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The Linguistic Weighted Average

Dongrui Wu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract— The focus of this paper is the linguistic weighted
average (LWA), which is a generalization of the fuzzy weighted
average (FWA) that is obtained by replacing the type-1 fuzzy
inputs in the FWA by interval type-2 fuzzy sets (IT2 FSs).
Consequently, the output of the LWA is an IT2 FS. In this paper,
the relations between the LWA and the FWA are studied. It is
shown that finding the LWA can be decomposed into finding
two FWAs, where α-cuts and KM algorithms are used. Hence,
the computational cost of a LWA is about twice that of a FWA.
A flowchart for computing the LWA is also provided.

I. INTRODUCTION

The weighted average (WA) is arguably the earliest and
still most widely used form of aggregation. In this paper we
focus on a new situation for the WA, one in which both
the quantities being averaged (the attributes) as well as the
weights are words. The resulting WA is called a linguistic
WA (LWA). Our Example below illustrates a decision-making
situation where the LWA is needed. First, however, we
remind the reader of the well-known formula for the WA,
i.e.

y =
∑n

i=1 xiwi∑n
i=1 wi

= f(x1, . . . , xn, w1, . . . , wn) (1)

in which wi are the weights that act upon the attributes (e.g.,
decisions, features, indicators, etc.), xi. Normalization is
achieved by dividing the weighted numerator sum by the sum
of all of the weights. While it is always true that the sum of
the normalized weights that act upon each xi add to one, it is
not a requirement that the sum of the un-normalized weights
must add to one. In many situations requiring

∑n
i=1 wi = 1

is too restrictive; so, we do not impose such a requirement.
It is the normalization that makes the calculation of the LWA
very challenging.

In the LWA the weights are always words that are modeled
as interval type-2 fuzzy sets (IT2 FSs) [14], and the attributes
may also be (but do not have to be) words that are also
modeled as IT2 FSs1. We denote the LWA as ỸLWA, where

ỸLWA =
∑n

i=1 X̃iW̃i∑n
i=1 W̃i

(2)

The tildes over all quantities denote IT2 FSs.
Before we formalize the LWA more carefully, it is instruc-

tive to provide an example that illustrates where it could be
used.
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1How to obtain IT2 FS models for words is an on-going research area,
and one method for doing this can be found in [11] and [12]. In this paper,
we assume that such models have already been established.

Example: Consider the following distributed and hier-
archical decision-making situation. There are n judges (or
experts, managers, commanders, referees, etc.) who have
to provide a subjective decision or judgement D̃ about a
situation (e.g., quality of a submitted journal article). They
will do this by providing a linguistic evaluation (i.e., a word,
term, or phrase) for each of m pre-specified and pre-ranked
evaluation-categories, C1, C2, . . . , Cm, using a pre-specified
vocabulary of ti terms (i = 1, 2, . . . , m), because it may
be too problematic to provide a numerical score for these
categories. For a submitted journal article, the categories
might be importance, content, depth, presentation, etc.; and,
for e.g. presentation, the terms might be excellent, good,
adequate, marginal and poor.

We assume that each of the category terms has been
modeled a priori as an IT2 FS T̃ ; so, for each Ci there is
the associated IT2 FS T̃Ci

. Additionally, we assume that the
m evaluation-categories have also been linguistically rank-
ordered a priori, so that each Ci is associated with a linguistic
weight, modeled as the IT2 FS W̃i. The judges do not have to
be concerned with any of the a priori rankings and modeling;
it has all been done before they have been asked to judge.

After the judges have chosen a linguistic term for the m
categories, the following LWA is automatically computed:

D̃j =
∑m

i=1 W̃iT̃Ci∑m
i=1 W̃i

j = 1, 2, . . . , n. (3)

These n IT2 FSs are then sent to a control (command)
center (e.g., the associate editor); however, because judges
may not be of equal expertise, we shall also assume that
each judge’s level-of-expertise has been pre-specified using
a linguistic term T̃Ji

provided by the judge from a small
vocabulary of terms (e.g., low expertise, moderate expertise,
high expertise). The linguistic evaluations from the n judges,
D̃j , are then aggregated using a second LWA, as

D̃ =

∑n
j=1 T̃Jj

D̃j∑n
j=1 T̃Jj

(4)

This second LWA is also sent to the control (command)
center. Using D̃j (j = 1, 2, . . . , n) and/or D̃, a final decision
or judgement is made at the control (command) center. ¥

There is a hierarchy of averages that can be associated with
(1). We enumerate them next so that it will be clear where
the LWA studied in this paper stands in this hierarchy.

