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Enhanced Karnik–Mendel Algorithms
Dongrui Wu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—The Karnik–Mendel (KM) algorithms are iterative
procedures widely used in fuzzy logic theory. They are known
to converge monotonically and superexponentially fast; however,
several (usually two to six) iterations are still needed before con-
vergence occurs. Methods to reduce their computational cost are
proposed in this paper. Extensive simulations show that, on aver-
age, the enhanced KM algorithms can save about two iterations,
which corresponds to more than a 39% reduction in computation
time. An additional (at least) 23% computational cost can be saved
if no sorting of the inputs is needed.

Index Terms—Enhanced Karnik–Mendel (EKM) algorithms, in-
terval type-2fuzzy sets (IT2FSs), Karnik–Mendel (KM) algorithms,
novel weighted averages, type-reduction, uncertainty measures.

I. INTRODUCTION

THE FOLLOWING problem is frequently met in (but not
limited to) fuzzy logic theory:

Given

xi ∈ Xi ≡ [xi, xi ], i = 1, 2, . . . , N (1)

wi ∈ Wi ≡ [wi, wi ], i = 1, 2, . . . , N (2)

where

xi ≤ xi, i = 1, 2, . . . , N (3)

wi ≤ wi, i = 1, 2, . . . , N (4)

compute

Y =
∑N

i=1 XiWi∑N
i=1 Wi

≡ [yl , yr ] (5)

where

yl = min
∀x i ∈[x i , x i ]
∀w i ∈[w i , w i ]

∑N
i=1 xiwi∑N
i=1 wi

(6)

yr = max
∀x i ∈[x i , x i ]
∀w i ∈[w i , w i ]

∑N
i=1 xiwi∑N
i=1 wi

. (7)

Places where this problem occurs are the following.
1) Computing uncertainty measures for interval type-2 fuzzy

sets (IT2 FSs):
a) In computing the centroid of an IT2 FS Ã [2], [5],

[8], xi = xi = zi (see Fig. 1) represent discretizations
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Fig. 1. IT2 FS. UMF: upper membership function; LMF: lower membership
function. The shaded region is called a footprint of uncertainty (FOU).

of the primary variable z, and interval [wi, wi ] is the
membership grade1 of zi . Y is the centroid of Ã.

b) In computing the variance of an IT2 FS Ã [13],
xi = xi = [zi − c(Ã)]2 , where c(Ã) is the center of
the centroid of Ã, and interval [wi, wi ] is the member-
ship grade of zi . Y is the variance of Ã.

c) In computing the skewness of an IT2 FS Ã [13],
xi = xi = [zi − c(Ã)]3 , and interval [wi, wi ] is the
membership grade of zi . Y is the skewness of Ã.

2) Type-reduction2:
a) In centroid and center-of-sums type-reduction of IT2

fuzzy logic systems (FLSs) [8], an IT2 FS is first ob-
tained by combining the output sets for fired rules, after
which, computing the type-reduced set is equivalent to
computing the centroid of that IT2 FS, as in item a) of
1). Y is the type-reduced set.

b) In center-of-sets type-reduction of IT2 FLSs [8], Xi

represents the centroid of the consequent IT2 FS of the
ith rule, and Wi is the firing level of that rule. Y is the
type-reduced set.

c) In height type-reduction of IT2 FLSs [8], xi = xi

represents the point having maximum membership in
the consequent type-1 FS of the ith rule, and Wi is
the firing level of that rule. Y is the type-reduced set.
The operations in modified height type-reduction [8]
are quite similar, except that Wi is multiplied by a scale
factor.

3) Computing novel weighted averages3 (NWAs):
a) In computing the interval weighted average (IWA) [6],

Xi’s are input signals, and Wi’s are their associated
weights, both of which are interval sets. Y , which is
also an interval set, is the IWA.

1The lower and upper memberships of zi are usually denoted as µ(zi ) and
µ(zi ), respectively [8]. To be consistent with (6) and (7), in this paper, we
denote them as wi and wi , respectively.

2Type-reduction for general type-2 fuzzy logic systems can be computed by
using the α-plane concept [3]. The EKM algorithms can also be used for it;
however, we will not go into the details of this because interval type-2 fuzzy
sets and systems are so far much more popular.

3NWAs are weighted averages in which at least one of the weights are novel
models [6], i.e., intervals, type-1 FSs, or IT2 FSs.
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b) In computing the fuzzy weighted average (FWA) [4],
[6], Xi’s and Wi’s are α-cuts on the input signals and
the weights, both of which are type-1 FSs. Y is the
corresponding α-cut on the FWA.

c) In computing the linguistic weighted average (LWA)
[6], [12], Xi and Wi are α-cuts of the upper member-
ship functions (UMFs) [lower membership functions
(LMFs)] of the inputs signals and the weights, both of
which are IT2 FSs. Y is the corresponding α-cut on
the UMF (LMF) of the LWA, which is also an IT2 FS.

