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Uncertainty Bounds and Their Use in the Design of
Interval Type-2 Fuzzy Logic Systems

Hongwei Wu and Jerry M. Mendgefellow, IEEE

Abstract—in this paper, we derive inner- and outer-bound » “Knowledge is mined from experts usingTHEN ques-

sets for the type-reduced set of an interval type-2 fuzzy logic tionnaires,” e.g., connection admission control for ATM
system (FLS), based on a new mathematical interpretation networks [4]

of the Karnik—Mendel iterative procedure for computing the - I .
type-reduced set. The bound sets can not only provide estimates The four kinds of uncertainties mentioned above flow through

about the uncertainty contained in the output of an interval @ type-2 FLS and produce uncertainties at its output. For an
type-2 FLS, but can also be used to design an interval type-2 interval type-2 FLS (the only kind that is practical to date), the
FLS. We demonstrate, by means of a simulation experiment, output is uncertain within an interval which is obtained through
that the resulting system can operate without type-reduction and some kind oftype-reductiomethod [2], [3], [10].

can achieve similar performance to one that uses type-reduction. T ducti . tensi ft 1 defuzzificati
Therefore, our new design method, based on the bound sets, can ype-réduction I1s an extension ol type- €ruzzmcation,

relieve the computation burden of an interval type-2 FLS during Obtained by applying the Extension Principle [12] to a specific
its operation, which makes an interval type-2 FLS useful for defuzzification method. It represents a mapping of a type-2

real-time applications. fuzzy set into a type-1 fuzzy set. There exist many kinds of
Index Terms—interval type-2 fuzzy logic system (FLS), time-se- type-reduction methods (e.g., centroid, center-of-sets, center-of-
ries forecasting, type reduction, uncertainty bound. sums, and height type-reduction); but, for an interval type-2

FLS, regardless of the type-reduction method and how its input
x is modeled (e.g., as a singleton, type-1 fuzzy set, or type-2
fuzzy set), the type-reduced set is always an interval set and

HE knowledge used to construct a fuzzy logic systems determined by its two end pointg(x) and ¥,.(x).

(FLS) is often uncertain. The uncertainties may arise from In information theory, the uncertainty of a random variable
the following sources: 1) the words used in the antecedefgsmeasured by its entropy [1]. Recall that a one-dimensional
and the consequents of rules can mean different things rémdom variable that is uniformly distributed over a region has
different people, 2) consequents obtained by polling a grogptropy equal to the logarithm of the length of the region. Com-
of experts may differ, 3) the training data are noisy, and 4) thring the membership function (MF)y (y), of an interval
measurements that activate the FLS are noisy [5], [9], [10].flizzy setY’, where
has been demonstrated that type-2 FLSs are capable of dealing

. INTRODUCTION

with all such uncertainties [4]-[8]. iy (y) = { 1, ye [yz,_yr] 1)
The most appropriate situations for applying type-2 FLSs are 0, otherwise
summarized in [10] as follows: with the probability density functiopy () of a random vari-

* “Measurement noise is nonstationary, but the nature of tagleY”, which is uniformly distributed ovely;, »..], where
nonstationarity cannot be expressed mathematically ahead L
of time,” e.g., time-series forecasting under variable SNR py(y) = { Wy YE [yz,_y,,] 2)
measurements [5]. 0, otherwise
* “A data-generating mechanism is time-varying, but thge find that they are almost the same except for their ampli-
nature of the time variations cannot be expressed mathgdes. Therefore, it is reasonable to consideregent of the
matically ahead oftime,” e.g., equalization and co-channghcertaintyof the fuzzy sett’ to be the same as (or propor-
interference reduction for nonlinear and time-varying digional to) that of the random variabl’. Since the output of
ital communication channels [6], [7]. an interval type-2 FLS is uncertain within the type-reduced
* “Feature are described by statistical attributes thatare nQast, which is an interval type-1 fuzzy set, thength of the
stationary, but the nature of the nonstationarity cannot Bge-reduced set can therefore be used to measure the extent
expressed mathematically ahead of time,” e.g., rule-basgdthe output's uncertainty.
classification of video traffic [8]. In an interval type-2 FLS, the result of the input and an-
tecedent operations is the firing 6t(x), which is an interval
type-1 fuzzy set, i.e.,
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andM is the number of rules. When, for example, center-of-sets
type-reduction (described in Section Il) is usgdx) andy,.(x) +7 Y+Y Yy 47 l
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- Fig. 1. The type-reduced sét:(x), y-(x)], its inner- and outer-bound
i i ; sets [f:(x),y _(x)] and [y,(x), §-(x)], and the defuzzified output of the

Where_yl and Yr (L = 1. M) are the end points of thetype-reduced set and of its approximatiénis the difference betweep and

centroid of the consequent type-2 fuzzy sets dri¢x) and the average of, andy.. &, is the difference betweey. and the average af.

R*(x) are very important switching numbers which depend amdy . ¢ is the difference between the two defuzzified values.

the inputx (how to compute them is also described in Sec-

tion Il). Only after L*(x) and R*(x) are determined are the Mo

end points of the type-reduced set determined. Unfortunately, / / . El Fy
' Clyjwi] J Pl F

- M
> f
i=1

althoughL*(x) and R*(x) are related to the input data and the = (6)
MF parameters of an interval type-2 FLS, they cannot be prede-

termined as explicit functions of these quantities. To compute
L*(x) and R*(x) we need to implement two iterative procewhereY; »(x) is an interval type-1 fuzzy set determined by its
dures, developed by Karnik and Mendel [2], [10], for each giveio end pointsy,(x) andy,.(x) and M is the number of rules.
value ofx, one forL*(x) and a similar one foRR*(x). The com- For center-of-sets type-reductioff;, /7] is the firing interval
putation ofL*(x) andR*(x) represents hottlenecKor interval and(y;, 4] is the centroid of the consequent set of ttrerule.

type-2 FLSs. The main result of this paper is a method for elinthe meanings off*, /] and [yi,%¢] in other type-reduction
inating this bottleneck so that type-2 FLSs are then feasible f@lethods are explained in Appendix I1.

real-time applications. The firing interval[f*, /7] is determined by [5], [10]
Karnik, Mendel, and Liang [3] have observed that an interval -
type-2 FLS can be interpreted as a collection of embedded fr= ) =T f (z) 7)

type-1 FLSs (Appendix | provides some background materials
about type-2 fuzzy sets, including a definition of embeddeahd
type-1 fuzzy sets). We have found that embedded type-1 FLSs _
play very important roles in understanding uncertainty in a f
type-2 FLS. Two of them let us computg(x) and y,.(x),
whereas some of the others let us computeitimer-bound
set [7(x),y (x)] and theouter-bound sefy (x), 7.(x)] for ;
the Etyrge—)re_él(m)e]d set. Fig. 1 shows the ty%elgre)duc(ed)]set andits £ (#%) o /wchk [ﬁ%k () *H (@)]/z (9)
inner- and outer-bound sets, wheygx) € [y,(x), %(x)] and _
ur(X) € [y (x),7,(x)]. In this paper, we show how to compute fr () ISUP/ (7%, (@) * I (zx)]/zx (10)
the inner-bound and the outer-bound sets, explain why they R EX
are useful and important and demonstrate that they can lbethese equations, the inputis ap-dimensional vector, i.e.,
computed without the computation 6f(x) or R*(x). x = [z1,22,..., 2|1, Xi is the type-2 (which includes type-1

In Section Il, we provide a new mathematical interpretation tand type-0 as special cases) fuzzy model forkillh\einput,ﬁ,i is
the procedure for computing a type-reduced set. In Section ke type-2 (which includes type-1 as a special case) antecedent
we derive the inner- and outer-bound sets for the type-reducsst of theith rule for thekth input, 1(-) and fi(-) are lower
set. In Section IV, we propose a design method for an intenahd upper membership functions (LMFs, UMFs) aficgnd x
type-2 FLS based on the inner- and outer-bound sets. In Sggpresent t-norm operations.
tion V, we apply the new design method to the problem of pre- The end points of the type-reduced sgfx) andy,.(x), can
dicting the Mackey—Glass time series. Finally, in Section VI, wiee computed using an iterative method, developed by Karnik