1) ∀wi and ∀xi are crisp numbers: In this case, y is a
crisp number, the commonly-used arithmetic weighted
average, a number that is easily computed using arith-
metic.
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2) ∀wi are crisp numbers, and ∀xi are interval numbers,
i.e. xi = [ai, bi] where interval end-points ai and bi

are pre-specified: In this case, y is an interval number
(a weighted average of intervals), i.e. y = [yl, yr],
where yl and yr are easily computed [because interval
sets only appear in the numerator of (1)] using interval
arithmetic.

3) ∀xi are crisp numbers, and ∀wi are interval numbers,
i.e. wi = [ci, di] where interval end-points ci and di

are pre-specified: This is a special case of the fuzzy
weighted average (FWA) [1], [8], [4], [7], [3], [2], [9]
that also corresponds to the so-called centroid of an
interval type-2 fuzzy set (IT2 FS) [14]. In this case, y
is also an interval number, i.e. y = [yl, yr], but there are
no known closed-form formulas for computing yl and
yr. The KM iterative algorithms [5], [14] have been
used to compute yl and yr. These algorithms are super-
exponentially and monotonically convergent [10], so it
takes very few iterations for them to converge to the
actual values of yl and yr.

4) ∀xi are interval numbers, i.e. xi = [ai, bi] where
interval end-points ai and bi are pre-specified, and
∀wi are interval numbers, i.e. wi = [ci, di] where
interval end-points ci and di are pre-specified: This is
another special case of the FWA that also corresponds
to the so-called generalized centroid of IT2 FSs [14].
As in Case 3, y is also an interval number, i.e. y =
[yl, yr], but again there are no known closed-form
formulas for computing yl and yr. The KM iterative
algorithms have also been used to compute yl and yr.

5) ∀xi are type-1 fuzzy numbers, i.e. each xi is described
by the membership function (MF) of a type-1 fuzzy
set (T1 FS), µXi

(xi), where this MF must be pre-
specified, and ∀wi are also type-1 fuzzy numbers, i.e.
each wi is described by the MF of a T1 FS, µWi(wi),
where this MF must also be pre-specified. This case
is the FWA, and now y is a T1 FS, with MF µY (y), but
there is no known closed-form formula for computing
µY (y). Recently, Liu and Mendel [9] showed how
the KM algorithms can be used to compute an α-cut
decomposition [6] of µY (y).

6) ∀xi are IT2 FSs, i.e. each xi is described by the foot-
print of uncertainty (FOU) of an IT2 FS, FOU(x̃i),
where this FOU must be pre-specified, and ∀wi are
also IT2 FSs, i.e. each wi is described by the FOU of
an IT2 FS, FOU(w̃i), where this MF must also be
pre-specified. Of course, there could be special sub-
cases of this case, where only one or the other of the
weights or attributes are IT2 FSs. This case is the LWA,
and now y is an IT2 FS.

In this work we focus on the LWA of Item 6. The rest
of this paper is organized as follows. Section II reviews the
main results on the FWA, which serves as the basis to deduce
the LWA algorithms. In Section III several theorems for the
LWA are introduced. A flowchart for computing the LWA is
presented in Section IV, followed by an example. Section V
draws conclusions.

II. THE FUZZY WEIGHTED AVERAGE

Because the idea of the FWA is used in the derivation of
the LWA, it is briefly introduced in this section.

The FWA is defined as [1], [8], [4], [7], [3], [2], [9]:

YFWA =
∑n

i=1 XiWi∑n
i=1 Wi

(5)

Note that all Wi and Xi are T1 FSs. Consequently, YFWA

is also a T1 FS.
The FWA problem has been studied in multiple criteria

decision making [1], [8], [4], [7], [3], [2] and computing the
generalized centroid of an IT2 FS [5], [14], [13]. The fastest
way to date to perform the computations are KM algorithms
[9] introduced next.