A slightly modified problem is encountered in the prey model
from foraging theory [11], which [10] “describes an agent
searching for tasks of different types in a particular environ-
ment.” The agent makes a decision on which prey types to catch
by maximizing its energy gain [10] J , where

J =
∑n

i=1 piλivi

1 +
∑n

i=1 piλiei
(8)

in which pi ∈ [0, 1] is the probability of catching prey type i if
it is encountered, λi is the average rate of encounter with prey
type i, vi is the reward obtained from successfully catching prey
type i, and ei is the expected time required to catch prey type i.
The agent needs to find the maximum of J , i.e.,

Jmax = max
∀pi ∈[0,1]

∑n
i=1 piλivi

1 +
∑n

i=1 piλiei
(9)

and then catches the prey types corresponding to pi = 1.
Equation (9) can be viewed as a special case of (7). To see
that, rewrite Jmax as

Jmax = max
∀pi λi ei ∈[0,λi ei ]

∑n
i=1(vi/ei)piλiei

1 +
∑n

i=1 piλiei
. (10)

Observe that vi/ei and piλiei in (10) play the roles of xi and
wi in (7), respectively. Though there is an extra constant in the
denominator of (10), the basic procedure to compute Jmax is
essentially the same as that for yr .

It is well known that yl and yr in (6) and (7) can be expressed
as [8] (the derivation is given in Appendix A)

yl = min
∀wi ∈[wi ,w i ]

∑N
i=1 xiwi∑N
i=1 wi

=
∑L

i=1 xiwi +
∑N

i=L+1 xiwi∑L
i=1 wi +

∑N
i=L+1 wi

(11)

yr = max
∀wi ∈[wi ,w i ]

∑N
i=1 xiwi∑N
i=1 wi

=
∑R

i=1 xiwi +
∑N

i=R+1 xiwi∑R
i=1 wi +

∑N
i=R+1 wi

(12)

where L and R are the switch points satisfying

xL ≤ yl ≤ xL+1 (13)

xR ≤ yr ≤ xR+1. (14)

There is no closed-form solution for L and R, and hence, for
yl and yr . Karnik–Mendel (KM) algorithms [2], [8] are used

to compute them iteratively. Though KM algorithms have been
proven to converge monotonically and superexponentially fast
[5], several (usually two to six) iterations are still needed before
convergence occurs. Mendel and Liu also proposed an open
problem in [5], i.e., how “to find an optimal way to initialize the
KM algorithm,” optimal in the sense that the superexponential
convergence factor δ defined in (42) is minimized.

Because the computational burden and iterative nature of KM
algorithms may hinder them from some real-time applications,4

a reduction in their computational cost is desired, and this is the
focus of our paper, which not only tackles the aforementioned
open problem, but also proposes other techniques to further
reduce the computational cost.

The rest of the paper is organized as follows. Section II briefly
introduces the original KM algorithms. Section III proposes the
enhanced KM (EKM) algorithms. Section IV presents simu-
lation results to verify the effectiveness of the proposed algo-
rithms. Section V comments on the EKM algorithms, and finally,
Section VI draws conclusions.

II. ORIGINAL KM ALGORITHMS

The original KM algorithms are presented in this section.

A. KM Algorithm for Computing yl [2], [8]

1) Sort xi (i = 1, 2, . . . , N ) in increasing order and call the
sorted xi by the same name, but now, x1 ≤ x2 ≤ · · · ≤
xN . Match the weights wi with their respective xi and
renumber them so that their index corresponds to the
renumbered xi .

2) Initialize wi by setting

wi =
wi + wi

2
, i = 1, 2, . . . , N (15)

and then compute

y =
∑N

i=1 xiwi∑N
i=1 wi

. (16)

3) Find switch point k (1 ≤ k ≤ N − 1) such that

xk ≤ y ≤ xk+1 . (17)

4) Set

wi =
{

wi, i ≤ k

wi, i > k
(18)

and compute

y′ =
∑N

i=1 xiwi∑N
i=1 wi

. (19)

5) Check if y′ = y. If yes, stop, set yl = y, and call k L. If
no, go to step 6).

6) Set y = y′ and go to step 3).

4Some fast algorithms [15], [16] have been proposed to approximate the KM
algorithms. Because the outputs of these algorithms are different from those of
the KM algorithms and they are not as widely used as the KM algorithms, they
are not considered in this paper.

Authorized licensed use limited to: University of Southern California. Downloaded on August 3, 2009 at 19:47 from IEEE Xplore.  Restrictions apply. 



WU AND MENDEL: ENHANCED KARNIK–MENDEL ALGORITHMS 925

B. KM Algorithm for Computing yr [2], [8]

1) Sort xi (i = 1, 2, . . . , N ) in increasing order, and call the
sorted xi by the same name, but now, x1 ≤ x2 ≤ · · · ≤
xN . Match the weights wi with their respective xi and
renumber them so that their index corresponds to the
renumbered xi .

2) Initialize wi by setting

wi =
wi + wi

2
, i = 1, 2, . . . , N (20)

and then compute

y =
∑N

i=1 xiwi∑N
i=1 wi

. (21)

3) Find switch point k (1 ≤ k ≤ N − 1) such that

xk ≤ y ≤ xk+1 . (22)

4) Set

wi =
{

wi, i ≤ k

wi, i > k
(23)

and compute

y′ =
∑N

i=1 xiwi∑N
i=1 wi

. (24)

5) Check if y′ = y. If yes, stop, set yr = y, and call k R. If
no, go to step 6).