Fix) =T fu (xn) (@)

where

draw conclusions. and Mendel [2], [10], which we reinterpret for the purposes of
this paper in the following:
Il. TYPE-REDUCED FUZZY SET FOR ANINTERVAL TYPE-2 FLS Theorem 1: Assumey! andy’. (i = 1,..., M) are reordered

A type-reduced fuzzy set for an interval type-2 FLS is a gel@s required in [2] and [10]) such that

eralized centroid, which can be expressed as [2], [10
P [2], 110] yi <yi <<y (11)

Yrr(x) = [yi(x), yr(X)] ur <yr <yl (12)
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and definegl( (x) andy(R)( ),for0<L,R<M,as [ll. INNER- AND OUTER-BOUND SETS FOR A
L M TYPE-REDUCED SET
o) El it i:%;rli Yi A type-reduced set is not only associated with the uncer-
Y (x)=— Y (13) tainty of the output of an interval type-2 FLS, but is also
S+ > crucial to defuzzification. Unfortunately, the time-consuming
=1 =L+l Karnik—-Mendel iterative procedure must be used to obtain

U = (14)

; Moo the type-reduced set. In this section we provide inner- and
=0T o outer-bound sets for the type-reduced set, both of which can be
R ‘ calculated without type-reduction. These two sets can not only
Z [+ ‘ > I be used to estimate the uncertainty contained in the output of
an interval type-2 FLS, but can also be used to directly derive

The end pointg;(x) andy,(x) of the type-reduced fuzzy setine defuzzified output under certain conditions. Consequently
of an interval type-2 FLS, given by (6), are the minimum of allhe inner- and outer-bound sets have the potential to eliminate

y"(x) and the maximum of aly{"” (x), respectively, i.e.,  the computional bottleneck of an interval type-2 FLS.
. (L) (LM (x) An interval type-2 FLS can be interpreted as a collection
w(x) _0<HLH§1M{ ( )} Y () of embedded type-1 FLSs [5], [10]. The following embedded
L* (x) M o type-1 FLSs only use the LMFs (or UMFs) of the input and an-
> [y > 'y tecedent fuzzy sets, together with the left (or right) end points
= Z=1( ; i=Lr G+l (15) of the centroids of the consequents:
L*(x M .
fi + i Fup+-+ My
7‘; f i:L*Z(;c)-i—li {LMFs, left} : y(o)( ) == le T +_fM l (19)
where =1 o
o (UMFs, left} : 5 (x) _flu++ fj\fyljw 20
L*(x) = arg min <y, " (x) (16) fr++ M
4
0<L<M flyl +---+fM M
and {LMFs,fighty 4, (o) ===~ (@)
yr(x) = max JyP(x) | =y (x) Pl MM
OSRSM{ } {UMFs; right} : 4” (x) = / yf_li :’}My" - (22)
R(x) M o
Z I+ Z(:) Iy We refer to them adoundary type-1 FLSsfor an interval
i =R+ (17) type-2 FLS. We have found that boundary type-1 FLSs are very
Rz(:x) f I % fi important in deriving the inner- and outer-bound sets of a type-
=R (x)+1 reduced set.
Where Theorem 2: The end points;(x) andy,(x) of the type-re-
duced set of an interval type-2 FLS for the inpaiare bounded
R*(x) = arg ey {yfR)( )} ) (18) from below and above by (Fig. 1)
Th luti f (16) and (18L* dRr* btained B, (%) <) = ix) (23)
e solutions of (16) and (18],*(x) an (x), are obtaine y (%) <yo(x) < Fr(x) (24)

using the Karnik—Mendel iterative procedure [2], [10].
Equation (11() )requires a reordering of thé rules for the Where
calculation OfylL (x) and (12) requires another reordering of _ . (0) (M)
= , 25
the M rules for the calculation of¢™ (x). In general, these Fifx) = min {yl (), 91 (X)} (25)
two reorderings are different. In (15) and (17), tfleand f*

are associated with the respective reordered ruleg faf) and

(). v, (x) = max {4 (x), 5 () } (26)
The Karnik—Mendel iterative procedure for determining

L*(x) and R*(x) is easy to implement and, is given in Ap-2"

pendix Ill. Karnik and Mendel have shown that mostM % (fi - fi)

iterations (/ is the number of rules) are needed to determine _ i=1 =

L*(x) and M iterations are needed to determid¥(x). In () =) = | 7 = Mo

[11], we have shown thabn average(M + 2)/4 iterations ;1 ’ e

are needed to determirfe*(x) and (M + 2)/4 iterations are T u - v

needed to determin®*(x). Although L*(x) and R*(x) can S W) M -

be computed in parallel, we see that type-reduction represents w =1 =1

a major bottleneck to the use of an interval type-2 FLS in 2 fi( _ ) + % fi ( _ z)

real-time applications, especially when the rule base @#8., i=1 Y= i=1 Y Y

of the FLS and the number of input data are large. 27)
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Fig. 2. The mean values of Rrr andv/ R .pp for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables | and Il). (a) Means of
v R for the designs based did 5z _ s . (b) Means ofy/ R+ for the designs based ddir»_ A . (C) Means of/ R 4 p p for the designs based dd;-_ . (d)
Means ofy/ R 4 pp for the designs based dRrr— .

M

S (P - 1) and how the consequents are distributed. _\A@\il.(fi D)
B B = = is small (i.e., the uncertainties contained in the firing intervals
b(x) =y, () + | 55 M are small) and/or the difference amopgand the difference
Z:lfZ ;i amongy’ (i = 1,...,M) are small (i.e., the consequents
Ty u are distributed close to each other), tHer(x) — y,(x)| and
Sl —yl) X S (M =) |9-(x) — y_(x)| are small and consequently the differences of
= = b9 bl o)~ ), )~y 0 andl )
Fili o1 L y-(x)| are small. These observations are consistent with our
;1 (i —yt)+ Z:lf (yM —yi) ition,

(28) Theorem 2 is true for all type-reduction methods; however,
because f', fi] and [y}, ¥‘] have different meanings for
A proof of Theorem 2 is given in Appendix IV. different type-reduction methods (Appendix II), (25)—(28)
We refertof(x), y (x)]and [y, (x), y-(x)] asthe inner-and may take different values for different type-reduction methods.
outer-bound sets forthetype reduced 56t), y-(x)]ofanin- These values are given in Appendix II.
terval type-2 FLS. From (27) and (28), we see that the lengthg

. _ - Although (27) and (28) would then appear to have a 0/0 term, they actually
of the intervalsyi(x) — y,(x)| and|y,(x) — y (x)| are deter- have a 0<0/0 term, hence, a careful analysis of this case reveals that the second
mined by how different t the lower and upper firing degrees ar@m in (27) and (28) goes to zero.



626 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

0.04 T T T 0.032
—-—w=1.0 A
-0~ w=0.8
- w=0.5
o= w=0.2 0.03

0.0288

0.0261

)
iy

= <
€ E-
-4 50,024
k) 5
3 3
0.0221
0.02
0.018F
L | ) L 0.016 | L L L
0015, P s . 5 5 1 2 3 4 5 6
epoch epoch
@ (b)
0.032 T
== w=1.0
-©- w=0.8
A
0.03
0.028.-
- 0.0269
- s
o a
< <
< [
] & 0.024
@ 0
k) 5
0. =%
@ 7}
0.022
0.02-
0.018
1 1 1
0016, 2 3 4 5 6
epoch
© (d)

Fig. 3. The standard deviations ¢fR+ x and\/R . p» for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables | and Il ). (a) SDs of
v Rt for the designs based dd-z_ . (b) SDs of\/ Rt for the designs based d®_ . (C) SDs ofy/ R 4 pp for the designs based dt;-z_ . (d) SDs
of v R.4pp for the designs based dir z— .