In the KM algorithms approach, we first discretize the
complete range of the membership [0, 1] of the fuzzy num-
bers X1, X2, . . . , Xn and W1,W2, . . . , Wn into m α-cuts,
α1, · · · , αm. For each αj , we find the corresponding intervals
for xi in Xi and wi in Wi (i = 1, 2, . . . , n). Denote the end-
points of the intervals of xi and wi by [ai(αj), bi(αj)] and
[ci(αj), di(αj)], respectively, i.e.

xi ∈ [ai(αj), bi(αj)] and wi ∈ [ci(αj), di(αj)]

The output of the FWA algorithm for this particular α-cut,
YFWA(αj), is an interval, i.e.

YFWA(αj) =
∑n

i=1 Xi(αj)Wi(αj)∑n
i=1 Wi(αj)

(6)

=


 min
∀ xi∈[ai(αj), bi(αj)]
∀wi∈[ci(αj), di(αj)]

f(x1, . . . , xn, w1, . . . , wn|αj),

max
∀ xi∈[ai(αj), bi(αj)]
∀wi∈[ci(αj), di(αj)]

f(x1, . . . , xn, w1, . . . , wn|αj)


 (7)

where

f(x1, . . . , xn, w1, . . . , wn|αj) ≡
∑n

i=1 xi(αj)wi(αj)∑n
i=1 wi(αj)

(8)

It has been observed that [8], [5]

min
∀ xi∈[ai(αj), bi(αj)]
∀wi∈[ci(αj), di(αj)]

f(x1, . . . , xn, w1, . . . , wn|αj)

= min
∀wi∈[ci(αj), di(αj)]

∑n
i=1 ai(αj)wi(αj)∑n

i=1 wi(αj)
≡ fL(αj) (9)

and

max
∀ xi∈[ai(αj), bi(αj)]
∀wi∈[ci(αj), di(αj)]

f(x1, . . . , xn, w1, . . . , wn|αj)

= max
∀wi∈[ci(αj), di(αj)]

∑n
i=1 bi(αj)wi(αj)∑n

i=1 wi(αj)
≡ fR(αj) (10)

These results are easy to prove because Xi(αj) appear only
in the numerator of (6), and so the smallest values of Xi(αj)



fL(αj) = min
∀ k∈[1, n−1]

∑k
i=1 ai(αj)di(αj) +

∑n
i=k+1 ai(αj)ci(αj)∑k

i=1 di(αj) +
∑n

i=k+1 ci(αj)
≡

∑kL

i=1 ai(αj)di(αj) +
∑n

i=kL+1 ai(αj)ci(αj)∑kL

i=1 di(αj) +
∑n

i=kL+1 ci(αj)
(11)

fR(αj) = max
∀ k∈[1, n−1]

∑k
i=1 bi(αj)ci(αj) +

∑n
i=k+1 bi(αj)di(αj)∑k

i=1 ci(αj) +
∑n

i=k+1 di(αj)
≡

∑kR

i=1 bi(αj)ci(αj) +
∑n

i=kR+1 bi(αj)di(αj)∑kR

i=1 ci(αj) +
∑n

i=kR+1 di(αj)
(12)

are used to find the smallest value of (6), whereas the largest
values of Xi(αj) are used to find the largest value of (6).

Using KM algorithms [5], [9] presented in [15], fL(αj)
and fR(αj) can be efficiently computed as (11) and (12)
(given at the top of this page), where kL and kR are switch
points satisfying

akL
(αj) ≤ fL(αj) ≤ akL+1(αj) (13)

bkR
(αj) ≤ fR(αj) ≤ bkR+1(αj) (14)

When all m intervals [fL(αj), fR(αj)] are found, the MF
of YFWA, µYF W A

(y), is computed as

µYF W A
(y) = sup

∀αj(j=1,...,m)

αjIYF W A(αj)(y) (15)

where

IYF W A(αj)(y) =
{

1 ∀ y ∈ [fL(αj), fR(αj)]
0 ∀ y /∈ [fL(αj), fR(αj)]

(16)

is an indicator function of YFWA(αj).

III. LWA THEORY

The formulas for the LWA are derived in this section. For
the convenience of the readers, we summarize all symbols
used in the derivation in Table I. For notation simplicity
and to save space, we omit the dependence on αj in all
symbols in the derivations. Readers should keep in mind that
all the derivations are for a particular α-cut, αj . Proofs of
all theorems are in [15] and will be included in the journal
version of this paper.