6) Set y = y′ and go to step 3).

III. EKM ALGORITHMS

This section presents EKM algorithms to reduce the compu-
tational cost of the original ones. First, a better initialization is
used to reduce the number of iterations. Then, the termination
condition of the iterations is changed to remove one unneces-
sary iteration. Finally, a subtle computing technique is used to
reduce the computational cost of each iteration.

Similar to the original KM algorithms, the EKM algorithms
also consist of two parts: one for computing yl and the other for
computing yr . Because the two parts are quite similar, we focus
on the EKM algorithm for computing yl in this section.

A. Optimal Initial Switch Point

When we use (15) to initialize the KM algorithm, yl in the
first iteration can be expressed as

yl =
∑N

i=1 xi [(wi + wi)/2]∑N
i=1(wi + wi)/2

(25)

which looks quite different from (11), and suggests that better
choices for the initialization of the KM algorithm in line with
(11) should be possible.

Observe that (11) shows that when i ≤ L, wi is used to com-
pute yl , and when i > L, wi is used to compute yl . This im-
plies that a better initialization of yl is to find a good guess

of L, L0 . Because yl is the smallest value of Y , we con-
jecture that very probably it is smaller than x[N/2] ,

5 i.e., the
center element of xi ; consequently, L0 should also be smaller
than [N/2]. We performed extensive simulations by initializing
L0 = {[N/2], [N/2.1], . . . , [N/2.6]} and comparing the num-
ber of iterations for the algorithms to converge for uniformly
and independently distributed wi , wi , and xi , and found that
L0 = [N/2.4] gave the fewest number of iterations (more de-
tails on the simulations and comparison are given in Section IV).
We performed similar simulations for yr and found that the op-
timal initial switch point is R0 = [N/1.7].

B. Termination Test

Observe from step 5) in Section II-A that the test y′ = y is
performed to determine whether the iterations should stop or
continue. When the iterations stop, y′ = y, and because y′ is
obtained during the present iteration and y was obtained from
the previous iteration, y′ = y means the present iteration makes
no contribution to minimizing yl ; consequently, it can be deleted
without changing yl .

Denote the switch points for y′ and y as k′ and k, respectively.
Then

y′ =
∑k ′

i=1 xiwi +
∑N

i=k ′+1 xiwi∑k ′

i=1 wi +
∑N

i=k ′+1 wi

(26)

y =
∑k

i=1 xiwi +
∑N

i=k+1 xiwi∑k
i=1 wi +

∑N
i=k+1 wi

. (27)

Obviously, y′ = y is equivalent to k′ = k. So, by changing
the termination condition from y′ = y to k′ = k, we have the
same yl but save one iteration. How to do this is shown in
Section III-D.

C. Further Computational Cost Reduction

In the original KM algorithm for computing yl , in each it-
eration, we compute

∑N
i=1 wi and

∑N
i=1 xiwi in entirety and

then compute y′ in (19). This is a waste of computational power
because results from the previous iteration are not utilized.

After the jth iteration, let switch point k,
∑N

i=1 wi , and∑N
i=1 xiwi be denoted as kj , (

∑N
i=1 wi)j , and (

∑N
i=1 xiwi)j ,

respectively. Usually, kj and kj+1 are quite close to each
other. Consequently, the wi in the (j + 1)th iteration shares
lots of common terms with the wi from the jth iteration.
This means (

∑N
i=1 wi)j and (

∑N
i=1 xiwi)j can be used to

compute (
∑N

i=1 wi)j+1 and (
∑N

i=1 xiwi)j+1 , i.e., only the
differences between (

∑N
i=1 wi)j+1 and (

∑N
i=1 wi)j , as well

as (
∑N

i=1 xiwi)j+1 and (
∑N

i=1 xiwi)j , need to be computed,
after which these differences are added to (

∑N
i=1 wi)j and

(
∑N

i=1 xiwi)j [as shown in (32) and (33)]. A similar technique
was used in [1]. The effectiveness of this technique is verified
in Section IV-A3.

5[N/2] denotes the nearest integer number to which N/2 can be rounded.
This conversion is needed because L0 (R0 ) must be an integer number, whereas
N/2 is not necessarily an integer.
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D. EKM Algorithms

As a summary, the complete EKM algorithms are presented.
The EKM algorithm for computing yl is as follows.
1) Sort xi (i = 1, 2, . . . , N ) in increasing order and call the

sorted xi by the same name, but now x1 ≤ x2 ≤ · · · ≤
xN . Match the weights wi with their respective xi and
renumber them so that their index corresponds to the
renumbered xi .

2) Set k = [N/2.4] (the nearest integer to N/2.4), and
compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (28)

b =
k∑

i=1

wi +
N∑

i=k+1

wi (29)

and

y =
a

b
. (30)

3) Find k′ ∈ [1, N − 1] such that

xk ′ ≤ y ≤ xk ′+1 . (31)

4) Check if k′ = k. If yes, stop, set yl = y, and call k L. If
no, continue.