Our main goal is tanot perform type-reduction during theis bounded from above as
real-time operation of a type-2 FLS. We propose, therefore, to
approximate the type-reduced set by its inner- and outer-bound 8(x) <6(x)
sets, i.e., to approximate{x), v, (x)] by [(y,(x) + 7(x))/2, 1/ -
(y,(x)+ 7-(x))/2] and to compute the output of the FLS =1 [(yl(x) —Ql(x)) + (y,,(x) _QT(X))} - (30)
as [(y,(x) +7(x))/2 + (y,(x) +5-(x))/2]/2 (Fig. 1). If
this is going to be acceptable, then the difference betweenA proof of Corollary 1 appears in Appendix IV.
[(y,(x) +m(x))/2 + (y,(x)+9:(x))/2]/2 and the usual In Section IV, we shall propose two new risk functions for
defuzzified outputfy;(x) + ¥.-(x)]/2, must be small. the design of an interval type-2 FLS, one includisix) and
Corollary 1: The differenceg(x), between the defuzzified another including(x). Here, we demonstrate that usifig)
outputs of the type-reduced set and its approximation set for thes advantages over usifigk). Let (see Fig. 1)
input x, which is defined as

8(x) = M bi(x) = () — y’(X);gl( )‘ (31)
_%P@im®+4@>%@ﬂ‘gm M@:%®_g®;%u‘ 2
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Fig. 4. The mean values afA, VA and /A, + VA,) for the testing data, averaged over 50 Monte Carlo iterations (obtained from Tables Ill and IV). (a)
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Then,§(x) can be rewritten as the sum or differencedgix)

andé,.(x), as follows.

* Whenfy:(x) — (y,(x) + (x))/2] x [y(x) = (y

gr(x))/2] 2 0

* Whenfy(x) — (y,(x) + %(x))/2] x [u(x) = (y

yr(x))/2] <0

o(x) =

5 16x) — ..

r

r

(x) +

w(x) — y,(x)

Whereas, fob(x), since

and

(33) gi(x) — gl(x)

(x) +

2

2

y,(x) ;rz?z(X) — ()| = m(x)—y,(x) 2 0
] (35)
y(x) — w =5(x)—u(x) 20
] (36)

which means[y(x) — y,(x)]/2 > é&(x) and [g.(x) —
y (x)]/2 = é,(x) in a similar way, we then have

(34)

< bu(x) + 6r(x)

6 2 T (37)
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From (34), we see th#{x) being small does not necessarilyiV. APPLICATION OF THEINNER- AND OUTER-BOUND SETS TO
imply that bothé;(x) andé,.(x) are small; whereas, from (37), DESIGNING AN INTERVAL TYPE-2 FLS
we see that(x) being small is sufficient for botld;(x) and
6,(x) [and, therefore, [from (33) and (34){x)] to be small, in
which case the approximation sey[(x) + #:(x))/2, (y, (x) +
7-(x))/2] is close to the type-reduced set(x), v.-(x)], and

The major advantage of the inner- and outer-bound sets is
they can be calculated without having to use the Karnik—Mendel
iterative procedure. If the type-reduced set could be approxi-
mated by its inner- and outer-bound sets, then type-reduction

their defuzz!flgd outputs are also c[ose. . could be eliminated and an interval type-2 FLS could lend itself
Why is this important? When using an interval type-2 FLSo real-time applications

we must be concerned about its uncertainty range (i.e., the YPe+heorem 3: For a group of input-output daf;, y; }; ; and

reduced set) as well as its defuzzified output. Therefore, ité% interval type-2 FLS, let thesk function (i.e., the sample

important to make both the approximation set and its defuzzifiﬁqean of the squared erroi, associated with the type-re-
output approach the type-reduced set and its defuzzified outRli-ad set (), v (x)], be gi/}éh by

respectively. From this point of view, usirgx) is preferred to
usingé(x) during the design. Rrr =Rrr (X1,U1, - XN, UN)
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TABLE |
VR1r AND /R App FOR THE TIME-SERIES FORECASTINGEXPERIMENTS BASED ON Ry 1 _ &

Testing Validating
epoch 1 epoch 2 epoch 3 epoch 4 epoch5 epoch 6

w=1 VRrr mean | 0.2256  0.2120  0.2101  0.2094  0.2090  0.2088 0.2089
SD 0.0263  0.0191  0.0186  0.0184  0.0182  0.0182 0.0144

VRapp mean | 0.2250  0.2127 0.2107  0.2100  0.2095  0.2093 0.2094

SD 0.0250  0.0187  0.0181  0.0179  0.0178  0.0177 0.0138

w=08 +/Rprr mean | 0.2285 0.2122  0.2095  0.2085  0.2080  0.2078 0.2079
SD 0.0266  0.0196 0.0185  0.0182  0.0180  0.0179 0.0139

VRapp mean | 02286  0.2128 0.2098 0.2086  0.2080  0.2077 0.2077

SD 0.0260  0.0191  0.0181  0.0178 0.0176  0.0175 0.0134

w=05 +/Rprg mean| 02396 02176 0.2109 0.2087  0.2078  0.2073 0.2074
SD 0.0278  0.0220  0.0195 0.0185  0.0181  0.0178 0.0136

VvRapp mean | 0.2405 0.2183  0.2112  0.2088  0.2077  0.2072 0.2073

SD 0.0277  0.0217  0.0192  0.0182  0.0178 0.0176 0.0134

w=02 +/Rpr mean | 0.3026 0.2482 0.2304 0.2213 0.2158  0.2124 0.2128
SD 0.0353  0.0269 0.0246  0.0229  0.0215  0.0203 0.0156

VvVRapp mean | 0.3022  0.2487  0.2308 0.2215 0.2158  0.2124 0.2128

SD 0.0344  0.0269 0.0246  0.0228  0.0213  0.0201 0.0154

w=0 vRrr mean | 0.4832  0.4835  0.4838 0.4841 0.4844  0.4846 0.4852
SD 0.0762  0.0808  0.0841  0.0865 0.0883  0.0896 0.0902

VvVRapp mean | 04831  0.4834 04837 0.4840  0.4843  0.4846 0.4852

SD 0.0755  0.0803 0.0837 0.0862  0.0881  0.0894 0.0901

2 2 2

and the risk functior? s p », associated with its approximationWherey' Yo YmYpYuy, andiy,, areN x 1 VeCtO,rS con5|‘stTg
set [,(x) + 5u(x))/2, (4, (x) + 7,(x))/2), be given by 1 Vv Ok e, (k). ik 4 ) nd () (5
£ Y Y, Yr ’ 1,...,N), respectively. Observe that vectdys— (y; +v..)/2],

N 2 - SN
1 Y (Xz) + Y (Xz) _i _ 1 Xl + ¥ X,, +Yyr
N > [y - 5 (38) =~ ¥ 3 + (42)
=1

Rapp =Rapp(X1,41,--- XN, UN) y = ((,Xl /2 +, @, + y”)/2)/2].and [(yl + y”)./2 -~
N N ((Xz+YI)/2+(XT+YT)/2)/2] form a triangle in anV-dimen-
:i Z{% 1 [QI(XZ) + i) sional vector space. Then according to the triangle ineqaality
N & 2 2 and Corollary 1
B 2
| 1,06) + (%) } 39 |VRrr— v/Rarr|
2
:L Hy _ Yi +Y1
where [y(x) + u.(x)]/2 and [(4,(x)+@(x)/2 + N 2 ]
(v (x) +u-(x))/2]/2 are the defuzzified outputs of the _ ‘y 1 <Xz Ty A - y") H‘
type-reduced set and its approximation set, respectively. Then 2 2 2
. . <X ‘u
1 < 1 - VNI 2
— il 2 (x. il 2 (x.
VRrr = vVRarr| < 4| ;6 (xi) < N;é (x:) 1 <Xl+yl . XTJFYT)H
i (40) 2 2 2
whered(x) andé(x) are defined in (29) and (30). | X | X
Proof: Rewrite (38) and (39) as follows: =\ v Z §2(x;) < = Z 52(x;)
T =1 =1
1 +v. Ty,
Brn = <y - ¥> <y - ¥> (43)
:i _ Yi + Yr (41) "
N 2 2Thetrian‘gle inequality iy, +y2|| < [|y1||+||y=||, wherey, andy. are
_ _ T two vectors in adV -dimensional space ajid|| is the norm defined on the space.
R _i _ Yy, t¥y: n Yy, t¥r From the basic inequality, we can derfyg: || = |[(y1 +y2) — ¥yl < |ly. +
i 2 2 yell + |ly=|l, which means thaty || — ||y|| < lly1 + ¥l < Iyl + v,

_ _ i.e,[llyr+yoll = llyalll < lly=|l. Wheny representé(y, +5:)/2+ (y_+
<X1 ty ¥y, + y7,>:| ¥.)/2)/(2 —y) andy; representgy. +y,)/2 — ((y, Yyo/2+ (y, +

¥-)/2)/2, we obtain the inequality in (43).




