limiting values as the training epochs
increase. However, when or is weighted too much,
e.g., when , it takes more epochs of training to let
the interval type-2 FLS perform well. From Tables I and
II, we see that the results for the validating data show that
the mean values and the standard deviations of and

for all the designs, based on and
, are close; but the quantities for the de-

signs are a little worse than for the others. If we are only
concerned about the performance of an interval type-2
FLS with respect to and , then the designs
based on and can achieve similar results.

4) From Tables I and II, it appears that the best results are
achieved for the design.

5) From Figs. 4 and 5, we see that the mean values and the
standard deviations of , and for the
designs based on are always smaller than those
based on (the solid lines lie below the dotted
lines). This shows that the designs based on can
reduce the difference between the type-reduced set and
its approximation set, as well as the difference between

their defuzzified outputs. If we are also concerned about
the approximation of the type-reduced, as well as the de-
fuzzified output, then the designs based on are
preferred to those based on .

VI. CONCLUSION

Based on a new mathematical interpretation of the
Karnik–Mendel iterative procedure for computing the
type-reduced set of an interval type-2 FLS, we have derived an
inner-bound set and an outer-bound set for the type-reduced set.
Our bounds provide estimates of the uncertainty contained in
the output of an interval type-2 FLS without having to perform
the costly computations of type-reduction.

We have also shown how to incorporate the difference,,
between the defuzzified outputs of the type-reduced set and its
approximation set and its upper bound into the design of
an interval type-2 FLS, so that the resulting FLS can be used
during real-time applications. Our simulation experiments have
demonstrated that an interval type-2 FLS designed based on

or can operate without type-reduction and can
achieve similar performance, in the defuzzified output level, to
one that uses type-reduction. Our new method therefore looks
very promising to relieve the computation burden of an interval
type-2 FLS during operation, which will make an interval type-2
FLS very useful for real-time applications.

We prefer in the design, because an interval type-2
FLS designed based on it can operate without type-reduction
and can achieve similar performance, in both the type-reduced
and the defuzzified output levels, to one that uses type-re-
duction. Before the design, an appropriate weight
should be determined in terms of the tradeoff between the con-
vergence speed and the approximation accuracy (a larger value
of results in a faster convergence of the FLS, but a larger
difference between the type-reduced set and its approximation
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set). Our example suggests choosing . In summary,
after the FLS is designed, its operational equations are: ,

, and , using (25)–(28), and
(to approximate the type-reduced set) and

finally (to obtain
the defuzzified output from the approximation set).

APPENDIX I
BACKGROUND KNOWLEDGE ABOUT TYPE-2 FUZZY SETS AND

FLSS

In this appendix, we collect some important definitions about
type-2 fuzzy sets ([2], [5], [10]).

A. Definition 1

A type-2 fuzzy set, denoted , is characterized by a type-2
membership function , i.e.,

(54)

where denotes union over all admissibleand . At each
fixed value of , is theprimary membership of .

B. Definition 2

At each value of , say , the 2D plane whose axes
are and is called a vertical slice of . A
secondary membership functionis a vertical slice of .
It is for and , i.e.,

(55)
in which . The type-2 fuzzy set can be re-ex-
pressed as

(56)

The amplitude, , of a secondary membership function is
called asecondary grade.

C. Definition 3

Assume that each of the secondary membership functions of a
type-2 fuzzy set has only one secondary grade that equals one. A
principal membership function is the union of all such points
at which this occurs, i.e.,

(57)

and is associated with a type-1 fuzzy set.

D. Definition 4

Uncertainty in the primary memberships of a type-2 fuzzy set
consists of a bounded region which is called the footprint of

uncertainty (FOU) of , i.e.,

(58)

E. Definition 5

The UMFs and LMFs and of a type-2 fuzzy setare two
type-1 membership functions that are bounds for its FOU. The
upper membership function is associated with the upper bound
of FOU and is denoted , . The lower mem-

bership function is associated with the lower bound of FOU
and is denoted , , i.e.,

FOU (59)

and

FOU (60)

F. Definition 6

For continuous and , anembedded type-1 set of a
type-2 fuzzy set , is

(61)

For discrete (with points) and (with points)

(62)

In the continuous case, the number of is uncountable,
whereas for the discrete case, there are of the .

G. Definition 7

An FLS (which contains rules, fuzzifier, inference engine
and output processor) is atype-2 FLS when either its inputs,
antecedents, or consequents are type-2 fuzzy sets. The output
processor of a type-2 FLS consists of type-reduction followed
by defuzzification. For aninterval type-2 FLS, the secondary
membership functions of the inputs, antecedents and consequent
sets are all intervals sets.

H. Definition 8

An embedded type-1 FLSfor a type-2 FLS is associated
with the embedded type-1 fuzzy sets of the inputs, antecedents
and consequents. A type-2 FLS can be interpreted as a collection
of embedded type-1 FLSs.

APPENDIX II
BRIEF COMPARISON OFDIFFERENT TYPE-REDUCTION

METHODS FORINTERVAL TYPE-2 FLSS

Center-of-sets, centroid, center-of-sums, and height type-re-
duction can all be expressed as in (6) [2], [10], which we repeat
here for the convenience of the readers

(63)

For the different type-reduction methods,, , , and
have different meanings, as summarized in TABLE V.