5) Compute s = sign(k′ − k), and6

a′ = a + s

max(k,k ′)∑
i=min(k,k ′)+1

xi(wi − wi) (32)

b′ = b + s

max(k,k ′)∑
i=min(k,k ′)+1

(wi − wi) (33)

y′ =
a′

b′
. (34)

6) Set y = y′, a = a′, b = b′, and k = k′. Go to step 3).
The EKM algorithm for computing yr is as follows.
1) Sort xi (i = 1, 2, . . . , N ) in increasing order and call the

sorted xi by the same name, but now, x1 ≤ x2 ≤ · · · ≤
xN . Match the weights wi with their respective xi , and
renumber them so that their index corresponds to the
renumbered xi .

6When k′ > k, it is true that

a′ = a + s

k ′∑
i= k+1

xi (wi − wi ), b′ = b + s

k ′∑
i= k+1

(wi − wi )

and when k > k′, it is true that

a′ = a + s

k∑
i= k ′+1

xi (wi − wi ), b′ = b + s

k∑
i= k ′+1

(wi − wi ).

Equations (32) and (33) express these two cases in a more concise form.

2) Set k = [N/1.7] (the nearest integer to N/1.7), and
compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (35)

b =
k∑

i=1

wi +
N∑

i=k+1

wi (36)

and

y =
a

b
. (37)

3) Find k′ ∈ [1, N − 1] such that

xk ′ ≤ y ≤ xk ′+1 . (38)

4) Check if k′ = k. If yes, stop, set yr = y, and call k R. If
no, continue.

5) Compute s = sign(k′ − k), and

a′ = a − s

max(k,k ′)∑
i=min(k,k ′)+1

xi(wi − wi) (39)

b′ = b − s

max(k,k ′)∑
i=min(k,k ′)+1

(wi − wi) (40)

y′ =
a′

b′
. (41)

6) Set y = y′, a = a′, b = b′, and k = k′. Go to step 3).

IV. COMPARATIVE STUDIES

Extensive simulations have been conducted to verify the per-
formance of the EKM algorithms. The platform was a Dell
Precision 690 Workstation running Windows XP x64 Edition
and Matlab 7.3.0 with two Intel Xeon 2.66 GHz processors and
2 GB RAM. Because the results for computing yr are quite
similar to those for computing yl , only the comparative studies
for computing yl are presented in this section.

A. Uniformly and Independently Distributed wi , wi , and xi

In the simulations, we increased N by 1 from 3 to 20 (i.e.,
N = 3, 4, . . . , 20) and then increased it by 5 from 20 to 100
(i.e., N = 25, 30, . . . , 100). For each N , 10 000 Monte Carlo
simulations were used to compute yl , i.e., for each N , 10 000
xi’s were generated using Matlab function rand(10000,1), and
10 000 pairs of {wi, wi} were generated by using Matlab func-
tion rand(10000,2). Observe that all xi , wi , and wi were con-
strained in [0, 1], and xi’s were independent of wi and wi . To
make sure wi ≤ wi , we checked each pair of {wi, wi} and as-
signed the smaller value to wi and the larger one to wi .

The performance measures used in the comparative studies
and related observations are presented next.

1) Verification of the Effectiveness of the Optimal Initial
Switch Point: The performance measure used to verify the
effectiveness of the optimal initial switch point (Section III-A)
is the mean and standard deviation of superexponential con-
vergence factor δ (see Fig. 2), which is defined in [5, eq. (30)]
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Fig. 2. (a) Mean. (b) Standard deviation of δ when computing yl .

Fig. 3. (a) Mean. (b) Standard deviation of the number of iterations when computing yl .

as an indicator of the superexponential convergence speed for
computing yl . The smaller the δ, the faster is the convergence.
Because δ in [5] is defined for the continuous version of KM
algorithms, and in this study, we used the discrete version of
KM algorithms, we used the following discrete version of δ:

δ ≡ yl1 − yl

yl0 − yl
(42)

where yl0 is the initial value of yl [i.e., y computed by (16) for
the original KM algorithm, or y computed by (30) for the EKM
algorithm], and yl1 is y′ computed from the first iteration of
each algorithm.

Observe from Fig. 2 that both the mean and the standard
deviation of δ for the EKM algorithm are smaller than those
of the original KM algorithm. Most impressively, the mean of
δ calculated from the EKM algorithm is about 1/100 of that
from the original KM algorithm, which suggests that the EKM
algorithm converges much faster than the original one.

2) Verification of the Effectiveness of the Optimal Initial
Switch Point and the Modified Termination Test: There are four
performance measures used to verify that the EKM algorithm
can reduce the number of iterations, i.e., the effectiveness of
the techniques proposed in Sections III-A and B, which are as
follows.

a) Mean and standard deviation (STD) of the number of iter-
ations obtained from different algorithms (see Fig. 3): For

both the original and EKM algorithms, the number of iter-
ations is defined as the times the loop consisting of steps
3)–6) in Sections II-A and D are executed. These defini-
tions are consistent with those used in [5]. For each N ,
the 10 000 numbers of iterations from the 10 000 Monte
Carlo simulations were recorded for both the original and
EKM algorithms, and their mean and standard deviation
were computed accordingly, as shown in Fig. 3.