630 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

TABLE I
VR1r AND VR App FOR THE TIME-SERIES FORECASTINGEXPERIMENTS BASED ONR7r_ A

Testing Validating
epoch 1 epoch 2 epoch 3 epoch 4 epoch5 epoch 6

w=1 VvErr mean | 0.2256  0.2120 0.2101  0.2094  0.2090  0.2088 0.2089
SD 0.0263  0.0191  0.018  0.0184 0.0182  0.0182 0.0144

vRapp mean | 0.2250  0.2127  0.2107  0.2100  0.2095  0.2093 0.2094

SD 0.0250  0.0187  0.0181  0.0179  0.0178  0.0177 0.0138

w=08 +/Rrg mean | 0.2290 0.2123  0.2097 0.2087  0.2082  0.2080 0.2081
SD 0.0268 0.0194 0.0184 0.0181  0.0180  0.0179 0.0139

vVRapp mean | 0.2290 0.2131 0.2101  0.2090  0.2085  0.2081 0.2082

SD 0.0262  0.0191  0.0182  0.0179  0.0178  0.0177 0.0136

w=05 +/Rrg mean | 0.2394 02175 0.2111  0.2090 0.2080  0.2075 0.2077
SD 0.0280  0.0215  0.0192  0.0183  0.0179  0.0177 0.0135

VRapp mean | 0.2405  0.2185  0.2117  0.2093  0.2082  0.2076 0.2078

SD 0.0278  0.0213 0.0191 0.0183 0.0179  0.0177 0.0135

w=02 +Rrp mean | 0.3017 0.2471 0.2292 0.2203  0.2152 0.2121 0.2125
Sb 0.0314  0.0259  0.0238  0.0221  0.0208 0.0198 0.0152

vRapp mean | 0.3018 0.2483  0.2303  0.2211  0.2158  0.2125 0.2130

SD 0.0306  0.0258  0.0237  0.0220  0.0207  0.0198 0.0152

w=0 vVRrr mean | 0.4832 0.4832 0.4833  (0.4833 0.4834  0.4834 0.4835
SD 0.0613  0.0614  0.0615 0.0617  0.0618  0.0620 0.0633

vVRapp mean | 04829 04830 04830 0.4831 0.4831  0.4832 0.4833

SD 0.0604  0.0605 0.0606  0.0607 0.0608  0.0609 0.0623

In the sequel, we usA andA to denote the sampled mean- V. DESIGNING AN INTERVAL TYPE-2 FL PREDICTOR FOR
squareds andé respectively, i.e., THE MACKEY—GLASS TIME SERIES, BASED ON Ry p_x AND
Rrr_a

A=A 1 5 An interval type-2 FLS has been used to predict the chaotic

=A(xy,. . xXN) = N Z 6% (xi) (44) Mackey-Glass time-series in [5]. Liang and Mendel have shown
’;1 that when the chaotic signal is corruptedimnstationannoise,

X A _ 1 2 an interval type-2 FLS achieves much better performance than

ASAEL. XN = ; 6°(x4)- 49 4 type-1 FLS. In this section, we shall design two groups of in-

terval type-2 FLSs, one group basedBry_x and the other

roup based oty r_ A, to predict the Mackey-Glass time-se-
We usually choose the parameters (e.g., the number of ru?leesS F\)Ne oo in (ZES aAnd (4% bel 08 0.5 Oy2 and. 0 respec-
and the shapes and parameters of the input, antecedent and ¢or: Co e ] ’

sequent MFS) of an interval type-2 FLS to minimiie . If we ﬁ\?@ly We then choose the parameters of the FLS to minimize

. : it the correspondind?;z_ s (w) or Rrr_a(w). Since our goal
could incorporate the d|ffere_nce betwgen t_he defuzzified OUtplijﬁo demonstrate that the two newly-proposed design methods
of the type-reduced set and its approximation set, suéfxaor

= ) ) : . will permit an interval type-2 FLS to operate without type-re-
6(x), dl.mn? t?: dte3|gn p:jroce(cjiuret, tt)heftn I should Ze pct)ssLt))Iec}B tion, we then compare the operating performance of the in-
approximate the type-reduced Set by 1S Inner- and Outer-boulR o v ne > FILS with and without type-reduction for all the

sets and eliminate type-reduction during the real-time operatigBOVe values ofs and for both design methods

period of the interval type-2 FLS. . . : .
We propose the following two risk functions for the design of The Mackey-Glass time seriett) is modeled as

an interval type-2 FLS: ds(t) 0.25(t — 1)

= — 0.1s(¢).
dt 146100t —7) 5(?)

(48)

Rryp alw)=Rpp_ & (w,x1,...,Xy) = wRrp+(1—w)A

(46) When7 > 17, this series exhibits chaotic behavior. After dis-
and cretization, (48) can be rewritten as
0.2s(n—7)
RTR_A(U}) ERTR—A (w,xl,...,x;\r) IwRTR—i-(].—u(}‘)l% f(S,TL) = 1+810(7’L—7‘) —0.18(71) (49)
wherew € [0,1] is a weight. Whenw = 1, Ryp_x and and
Ry p_a areidentical taRg and both the new design methods
reduce to the usual one. s(n+1)=s(n)+ hf(s,n) (50)
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TABLE 1lI
VA, JZ, AND vVA; 4+ /A, FOR THE TIME-SERIES FORECASTING EXPERIMENTSBASED ON R7r_ &

Testing Validating
epoch 1 epoch 2 epoch 3 epoch 4 epochb5 epoch6
w=1 VA mean | 0.0145 0.0168 0.0182  0.0191  0.0197  0.0200 0.0201
SD 0.0053 0.0064 0.0071  0.0075  0.0078  0.0080 0.0079
VA mean | 0.0901  0.0958  0.0956  0.0945  0.0937  0.0932 0.0932
SD 0.0114  0.0112 0.0113 0.0115 0.0116  0.0117 0.0112
VAL ++/A, mean | 00665 0.0707 0.0720 0.0718  0.0715  0.0713 0.0711
SD 0.0248  0.0241  0.0246  0.0247 0.0245  0.0241 0.0239
w=0.8 VA mean | 0.0110  0.0127  0.0132 0.0130 0.0125  0.0118 0.0118
SD 0.0042  0.0050  0.0051  0.0048 0.0046  0.0042 0.0042
VA mean | 0.07564  0.0741  0.0657  0.0570  0.0496  0.0435 0.0434
SD 0.0080  0.0070  0.0059  0.0049  0.0043  0.0039 0.0038
VA ++VA, mean | 0.0523  0.0588  0.0591  0.0563  0.0526  0.0487 0.0485
SD 0.0201  0.0204 0.0192  0.0167 0.0141  0.0119 0.0117
w=05 VA mean | 0.0064  0.0081  0.0081  0.0073  0.0061  0.0050 0.0050
SD 0.0024  0.0032  0.0033  0.0028  0.0023  0.0020 0.0020
N mean | 0.0592  0.0540  0.0431  0.0326  0.0247  0.0190 0.0190
SD 0.00564  0.0061  0.0053 0.0048 0.0042  0.0035 0.0035
VA + A, mean | 0.0320 0.0433  0.0441  0.0392  0.0325  0.0263 0.0262
SD 0.0137  0.0157 0.0135 0.0095 0.0065  0.0053 0.0052
w=0.2 VA mean | 0.0031  0.0030  0.0035 0.0037  0.0034  0.0027 0.0027
SD 0.0012  0.0011  0.0015 0.0017 0.0016  0.0013 0.0013
VA mean | 0.0481  0.0415 0.0335  0.0255  0.0188  0.0138 0.0138
SD 0.0038  0.0032  0.0043 0.0051  0.0046  0.0037 0.0037
VA + VA, mean | 0.0147  0.0206  0.0268  0.0279  0.0249  0.0203 | 0.0202
SD 0.0050  0.0088  0.0102 0.0086  0.0059  0.0041 0.0039
w=0 VA mean | 0.0019  0.0014  0.001¢6  0.0007  0.0005  0.0004 0.0004
SD 0.0007  0.0005  0.0004 0.0003 0.0002 0.0002 0.0002
VA mean | 0.0435  0.0360  0.0296  0.0244  0.0202  0.0168 0.0168
SD 0.0021  0.0016  0.0019  0.0024  0.0028  0.0030 0.0030
VA + A, mean | 0.0159  0.0133  0.0109  0.0090  0.0074  0.0061 0.0061
SD 0.0075  0.0064 0.0054 0.0046  0.0040  0.0035 0.0035