Due to the differences among these type-reduction methods,
the boundary type-1 FLSs are different depending on which
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type-reduction method is implemented. When centroid,
center-of-sums and height type-reduction are used, since

, an interval type-2 FLS has onlytwo associated
boundary type-1 FLSs, namely

(64)

(65)

For these type-reduction methods, the inner- and outer-bound
sets of the type-reduced set are

(66)

(67)

and

(68)

(69)

APPENDIX III
THE KARNIK-MENDEL ITERATIVE PROCEDURE

can be obtained by the following iterative procedure.

1) Initialize by setting for
and compute .

2) Find so that .
3) Set for and for

and then compute .
4) Check if . If yes, stop. Otherwise, go to Step 5).
5) Set equal to . Go to Step 2).
One pass through Steps 2)–5) is called one iteration. Step 1)

is an initialization. can be obtained using a procedure
similar to the above. Only two changes need to be made:

1) is replaced by ;
2) in Step 3), set for and

for , and then compute
.

APPENDIX IV
PROOFS OFTHEOREM 2 AND COROLLARY 1

A. Proof of Theorem 2

We prove Theorem 2 in two steps. First, we show [ ,
] is an inner bound for the type-reduced set (Fig. 1). Then,

we derive the outer-bound set, [ , ], based on the dis-
tance between the type-reduced set and its inner-bound set.

1) Inner-Bound Set : It follows from (15)
that

and (70)

and from (17) that

and (71)

Hence

(72)

and

(73)

Next, we show that so that [ , ] is

a valid set. Observe from (19) and (21) that and
share the same parameters , each modified by dif-
ferent variables— versus . Because

is a monotonically increasing function
of the variables , it follows that

(74)

In a similar manner for and , it follows that

(75)

Consequently

(76)
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which means [ , ] is a valid inner-bound set for [ ,
].

2) Outer-Bound Set : We shall analyze the
difference between the type-reduced set and its inner-bound set
to derive its outer-bound set. For notational simplicity,

and .

1) In (72), we have shown . We next show
that is bounded from above, i.e.,

, from which it follows that
. To determine , we begin by using the following

inequality:

(77)

for . To understand this inequality we can,
without loss of generality, assume , in which case

. Thus, we need only show that
. But this inequality is

valid, since and . Although (77) is in terms
of a free parameter , in the following we determine an
optimal value for , .

From (25), observe that

, hence, apply-
ing (77) to this equation, we find

(78)

Before finding , we obtain expressions for
and .

Expressing and using (13) and using
(15) for , we find that

(79)
where the latter inequality follows from (70), hence,

(80)

since . In a similar manner, we find
that

(81)

where the latter inequality also follows from (70), hence

(82)
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Note that it is always possible to express
and in terms of , as

(83)

and

(84)

where is determined by (just
solve (83) for ). Substituting (80)–(84) into (78), we find
that

(85)

where

(86)

Next, we treat and as independent variables and use
the min–max method to find , i.e.,

(87)

Notice that is the maximum of with re-
spect to and is the minimum of with
respect to . Since is indirectly determined
by the input , we cannot arbitrarily choose its value;
instead, we consider the worst case (i.e., the maximum
value) of with respect to, to find the upper bound
for . On the other hand, since is a

free parameter, we can choose its value arbitrarily to find
a tight upper bound for .

To find and , we calculate the partial deriva-
tive of in (86) with respect to as follows:

(88)

Because the numerator of (88) is not a function of, we
cannot determine by setting . Instead,
we must analyze (88) in order to determine. We observe
the following from (88).

• When is chosen so that

(89)

with defined as

(90)

then , which means that is a
monotonically decreasing function with respect to
and, therefore, its maximum value with respect to
occurs at , i.e.,

(91)

In this case, is a monotonically decreasing
function with respect to and, therefore

(92)

• When is chosen so that

(93)

then , which means is inde-
pendent of , i.e.,



638 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

(94)

• When is chosen so that

(95)

then , which means that is
a monotonically increasing function with respect to

and, therefore, its maximum value with respect to
occurs at , i.e.,

(96)
In this case, is a monotonically increasing
function with respect to and, therefore

(97)

Equations (92), (94), and (97) show that min–max
of is achieved when and is indepen-
dent of , i.e.,

(98)

Therefore, we substitute into (85). Doing this,
we find that

(99)

where we have used the definitions of and
in (13) to get the last line from the second line.

2) Proceeding in the same way, we get a similar result for
, i.e.,

(100)

3) From (99) and (100), we obtain the following lower bound
for and upper bound, for :

(101)

with the right-hand side of the inequality defined as
and

(102)

with the right-hand side of the inequality defined as
. Because , [ , ] is a valid

outer-bound set for [ , ].

B. Proof of Corollary 1

is the difference between the defuzzified outputs of
the type-reduced set [ , ] and its approximation set
[ , ] and it can be written as
follows:
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(103)

This equation is the starting point for the derivation of .

1) From Fig. 1, it is clear that

(104)

and

(105)

i.e.,

(106)

Adding (104) and (106) together, we get

(107)

Hence (see Fig. 1)

(108)

2) Similarly (see Fig. 1)

(109)

3) Combining the aforementioned results, we find that

(110)
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