From Fig. 3(a), observe that the average number of it-
erations for the EKM algorithm is smaller than that for
the original KM algorithm. More interestingly, the aver-
age number of iterations for the EKM algorithm is less
than one. This is because uniformly and independently
distributed wi , wi , and xi were used in the simulation,
and hence, L0 = [N/2.4] has a good chance to be the final
switch point, especially when N is small, as confirmed
by Fig. 4 and explained in Observation 2 later. When the
distributions of wi , wi , and xi are not uniform and inde-
pendent, the average number of iterations for the EKM
algorithm increases, as shown in Section IV-B. Also ob-
serve that as N increases, the average number of iterations
in the original KM algorithm also increases; however, the
increase in the average number of iterations becomes much
slower as N gets larger. This coincides with the conclu-
sion that the KM algorithms converge monotonically and
superexponentially fast [5]. Interestingly, Fig. 3(b) shows
that the standard deviation of the number of iterations
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Fig. 4. Histograms of the number of iterations for different KM algorithms. (a)–(c) Original KM algorithm, N = 5, 10, 100. (d)–(f) EKM algorithm, N =
5, 10, 100.

for the original KM algorithm is not monotonic, and it
achieves a minimum around N = 45.

b) Histograms of the number of iterations obtained from dif-
ferent algorithms: For both the original and EKM algo-
rithms, histograms of the number of iterations for L are
shown in Fig. 4, where {5, 10} represent the typical N
used in type-reduction and in computing the IWA, FWA,
and LWA, {10, 100} represent the typical N used in the
prey model, and 100 represents the typical N used in
computing the centroid, variance, and skewness of IT2
FSs. Observe that when N ≤ 100, the original KM al-
gorithm converges in two to four iterations whereas the
EKM algorithm converges in zero to two iterations. Also
observe that when N = 5, there is more than 50% proba-
bility that the EKM algorithm converges in zero iterations,
i.e., the initial switch point L0 equals the final switch point
L. This result seems to be surprising, but it can be eas-
ily explained. When N = 5, there are only four possi-
ble switch points L = {1, 2, 3, 4}. The initial switch point
L0 = [N/2.4] = 2 has a good chance to be the final switch
point, i.e., at least 1/4 in probability. As N increases,
the number of possible switch points also increases, and
hence, the probability that the EKM converges in zero
iterations decreases, as confirmed by Fig. 4(e) and (f).

c) The average reduced number of iterations (Fig. 5), which
is computed by subtracting the average number of itera-
tions of the EKM algorithm from that of the original KM
algorithm. Observe from Fig. 5 that the EKM algorithm
eliminates about two iterations and that the reduced num-
ber of iterations increases on average as N gets larger.

d) Probability that the algorithm converges in no more than
one iteration (see Fig. 6), computed by recording the num-
ber of runs that converge in no more than one iteration and
then dividing it by the total number of runs (10 000). As
shown in Fig. 6, the EKM algorithm converges in at most
one iteration with a probability of 0.97, and that proba-
bility is almost a constant for all N . On the other hand,

Fig. 5. Average reduced number of iterations of the EKM algorithm over the
original KM algorithm.

Fig. 6. Probability of each algorithm converging in no more than one iteration.
Note that the probability corresponding to the original KM algorithm is 0.

the original KM algorithm almost surely needs more than
one iteration to converge. These results are also verified
by Fig. 4(d)–(f).

3) Verification of the Effectiveness of (32)–(34): The perfor-
mance measure used to verify the effectiveness of (32)–(34) is
the computation time saving achieved by replacing (18)–(19)
with (32)–(34) (see Fig. 7), where the computation times of
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Fig. 7. (a) Computation time of (18) and (19) and (32)–(34). (b) Computation time reduction of (32)–(34) over (18) and (19).

Fig. 8. (a) Mean. (b) Standard deviation of the computation time for different KM algorithms.

(18)–(19) and (32)–(34) were both recorded by using Matlab
functions tic and toc. Observe from Fig. 7 that the computation
of (32)–(34) is more than two times faster than that of (18) and
(19). This justifies the use of (32)–(34) in the EKM algorithm.

4) Overall Performance of the EKM Algorithm: The follow-
ing measures were used to study the overall performance of the
EKM algorithm.

a) The mean and standard deviation of the computation time
for different algorithms (see Fig. 8): The computation time
was obtained by using Matlab command tic at the begin-
ning of the algorithm and toc at the end. For each N , the
10 000 computation times from the 10 000 Monte Carlo
simulations were recorded for both the original and EKM
algorithms, and their mean and standard deviation were
computed accordingly, as shown in Fig. 8.

Observe from Fig. 8(a) that the average computation
time for both algorithms increases as N increases; how-
ever, the EKM algorithm is much faster than the original
KM algorithm. Also observe that the standard deviation
of the computation time for the EKM algorithm is slightly
larger than that for the original KM algorithm.

b) The percentage of computation time reduction over
the original KM algorithm (see Fig. 9), which equals
[(to − te)/to ] × 100%, where to and te are the average

Fig. 9. Percentage of computation time reduction of the EKM algorithm over
the original KM algorithm.

computation times of the original and EKM algorithm,
respectively. Observe from Fig. 9 that the percentage of
computation time reduction of the EKM algorithm over
the original KM algorithm decreases as N increases. For
N ∈ [3, 100], there is more than a 39% computation time
reduction.