where/ is a small number and the initial values €fr) for surements (i.e., the measurements were modeled as type-2 fuzzy

n < 7 are set randomly. numbers) and center-of-sets type-reduction was used. The pa-
In our simulations, we choge= 1 andr = 30. We assumed rameters to be tuned in each rule included: 1) two mean values
s(k) was corrupted by uniformly distributed, zero mean, nonstéer each antecedentd; ,, m% ,, k= 1,...,4,i=1,...,16);
tionary additive noise.(k), so that the available measurement®) two standard deviation values for each input measurement
were (o1, 721,k =1,...,4); and 3) two end points of the centroid
of each consequent sef (%, = 1,..., 16). Hence, there were
z(k) = s(k) +n(k),  k=1001,1002,... (51) 2x4x16+2x4+2x 16 = 168 parameters for each interval

type-2 FLS to be determined during the tuning procedure.

where —10 dB < SNR < 10 dB. Leto, ;4 aNdony, o Each interval type-2 FLS was designed based on the first

denote the standard deviations of the noise corresponding : ' .
_10dB and 10 dB SNR, respectively. Then, at each valug Ofl%o noisy dataxz(1001),...,2(2000). The first 504 design

. o ; . ata[xz(1001),...,x(1504)] were used to tune the parameters
on(k) was assumed to be umform!y distributed in the InterV%sing a steepest descent algorithm so as to minimize the asso-
[Tn_10 an+ Truo us ] that was broken into 100 levels.

In each interval type-2 FLS designed as follows, four ar(}:é?;z?nrilnsk Lugneczzr;ﬁ%ﬁg(ﬁ)58$ TR’ﬁ((;f))()](;);/]\/ r\:\?é?:i,st:g
tecedents were used for forecasting; namely,—4), z(k —3), g g T

2(k—2), andz(k— 1) were used to prediat(k) and, two fuzzy f(Tr testm% fThz de5|ghn prodc_edurerftralnlr;]g testing) v(\;ai IT |
sets were used for each antecedent; hence, there were a F?arpente or 6 epochs and in each epoch we computed the fol-
. . LT 8wmg quantities for the design testing data:
of 16 rules. Gaussian primary membership functions of uncer-
tain means+#z € [my,ms]) were chosen for the antecedents, < the root-mean-squared error between the desired output

Gaussian primary membership functions with uncertain stan- and the output of the interval type-2 FLS with type-reduc-

dard deviationsd € [o1, 02]) were chosen for the input mea- tion, v/ Rrr;
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TABLE IV
VA, \/j AND v/A; + /A, FOR THE TIME-SERIES FORECASTINGEXPERIMENTSBASED ON R R _ A

Testing Validating
epoch 1 epoch 2 epoch 3 epoch 4 epochb epoch 6
w=1 VA mean | 0.0145 0.0168 0.0182  0.0191  0.0197  0.0200 0.0201
SD | 0.0053 0.0064 0.0071  0.0075  0.0078  0.0080 0.0079
VA mean | 0.0901  0.0958  0.0956  0.0945  0.0937  0.0932 0.0932
SD | 0.0114 0.0112 0.0113  0.0115  0.0116  0.0117 0.0112
VA ++A, mean | 0.0665  0.0707  0.0720  0.0718  0.0715  0.0713 0.0711
SD | 0.0248  0.0241  0.0246  0.0247  0.0245 ~ 0.0241 0.0239
w=038 VA mean | 0.0121  0.0138  0.0142 0.0140 0.0137  0.0132 0.0133
SD | 0.0043  0.0048  0.0049  0.0047  0.0044  0.0041 0.0041
VA mean | 0.0863  0.0948  0.0960  0.0953  0.0943  0.0933 0.0932
SD | 0.0112 0.0112  0.0116 0.0117  0.0118  0.0119 0.0115
VA + VA, mean | 0.0579 0.0644 0.0655 0.0639  0.0618  0.0597 0.0596
SD | 0.0227 0.0228  0.0229  0.0224  0.0218  0.0211 0.0209
w=10.5 VA mean | 0.0084 0.0105 0.0108 0.0105 0.0100  0.0094 0.0094
SD | 0.0030  0.0034 0.0034 0.0032  0.0029  0.0026 0.0028
VA mean | 0.0794  0.0892  0.0942  0.0958  0.0957  0.0952 0.0951
SD | 0.0105 0.0107 0.0114  0.0117  0.0118  0.0118 0.0116
VA + A, mean | 0.0416  0.0539  0.0579  0.0580  0.0568  0.0552 0.0551
SD | 0.0181  0.0202 0.0217  0.0220  0.0219  0.0215 0.0213
w=0.2 VA mean | 0.0049  0.0065  0.0074  0.0078  0.0078  0.0076 0.0076
SD | 0.0015  0.0020  0.0021  0.0023  0.0022  0.0022 0.0023
N mean | 0.0705  0.0761  0.0815  0.0857  0.0890  0.0912 0.0911
SD | 0.0079 0.0098 0.0101  0.0103  0.0107  0.0111 0.0111
VA + /A, mean | 0.0222  0.0327  0.0411  0.0457  0.0485  0.0500 0.0499
SD | 0.0083 0.0142 0.0164 0.0176  0.0186  0.0193 0.0192
w=0 VA mean | 0.0034 0.0035  0.0035 0.0036  0.0037  0.0037 0.0037
SD | 0.0014 0.0014 0.0014 0.0015  0.0015  0.0015 0.0015
N mean | 0.0666  0.0666  0.0666  0.0665  0.0665  0.0664 0.0664
SD | 0.0066 0.0065 0.0065 0.0065  0.0065  0.0065 0.0064
VA + A, mean | 0.0213  0.0213  0.0213  0.0213  0.0212  0.0212 0.0211
SD | 0.0087 0.0086  0.0086  0.0085  0.0085  0.0084 0.0084

« the root-mean-squared error between the desired outpufAfterwards, each interval type-2 FLS wealidatedusing an-
and the output of the interval type-2 FLS without typeether set of 496 noisy data {4505), . .., z(5000)], for which
reduction,/ R4 pp; we also computed the above 5 quantities. Validation was done to

« the root-mean-squared difference between the outputste$t our hypothesis that type-reduction is not needed during the
the interval type-2 FLS with and without type-reductionteal-time operation of an interval type-2 FLS when it is properly
VA and its upper bound/A; designed.

« the sum of the root-mean-squared difference between theBecause the design and validation data are random, we re-
left end points and the root-mean-squared difference hgeated this entire procedure 50 times (50 Monte-Carlo real-
tween the right end points of the type-reduced set aimhtions). The means and standard deviations (SDs) of the five
its approximation set,/A; + v/A,, defined as follows quantitiesy/Rrr, vEapr, VA, VA, andy/A, + /A, for 50
(Fig. 1): realizations are summarized in Tables -1V and Figs. 2-5. From

these results, we make the following observations.

1) From Tables | and Il, we see that for both groups of ex-

N . .
B 1 2, periments, based oR;r_x and Rrr_a, respectively,
A=A (%, xy) = N ;61 () (52) the mean values and the standard deviations/ &
27\, and+/ R4 pp, corresponding to ther = 0 designs are
1 .
Ar =0, (Xis 0 XN) = — Z 82 (x;) (53) much worse than those of the other designs, both for the
N P testing data and the validating data (so we only plot the

mean values and the standard deviations/@;r and
whereXN is the number of testing or validating datdl (= 496 v Rapp forthew # 0 designs in Figs. 2 and 3; and we
in our simulation). This quantity reveals the difference between  only discuss the results for the # 0 designs in the fol-
the type-reduced set and its approximation set. lowing observations). This shows that we should not use
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TABLE V

MEANINGS OF y;, ¥, f, ft, AND M IN (63) FOR DIFFERENT TYPE-REDUCTION METHODS

633

Type-reduction
method

yf and i defined

£ and —fz defined

M defined

center-of-sets
centroid!
2

center-of-sums

height

left and right end-points of the cen-
troid of the consequent of the i-th
rule

yl =y = ¢, the i-th point in the
sampled universe of discourse of the
FLS’s output

Yy o= y. = ¢, the i-th point in the
sampled universe of discourse of the
FLS’s output

yi = ¥t = ¢, a single point in the

lower and upper firing degrees of the
i-th rule

lower and upper membership grades
of the i-th sampled point of the
FLS’s output

sums of lower and upper member-
ship grades for the i-th sampled
point of all rule outputs

lower and upper firing degrees of the

number of rules
number of sam-
pled points

number of sam-
pled points

number of rules

consequent domain of the i-th rule, ¢-th rule
usually chosen to be the point hav-
ing the highest primary membership

in the principal MF of the output set

1. Prior to calculating the centroid type-reduced set, the fired type-2 fuzzy sets are unioned.
2. Prior to calculating the center-of-sums type-reduced set, the membership functions of the fired type-2 fuzzy sets are added (or a lineancdrittenati
is formed).

2)

3)

4)

5)

A or A by themselves to tune the parameters of an in-
terval type-2 FLS.

From Tables -1V, we see that the mean values and the
SDs of /Rrr, VRarr, VA, VA and VA; + VA,

for the testing data and the validating data are identical
for thew = 1 designs based oR;r_x and Rrr_a.

This is because the designs basedgn,_z andRy g a
reduce to the usual one whan= 1 (so we only plotthe  Based on a new mathematical
mean values and the standard deviationg/s¥, VA and Karnik—-Mendel iterative procedure for computing the
VA, + /A, forthew # 1 designs in Figs. 4 and 5).  type-reduced set of an interval type-2 FLS, we have derived an
From Figs. 2 and 3, we see that for both groups of eiiner-bound set and an outer-bound set for the type-reduced set.
periments, based oA, ,_x and Rrr_a, respectively, Our bounds provide estimates of the uncertainty contained in
the mean values and the standard deviationg/&frr  the output of an interval type-2 FLS without having to perform
and /R pp for the testing data decrease and seem the costly computations of type-reduction.

approach the same limiting values as the training epochsWe have also shown how to incorporate the differed¢e),
increase. However, whef or A is weighted too much, between the defuzzified outputs of the type-reduced set and its
e.g., whenw = 0.2, it takes more epochs of training to letapproximation set and its upper boufck) into the design of

the interval type-2 FLS perform well. From Tables | andn interval type-2 FLS, so that the resulting FLS can be used
I, we see that the results for the validating data show thdtiring real-time applications. Our simulation experiments have
the mean values and the standard deviatioRé®f r and demonstrated that an interval type-2 FLS designed based on
V' Rapp for all thew # 0 designs, based dR,_x and Rrgr_a Or R p_ s can operate without type-reduction and can
Rrr_a, are close; but the quantities for the= 0.2 de- achieve similar performance, in the defuzzified output level, to
signs are a little worse than for the others. If we are onlyne that uses type-reduction. Our new method therefore looks
concerned about the performance of an interval typev2ry promising to relieve the computation burden of an interval
FLS with respect toRyrr and R4 pp, then the designs type-2 FLS during operation, which will make an interval type-2
based ol r_x andRrr_a canachieve similar results. FLS very useful for real-time applications.

From Tables | and Il, it appears that the best results areWe preferR,,_x in the design, because an interval type-2
achieved for they = 0.5 design. FLS designed based on it can operate without type-reduction
From Figs. 4 and 5, we see that the mean values and #ml can achieve similar performance, in both the type-reduced
standard deviations af A, VA andv/A; ++/A, forthe and the defuzzified output levels, to one that uses type-re-
designs based oR,_s are always smaller than thoseduction. Before the design, an appropriate weight [0, 1]
based onRrr_A (the solid lines lie below the dotted should be determined in terms of the tradeoff between the con-
lines). This shows that the designs based#n,_s can vergence speed and the approximation accuracy (a larger value
reduce the difference between the type-reduced set afdw results in a faster convergence of the FLS, but a larger
its approximation set, as well as the difference betweelifference between the type-reduced set and its approximation

their defuzzified outputs. If we are also concerned about
the approximation of the type-reduced, as well as the de-
fuzzified output, then the designs based®p,_x are
preferred to those based Gty r_A.

VI. CONCLUSION

interpretation of the
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set). Our example suggests choosing= 0.5. In summary, E. Definition 5

e_lfter the FLS is ijesigneq, its operational equzﬁtions_gg(x), The UMFs and LMFs and of a type-2 fuzzy sétare two
(%), y,(x) andg,(x), using (25)~(28)ly, (x) + 7i(x)]/2and  tyne 1 membership functions that are bounds for its FOU. The
[y, (x) + 7-(x)]/2 (to approximate the type-reduced set) angy e membership function is associated with the upper bound
finally [(y,(x) + 5 (x))/2 + (y, (x) + 5.(x)/2)]/2 (to obtain  of Foy(4) and is denotegi~ (x), ¥z € X. The lower mem-

the defuzzified output from the approximation set). bership function is associated with the lower bound of E@)J

and is denotegi~ (z), vz € X, i.e.,

APPENDIX |
BACKGROUND KNOWLEDGEFALB;SUT TYPE-2 FUZzY SETS AND ﬁz(l’) —FOU (ﬁ) Vie X (59)
In this appendix, we collect some important definitions about and ~ :
type-2 fuzzy sets ([2], [5], [10]). p5(x) =FOU (A) Ve X (60)
A. Definition 1 F. Definition 6

A type-2 fuzzy set denoted4, is characterized by a type-2

. . . For continuousX and./,,, anembedded type-1 setd. of a
membership funcnomwA(x, u), i.e.,

type-2 fuzzy setd, is
ﬁ=/ / pr(aw)/(z,u),  Jo €[0,1]  (54) A, :/ 0/x, 6eJ,C01] (61)
rzeX Jued, zCX

where [ [ denotes union over all admissibteandu. At each  For discreteX (with N points) and/,, (with A; points)
fixed value ofx € X, J,. is theprimary membership of x.

~
B. Definition 2 Ae = ;ei/xi’ i€l [0, =X (62)

At each value ofr, sayr = 2/, the 2D plane whose axes
arew and p~(2’,u) is called a vertical slice ofi~(z,u). A
secondary membership functioris a vertical slice o;inA(a:, u).
Itis yi(z = 2',u) for 2’ € X andvu € J,» C[0,1],1.e., G. Definition 7

In the continuous case, the number 4f is uncountable,
whereas for the discrete case, there]?;{rﬁé1 M, of the A..