Finally, we wish to emphasize that the earlier results were
obtained only for uniformly and independently distributed wi ,
wi , and xi , and the performance of the EKM algorithms may be
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TABLE I
OPTIMAL INITIAL SWITCH POINTS FOR CENTROID COMPUTATIONS OF DIFFERENT IT2 FSS (N = 100)

different for other distributions. This is discussed further in the
next section.

B. Centroid Computation of IT2 FSs

Note that the optimal initial switch points L0 = [N/2.4] and
R0 = [N/1.7] were obtained experimentally, where wi , wi , and
xi were assumed to be uniformly and independently distributed
in [0, 1] (corresponding to the case shown in row 2 of Table I).
This may be a reasonable assumption for type-reduction, prey
modeling, and computing the IWA, FWA, and LWA because
these problems have many independent parameters, and hence,
lots of randomness; however, for centroid, variance, and skew-

ness computations of IT2 FSs, usually, wi and wi , which are
obtained from the UMF and the LMF of a footprint of uncer-
tainty [(FOU); see Fig. 1], are not uniformly distributed, and
they also depend on xi . In this case, the optimal switch points
obtained in Section III may no longer be optimal. The centroid
computation is used next as an example to demonstrate this; the
results for variance and skewness computations are similar.

In all, 10 000 Monte Carlo simulations were used to find
the optimal initial switch points to compute the centroids of
different triangular or trapezoidal IT2 FSs shown in rows 3–6
of Table I. As an example, we explain the simulation procedure
by considering the IT2 FS shown in Fig. 10. Without loss of
generality, the universe of discourse was fixed to be [0, 1]. Four
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Fig. 10. Triangular IT2 FS, whose UMF and LMF have different heights.

Fig. 11. Gaussian IT2 FS.

points (a, b, c, and h) are needed to determine the LMF, and one
(d) is needed to determine the UMF. The following procedure
was used to generate them in each of the 10 000 Monte Carlo
simulations.

1) Three uniformly distributed random numbers were gener-
ated and sorted. The smallest one was assigned to a, the
largest one was assigned to c, and the middle one was
assigned to b.

2) One uniformly distributed random number was generated
and assigned to d.

3) Another uniformly distributed random number t was gen-
erated for h. Observe from Fig. 10 that once b and d are
determined, h cannot be larger than hmax because other-
wise, the LMF would intersect the UMF. Consequently,
h = min(t, hmax) was used.

The resulting IT2 FS was then discretized (N = 100) to com-
pute yl , i.e., the left bound of its centroid. The corresponding
final switch point was recorded. When all 10 000 Monte Carlo
simulations were completed, the optimal initial switch point L0
was computed as the average of all 10 000 final switch points.

Monte Carlo simulations were also used to find the optimal
initial switch points for computing the centroids of the Gaussian
IT2 FSs shown in rows 7 and 8 of Table I. Unlike a triangular
or a trapezoidal IT2 FS, which has a finite domain, a Gaussian
IT2 FS has an infinite domain; hence, the domain over which
x should be discretized had to be specified. In this paper, the
domain of a Gaussian IT2 FS was chosen as the interval [a, b]
for which its upper memberships are equal to or larger than a
small positive constant ε (see Fig. 11), where ε = 0.01 was used
in the simulations.

For the row 7 Gaussian IT2 FSs with fixed standard de-
viation (STD) σ and uncertain means [m1 ,m2 ], we used
σ = {0.1, 0.2, . . . , 5}, and for each σ, we chose m2 − m1 =
{0.1, 0.2, . . . , 5}. The optimal initial switch point L0 was
computed as the average of the final switch points from all
these 50 × 50 = 2500 simulations. For the row 8 Gaussian
IT2 FSs with fixed mean m and uncertain STDs [σ1 , σ2 ],
we used σ1 = {0.1, 0.2, . . . , 5}, and for each σ1 , we chose
σ2 = {σ1 + 0.1, σ1 + 0.2, . . . , 5}. Note that the value of m is
not important here since we are only interested in the final switch
points, which are situated symmetrically about m [9]. The opti-
mal initial switch point L0 was computed as the average of the

final switch points for these 49 + 48 + · · · + 1 = 1225 simula-
tions.

In Table I, the “expected” FOU for each category of shapes
is also shown, e.g., for the uniformly distributed w and w,
the values7 E[wi ] = 1/3 and E[wi ] = 2/3 were computed ∀i,
and hence, the “expected” FOU for this category of shapes
is a fuzzy granule [7] shown in column 6 and row 2, where
h1 = E[wi ] = 1/3, h2 = E[wi ] = 2/3. The switch points for
this “expected” FOU are presented in the next two columns.
They were computed by using the closed-form formulas pre-
sented in [7]. For “expected” FOUs of the triangular and trape-
zoidal IT2 FSs shown in rows 3–6 of Table I, points a–f can be
computed from probability theory; however, it was very difficult
to compute the value of h mathematically (see the procedure to
generate h in the second paragraph of Section IV-B). Hence, the
mean value of the 10 000 h generated from the 10 000 Monte
Carlo simulations was used. The variables m2 − m1 , σ, σ1 , and
σ2 for the “expected” FOUs of the Gaussian IT2 FSs were also
computed from the Monte Carlo simulations. Generally, for the
values shown in the footnotes of Table I, the fractions were com-
puted from probability theory, and the decimal fractions were
computed from Monte Carlo simulations.