Y N An FLS (which contains rules, fuzzifier, inference engine
pr e =) = g (v) = /u&J.r Far (W), Jor € [0,1] and output processor) istgpe-2 FLS when either its inputs,
’ B (55) antecedents, or consequents are type-2 fuzzy sets. The output
in which0 < f,-(u) < 1. The type-2 fuzzy se#l can be re-ex- processor of a type-2 FLS consists of type-reduction followed

pressed as by defuzzification. For amterval type-2 FLS, the secondary
~ membership functions of the inputs, antecedents and consequent
A :/ . () /x sets are all intervals sets.
xC

[ [ nwpls sco. e M Ocions
zeX LJucd, An embedded type-1 FLSfor a type-2 FLS is associated

The amplitude.f,.(«), of a secondary membership function igvith the embedded type-1 fuzzy sets of the inputs, antecedents
called asecondary grade and consequents. Atype-2 FLS can be interpreted as a collection

of embedded type-1 FLSs.
C. Definition 3

Assume that each of the secondary membership functions of a APPENDIX ||
type-2 fuzzy set has only one secondary grade that equals one. A BRIEF COMPARISON OF DIFFERENT TYPE-REDUCTION
principal membership function is the union of all such points METHODS FORINTERVAL TYPE-2 FLSs
at which this occurs, i.e., Center-of-sets, centroid, center-of-sums, and height type-re-

duction can all be expressed as in (6) [2], [10], which we repeat
Hprincipal (€) = /T&X u/x where f(u) =1 (57)  here for the convenience of the readers

and is associated with a type-1 fuzzy set. % Figfi

o Yrr(x) = / / 1 / =1 } (63)
D. Definition 4 v €y}, vi] J fielfi,fi]

M
__Uncertainty in the primary memberships of a type-2 fuzzy set El !

A consists of a bounded region which is called the footprint ‘l}for the different type-reduction methods, i, £/, f* andM

uncertainty (FOU) ofd, i.e., have different meanings, as summarized in TABLE V.
FOU (ﬁ) = U J, (58) Due to the differences among these type-reduction methods,
e X the boundary type-1 FLSs are different depending on which
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type-reduction method is implemented. When centroid, 2) FindL (1< L <M —1)so thatulL <y < uL+1
center-of-sums and height type-reduction are used, since3) Setfi = fifor1 <i< L andfZ = f forL+1<1:¢<

yi = 4L = 4%, an interval type-2 FLS has ontyo associated M and then computg” = > /Ef” e
boundary type-1 FLSs, namely 4) Check ify” = /. If yes, stop. OtherW|se go to Step 5).
M 5) Sety’ equal toy”. Go to Step 2).
Z Iy One pass through Steps 2)-5) is called one iteration. Step 1)
{LMFs} : % (x) =y (x) = =, (64) is an initialization. R*(x) can be obtained using a procedure
f similar to the above. Only two changes need to be made:
" 1) vj is replaced byi; ‘
S Fiy 2) in Step 3), setf* = frforl < i < Landf' =
warrsy ) =06 = S— e LR L s Moand hen compue” =
S fi i=1J Yr i=1J -
=1

APPENDIX IV

For these type-reduction methods, the inner- and outer-bound
PROOFS OFTHEOREM 2 AND COROLLARY 1

sets of the type-reduced set are
A. Proof of Theorem 2

- — i (0 (M)
() = min {yl &), v (x)} We prove Theorem 2 in two steps. First, we shai(¥),
% Fiy % Fiy y (x)]is aninner bound for the type-reduced set (Fig. 1). Then,
i=l— =1 (66) we derive the outer-bound sey, (x), 7-(x)], based on the dis-
tance between the type-reduced set and its inner-bound set.
S ’ 1) Inner-Bound Sefy,(X),y (X)]: It follows from (15)

=1 1
that
y,(x) = max {5 (x), 4™ (x) 00
v (@) < y” @ andi(x) < o) (70)
i=1 Y z;i Y and from (17) that
= max i Vi (67) . u
S fi f v (x) 2 5% (x) andy,(x) = y (x) (71)
and = = Hence
. [ () (M) _
& (F— ) w(x) < mm{yl (%), (X)} =ulx) (72
_ i=1 - and
yl(x) :yl(x) - M _ M .
pIEIDFi 0e(3) 2 max {50 (). 4 )} =y, (0 (73)
% Iz (v — y*) % Fi (yM = o) Next, we show thaf;(x) < y (x) so that fii(x), y (x)] is
« =1 i=1 a valid set. Observe from (19) and (21) tlgé?) andy(M)( )
M Flyi— )+ % Fi (g™ — ) share the same parametéfs, ..., £}, each modified by dif-
=1 i=1 ferent variables—{41, ...,y } versus{y?, ...,y }. Because
(68) (L, v f1)/(CiL, f%) is amonotonically increasing function
% (F = 1) of the variableg/*, it follows that
_ i=1 B Mo
yr(x) IQF(X) + M M i o 231 f 7/1 ;iZL Ur
iy yx) =" <= =y M%) (74)
M Moy Z i Z f
W —v) X WY ) = =t
;;17 = In a similar manner fog{ ™ (x) andy'” (x), it follows that
Zlﬁ (v —y')+ 1f (yM —y') Mo o
= = > fy Zfzf
©9 W =S — <5 — =0, (79)
> >
APPENDIX Il i=1 i=1
THE KARNIK-MENDEL I TERATIVE PROCEDURE Consequently
L*(x) can be obtained by the following iterative procedure. n(x) = mm{ (0)( )1 (M)(x)}

1) Initialize f* by settingf’ = (fi+f*)/2fori =1,..., M
and compute/ = SN fiyi/ M fi < max {yﬁo) (X)ayfwM)(X)} =y, (x) (76)
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which meansg;(x), y

y1( )]

L(x)]is avalid inner-bound set fog[(x),

2) Outer-Bound Sefy,(X),7-(X)]: We shall analyze the
difference between the type-reduced set and its inner-bound set

to derive its outer-bound set. For notational simpliclty(x) =
L* andR*(x) = R*.

1) In (72), we have showg(x)

that;(x) — w:(x) is bounded from above, i.ej(x) —

yi(x) < ¢, fromwhich it follows thaty;(x) > 7i(x)—c =

y,(x). To determine:, we begin by using the following

mequahty

min[4, B] < A+ (1 — a)B (77)

for 0 < a < 1. To understand this inequality we can,
without loss of generality, assumae> B, in which case

min[A, B] = B. Thus, we need only show thd@ <

aa+ (1 — «)B = a(A — B) + B. But this inequality is
valid, sinced > B anda > 0. Although (77) is in terms
of a free parametet;, in the following we determine an

optimal value fora, o*.
From (25), observe thatyi(x) — w(x) =

min {31 ()= (), ™ (00 () },
ing (77) to this equation, we find

() = (%) < [ (%) — ()|
+1-a) [ —u)|. (79

Before findinga*, we obtain expressions f@fo)(x) -
w(x) andy; ™ (x) — ().