We observe the following from Table I.
1) Regardless of the shape of the FOU, the optimal initial

switch point for yl is always smaller than N/2; for yr , it
is always larger than N/2, and L0 + R0 ≈ N .8

2) The optimal initial switch points are close to the switch
points of the corresponding “expected” FOU.

3) For some shapes, L0/N are quite close to 1/2.4 ≈ 0.4167,
and R0/N are quite close to 1/1.7 ≈ 0.5882, whereas for
some other shapes, there are noticeable differences.

4) Though the probability of generating a symmetrical IT2
FS in the simulations is zero, the “expected” FOUs are all
symmetrical.

Table I suggests that, in practice, the switch points of the “ex-
pected” FOU may be used as estimates of the optimal initial
switch points, given the distribution of wi and wi .

Next, we will show that for IT2 FSs of a particular shape,
there is always a performance improvement over the original
KM algorithms whether we initialize L0 = [N/2.4] and R0 =
[N/1.7] or use the values shown in Table I.

Consider IT2 FSs with trapezoidal UMFs and triangular
LMFs (shown in the fifth row of Table I), for which the optimal

7E [wi ] is computed as follows. Let (t1 , t2 ) be one of the 10 000 pairs
generated by Matlab function rand(10000,2) (see the first paragraph in Section
IV-A) and p(t1 ) and p(t2 ) be the probability density function of t1 and
t2 , respectively. Note that t1 and t2 are independent, and each of them is
uniformly distributed in [0, 1]. Let wi = min(t1 , t2 ), wi = max(t1 , t2 ),
and δ be an infinitesimal positive number. Then, p(wi = w) = p(t1 = w)
[p(t2 = w) + p(t2 = w + δ) + · · · + p(t2 = 1)] + p(t2 = w)[p(t1 = w) +
p(t1 = w + δ) + · · · + p(t1 = 1)] = 2p(t1 = w)[p(t2 = w) + p(t2 = w +
δ) + · · · + p(t2 = 1)] = 2p(w1 = w)

∫ 1
w

p(w2 = z)dz = 2 × 1 × (1 − w)

= 2(1 − w), and hence, E [wi ] =
∫ 1

0
2w(1 − w)dw = 1/3. E [w̄i ] is

computed in a similar way.
8For any symmetrical IT2 FS, such as the Gaussian IT2 FS shown in the last

two rows of Table I, it is always true that L + R = N . This is a theoretical
result proved in [9], which is why L/N + R/N = 1 for the Gaussian MFs and
all of the “expected” FOUs.

Authorized licensed use limited to: University of Southern California. Downloaded on August 3, 2009 at 19:47 from IEEE Xplore.  Restrictions apply. 



932 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 4, AUGUST 2009

Fig. 12. Comparison of EKM algorithms using L0 = {[0.3263N ], [N/2.4]} against the original KM algorithm for computing the centroid of the IT2 FS shown
in the fifth row of Table I. (a) Average number of iterations. (b) Average computation time. (c) Computation time-reduction over the original KM algorithm.

Fig. 13. Histograms of the number of iterations for different KM algorithms (N = 100).

L0 is [0.3263N ]. This shape is of interest because 0.3263 is the
number furthest away from 1/2.4 in Table I; hence, the perfor-
mance deterioration should be the largest among all the shapes
if L0 = [N/2.4] is used in the EKM. A comparison of EKM
algorithms with L0 = {[0.3263N ], [N/2.4]} and the original
KM algorithm for computing yl is shown in Fig. 12. The corre-

sponding histograms are shown in Fig. 13. Observe from Fig. 12
that both of the EKM algorithms significantly outperform the
original KM algorithm, and the EKM with Lo = [N/2.4] has
more than a 41% computation time reduction over the original
KM algorithm. Observe also from Fig. 13 that the original KM
algorithm needs about three to seven iterations to converge, the
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EKM algorithm with L = [N/2.4] needs about zero to five itera-
tions to converge, and the EKM algorithm with L = [0.3263N ]
needs about zero to four iterations to converge. Although the
EKM algorithm with L0 = [N/2.4] performs a little worse than
the one with L0 = [0.3263N ], the deterioration is small.

Additionally, in practice, two cases frequently occur when
computing the centroids of IT2 FSs.

1) The shapes of the FOUs are known ahead of time, e.g.,
in the center-of-sets type-reduction [8], it is necessary to
compute the centroids of the consequent IT2 FSs for all
rules. When the design of an FLS is completed, those con-
sequent IT2 FSs are fixed; consequently, their centroids
can be computed off-line and then recorded for on-line
usage. For the off-line computations, speed is not very im-
portant, and hence, the small computation time increase
when using L0 = [N/2.4] instead of the other optimal L0
can be ignored.

2) The shapes of the FOUs are not known ahead of time, e.g.,
in the vector similarity measure [14], to map the output
IT2 FS of the linguistic weighted average [12] ỸLWA to
a word in a codebook,9 it is necessary to compute the
centroid of ỸLWA ; however, the shape of ỸLWA is not
known until it has actually been computed. In this case, it
is not known what the optimal L0 should be, even though
Table I provides results for many FOUs. A safe choice
would be L0 = [N/2.4].