Expressmg/l( )( ) andu( )( ) using (13) and using

(15) for y;(x), we find that

M

M L _ o
zi; >yt X f'u

0 =1 1=L*41
u” (%) =) = S— - T >0
LI Xl n T
i=1 =1 i=L*41
(79)

where the latter inequality follows from (70), hence,

y (%) — m(x)

a a b
——
Mo Mo
v Y Fui+Y (F -1
i=1 i=1 i=1
M T T M L 4
POV DS D DR
=1 =1 =1
¢ c d
_ad—bc a d b
de+d) ¢ e+d c+d
L )
N Yy
Y+ X

—y(x) > 0. We next show

hence, apply-

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 5, OCTOBER 2002

L* —. .
700 — | X (F - 1)
— 1=1 : (80)

sincey; < y? < --- < yF'. In asimilar manner, we find

that
M L M ;s
> Sy Z v+ > f'u
(M) _i=1 ‘—L*+1
yl (X) - yl(x) - M B -
> Z fi+ Z I
=1 i=L*+1
>0 (81)

where the latter inequality also follows from (70), hence

M . . .
> (=

M (x) — yy(x) =ELH

L*

Zf2+ Z I

M

M i=L*+1
Syl L+ _ M ]
X+ X
i=1 i=L*+1"
M

(M) i=L*+1
— Y (X),* ‘
Zf“r Z I
1=L*41

M . ‘

' —u ] Y (-1

i=L*+1

L _ M
LI+ XS
i=1 i=L*+1

(82)
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Note thatitis always possible to expr@:‘;ﬁl(ﬁ—f)
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free parameter, we can choose its value arbitrarily to find

andy M, (fi = fHinterms of ) (Ff — f7), as a tight upper bound fog; (x) — w(x).
- To find t* andg(«, t*), we calculate the partial deriva-
L M tive of g(a, t) in (86) with respect td as follows:
S (F-s) =ty (1) (83)
=1 =1 ag(av t)
and o M M
Moo Moo o[y —u] L - i - M) 2 F
Yo - =a=-0d (-1 @Y - i=1 i=1
1=L*+1 =1

wheret = t(x) € [0,1] is determined byL*(x) (just
solve (83) fort). Substituting (80)—(84) into (78), we find

that
Tu(x) — w(x)
L* —. .
7 —uit] = (7 - 1)
Sa L* 7\4 .
X+ X f
i=1 i=L*+1
M _. .
|:yl (1\4)( ):| ‘_IZ; l(fz _iz)
+(1-a) T T
X+ > f
=1 1=L*41
at [5”(0) — gt + (1= )1 = 1) [5" — vV ()]
- M M
DOV
M - -
x (T
- A4 — .
=g(e,t) D> (' = 1)
= M
<£ggmwzyﬂ—f) (85)
where
g(et)
5760 =t | + (1= @)@ =) [ = o)
= M M
DIE R DDA

(86)

Next, we treaty andt as independent variables and use

the min—max method to find*, i.e.,

(87)

= arg Inin}g (o, 7).
1

aclo,

of =arg min LI&E”{}Q (e, t)}

Notice thatg(«, t*) is the maximum ofy(«, ¢) with re-
spect tot andg(a*, t*) is the minimum ofg(«, t*) with
respect tow. Sincet € [0,1] is indirectly determined
by the inputz, we cannot arbitrarily choose its value;
instead, we consider the worst case (i.e., the maximu
value) ofg(«, t) with respect ta, to find the upper bound
for 7;(x) — yi(x). On the other hand, sineec [0, 1] is a

(88)

Because the numerator of (88) is not a functiort,ofre
cannot determiné" by settingdg(«,t)/dt = 0. Instead,
we must analyze (88) in order to determifieWe observe
the following from (88).

* Whene is chosen so that

0<a<a® (89)
with o* defined as
M
it =) X T
o— (90)

P60 -] 3 1+ [~ 60] 32

thendg(w, t)/0t < 0, which means thaj(«, t) isa
monotonically decreasing function with respect to
and, therefore, its maximum value with respect to
occurs at* = 0, i.e.,
g{a, t*) = max g(«,t) = g, 0)
tC[0,1]
M
(1-a) [yl y™ )]
= (91)
Z I
=1

In this caseg(«,t*) is a monotonically decreasing
function with respect tev and, therefore

0<1<)Iz1£oz 9(o#7)
=g (8
b -sl] [ e
M _
EREEp 2 L =] 2 T
(92)
* When is chosen so that
a=a" (93)

thendg(w, t)/0t = 0, which meang(«, t) is inde-
pendent ot, i.e.,

W (", t7)

= max g (a”,t) =g (a")

te[0,1]
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Oy o1 (M) Moo
I A RN U ) > (F =)
M = 99)
(05 + [yM — (M) i X M (
¥ 60 — ]Ef [vi S, o,
(94) ==
« Whena is chosen so that where we have used the definitions Qfo)(x) and
yl(M) (x) in (13) to get the last line from the second line.
af <a<l (95) 2) Proceeding in the same way, we get a similar result for
) _ yr(6) — g,(x), ie.
thendg(a, t)/8t > 0, which means thag(a, t) is
a monotonically increasing function with respect to % Fi (U —y ) % fi ( e Ui)
t and, therefore, its maximum value with respect to < iz R o
t occurs at* = 1, i.e., ue(¥) —y, (%) < 57— M ‘
Zf(yi—.%) Zi( T =)
(0) a1 =1 i=1
oy — ; ) [yz (x) -y M
g(o,t") _t?[é”ﬁg(“ ) =gl 1) = T a (=1
27 xS (100)
(96) IONADI &
In this caseg(«, t*) is a monotonically increasing i=1  i=1
function with respect tex and, therefore 3) From (99) and (100), we obtain the following lower bound
. . y,(x) for y;(x) and upper bound;,.(x) for y,.(x):
¢111f g(oz,t*) =
s M Mo 4
= lim_g(a, 1) 2 —ut) X T (" )
(0) 1] [, a0 (M) wn(x) 25 (x) = |57 =
Y (X) -y Y - Y (X) M 3 i M i i
= [l l}[l : } - ;i (yl_y})"‘;f(sz_yl)
(0)py M (M) Fi = =
v (%) -y Z f + -y (%) ;f M (f’ fz)
(97) x=t | (o
Equations (92), (94), and (97) show that min—max E fi E f
of g(«, t) is achieved whenr = «* and is indepen-
dent oft, i.e. with the right-hand side of the inequality define
,i.e., ith the right-hand side of th lity definediaéx)
and
min _ max_g(«,t) Mo
re > 7 (- o) 3 (! — o)
=g (Oé ) ( ) < ( ) + =1 =1
(0) O [ (D) Yrix) = 4,1 - M ‘
_ [yl (&) - yl} [yl —u (x)} Zl Filon =)+ 2 1w — )
M M = =
(0) 1 i M (M) Fi M
y o (x)—y + |y -y X 5 e
w700 ] 5 [ 0] 7 (- 1)
(98) S| (102
Therefore, we substitutg(a*) into (85). Doing this, El ! gi
we find that with the right-hand side of the inequality defined as

r(x). Becausey(x) < y,(x), [y,(x), -(x)] is a valid
outer-bound set forf(x), v, (x)].

M
< * i _ gt
<g(a ); (F=1) B. Proof of Corollary 1
Mo 6(x) is the difference between the defuzzified outputs of
(0) 1 M (M) i i
[yl (x) = yl} [yl Y (X)} El (f EA ) the type-reduced sey[x), ¥.(x)] and its approximation set
= o R o T [y,(x) + w(x)/2, y,(x) +7.-(x)/2] and it can be written as
[yz (x) -y } ‘—1i + [yl -y (X)} X follows:
Mo M 1 gl(x) + 1(x) Qr(x) + 7 (x)
E i) B ) 6(x) = |5 [ 5 + 5
=M ; M x) 4 yn(x
£ =)+ 2 T ) - B
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H(x) +y,(x) gr(x) +y,(x)

—u(x) + — v (%)

[\)

(103)

This equation is the starting point for the derivatiorsag).
1) From Fig. 1, it is clear that

)< B0 — ) _ 309~ y,(x)
- 2 - 2

(104)

and

< ) — ux) (105)
2 2

IA

n(x) -y x) _ ux) -y &)
B 2 = 2
Adding (104) and (106) together, we get
B~ 5,®) _m(x) —wx) _ 0 —y,(x)
2 - 2 2
< gl(x) - gl(x)
- 2
Hence (see Fig. 1)

<0. (106)

(107)

wn(x) +y,(x)

w(x) = —————

oi(x) = 5

P (108)

2) Similarly (see Fig. 1)

v(®) +y, )| ) -y, &)

() = [y () = T < S (109)

3) Combining the aforementioned results, we find that

1|5(x) +y,(%) yr(x) +y,(x)

6(x) =3 2 —(x) 2

— yr(x)
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