The earlier analysis suggests the use of L0 = [N/2.4] and
R0 = [N/1.7], regardless of the problem.

V. DISCUSSION

One of the most time-consuming steps in the EKM algorithms
is the first one, i.e., sorting xi (xi) in ascending order; however,
frequently, this step can be skipped, e.g., note the following.

1) In computing the centroid of an IT2 FS, xi = xi = zi ,
where zi’s are the samples of the primary variable (see
Fig. 1), and they are already in ascending order.

2) In computing the skewness of an IT2 FS, xi = xi = [zi −
c(Ã)]3 , because zi’s are already in ascending order, [zi −
c(Ã)]3 are also in ascending order.

3) For center-of-sets type-reduction, once the design of an
IT2 FLS is completed, the centroids of the consequent
IT2 FSs can be computed and sorted off-line, and hence,
they can be used directly in on-line computations without
further sorting.

Monte Carlo simulations were also used to study the further
computation time reduction for the EKM algorithms when sort-
ing is not needed. The same wi , wi , and xi that were used in
Section IV-A were used in the present simulations. Denote the
time to finish step 1) of the EKM algorithms as t1 and the time
to finish steps 2)–6) as t2 . The ratio t1/(t1 + t2) was used as
an indicator of how much computation time can be saved if no
sorting is needed. The results are shown in Fig. 14. Observe
that as N increases from 3 to 100, the percentage of compu-
tation time reduction first decreases and then increases. The

9A codebook consists of a list of words and their associated FOUs.

Fig. 14. Percentage of computation time reduction for the EKM algorithm if
sorting of xi (xi ) is not needed.

minimum is around N = 11. Fig. 14 also shows that there is at
least 23% computation time reduction. This computation time
saving makes the EKM algorithms more suitable for real-time
applications.

VI. CONCLUSION

KM algorithms are iterative procedures widely used in cen-
troid, variance, and skewness computations of IT2 FSs, type-
reduction of IT2 FLSs, and for computing the IWA, FWA,
and LWA. They converge monotonically and superexponen-
tially fast; however, several (usually two to six) iterations are
still needed before convergence occurs. In this paper, EKM al-
gorithms have been proposed to reduce the computational cost.
Extensive simulations show that, on average, the EKM algo-
rithms can save about two iterations, which corresponds to a
more than 39% reduction in computation time. An additional
(at least) 23% computational cost can be saved if no sorting of
xi (xi) is needed.

APPENDIX A

DERIVATION OF THE KM ALGORITHMS

Regardless of whether yl in (6) or yr in (7) are computed, it
is necessary to minimize or maximize the function (the material
in this Appendix is taken from [8])∑N

i=1 xiwi∑N
i=1 wi

≡ f(w1 , . . . , wN ). (A.1)

Differentiating f(w1 , . . . , wN ) with respect to wk , observe that

∂f(w1 , . . . , wN )
∂wk

=
xk − f(w1 , . . . , wN )∑N

i=1 wi

. (A.2)

As noted by Karnik and Mendel [2], equating ∂f/∂wk to
zero does not give us any information about the value of wk that
optimizes f(w1 , . . . , wN ), i.e.,

f(w1 , . . . , wN ) = xk ⇒
∑N

i=1 xiwi∑N
i=1 wi

= xk

⇒
∑N

i �=k xiwi∑N
i �=k wi

= xk . (A.3)
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Observe that wk no longer appears in the final expression in
(A.3), and therefore, the direct calculus approach does not work.
Returning to (A.2), because

∑N
i=1 wi > 0, it is true that

∂f(w1 , . . . , wN )
∂wk

{≥0, if xk ≥ f(w1 , . . . , wN )
<0, if xk < f(w1 , . . . , wN ).

(A.4)

This equation gives us the direction in which wk should be
changed in order to increase or decrease f(w1 , . . . , wN ), i.e.,

If xk > f(w1 , . . . , wN ){
f(w1 , . . . , wk ) increases as wk increases
f(w1 , . . . , wk ) decreases as wk decreases.

(A.5)

If xk < f(w1 , . . . , wN ){
f(w1 , . . . , wk ) increases as wk decreases
f(w1 , . . . , wk ) decreases as wk increases.

(A.6)

Because wk ∈ [wk ,wk ], the maximum value wk can attain is
wk and the minimum value it can attain is wk . Therefore, (A.6)
implies that f(w1 , . . . , wN ) attains its minimum value yl if: 1)
for those values of k for which10 xk < f(w1 , . . . , wN ), set wk =
wk , and 2) for those values of k for which xk > f(w1 , . . . , wN ),
set wk = wk . Similarly, deduce from (A.6) that f(w1 , . . . , wN )
attains its maximum value yr if 1) for those values of k for which
xk < f(w1 , . . . , wN ), set wk = wk , and 2) for those values of
k for which xk > f(w1 , . . . , wN ), set wk = wk . Consequently,
to compute yl or yr , wk switches only one time between wk and
wk , or between wk and wk , respectively.

Putting all of these facts together, yl in (6) and yr in (7) can
be expressed as (11) and (12), respectively. The KM algorithms
summarized in Section II locate the switch points, and in general,
the switch point for yl , L, is smaller than the switch point for
yr , R.
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