A. Introduction

The definition of the LWA is given in (2). Because an IT2
FS is completely determined by its FOU [14], ỸLWA can
also be expressed as

ỸLWA = 1/FOU(ỸLWA) ≡ 1/[Y LWA, Y LWA] (17)

where Y LWA and Y LWA are the lower and upper member-
ship function (LMF and UMF) of ỸLWA, respectively, and
the notation in (17) means that the secondary membership
grade equals 1 at all elements in FOU(ỸLWA). Hence,
computing ỸLWA is equivalent to computing YLWA and
Y LWA.

B. Computing the LWA

α-cuts are used to calculate YLWA and Y LWA. First, the
complete range of the membership [0, 1] is discretized into
m α-cuts, α1, · · · , αm; then, for each αj , the corresponding
intervals for xi in Xi and wi in Wi are found, where Xi

and Wi are embedded type-1 fuzzy sets of X̃i and W̃i (see
Fig. 1).

TABLE I
NOTATIONS USED IN THE DERIVATION. SEE ALSO FIGS. 1 AND 5.

Notation Meaning

X̃i ith attribute; an IT2 FS
Xi Embedded T1 FS of X̃i

Xi UMF of X̃i

Xi LMF of X̃i

[ai(αj), bi(αj)] α-cut on Xi

[ail(αj), bir(αj)] α-cut on Xi

[air(αj), bil(αj)] α-cut on Xi

W̃i Weight associated with X̃i; an IT2 FS
Wi Embedded T1 FS of W̃i

W i UMF of W̃i

W i LMF of W̃i

[ci(αj), di(αj)] α-cut on Wi

[cil(αj), dir(αj)] α-cut on W i

[cir(αj), dil(αj)] α-cut on W i

ỸLWA LWA computed from X̃i and W̃i

Y LWA UMF of ỸFWA

Y LWA LMF of ỸFWA

[fL(αj), fR(αj)] α-cut on an embedded T1 FS of ỸLWA

[fLl(αj), fRr(αj)] α-cut on Y FWA

[fLr(αj), fRl(αj)] α-cut on Y FWA

hmax Maximum height of all Xi and all W i
hmin Minimum height of all Xi and all W i

U See (20)
PX See (21)
PW See (22)

a′ir(αj) See (45)
b′il(αj) See (46)
c′ir(αj) See (49)
d′il(αj) See (50)

We always use a normal IT2 FS; i.e. the maximum
membership grades of the UMFs of all type-2 fuzzy sets
equal unity. This means that each α-cut on the UMFs will
produce an interval for αj 6= 1, or at least, a crisp point for
αj = 1.

Generally, the LMFs of X̃i and W̃i have different heights
(maximum membership grades), as shown in Figs. 2(a) and
2(b). Denote the height of Xi as hXi

, and the height of
W i as hW i

, respectively. Assume the maximum (minimum)
height of all Xi and all W i is hmax (hmin), i.e.

hmax = max{ max
∀ i∈[1, n]

hXi
, max
∀ i∈[1, n]

hW i
} (18)

hmin = min{ min
∀ i∈[1, n]

hXi
, min
∀ i∈[1, n]

hW i
} (19)

Then, depending on the position of the α-cut, there are three
different cases:

1. 0 ≤ αj ≤ hmin: the α-cuts on all UMFs and LMFs
exist, as shown in Fig. 2;

2. hmin < αj ≤ hmax: the α-cuts on all UMFs exist while
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Fig. 1. The variables used in the derivation. (a) Variables for X̃i; and, (b)
Variables for W̃i. The dashed curves are embedded T1 FSs.

the α-cuts on some LMFs do not exist, as shown in
Fig. 3;

3. hmax < αj ≤ 1: the α-cuts on all UMFs exist, but
none of them exist on the LMFs, as shown in Fig. 4.

In order to distinguish between these three cases, we define

U = {1, 2, . . . , n} (20)

and assume PX ⊆ U and PW ⊆ U are finite sets consisting
of integer indexes such that

{ ∀ i ∈ PX , hXi
< αj ; air and bil do not exist

∀ i ∈ U − PX , hXi
≥ αj ; air and bil exist (21)

and
{ ∀ i ∈ PW , hW i

< αj ; cir and dil do not exist
∀ i ∈ U − PW , hW i

≥ αj ; cir and dil exist (22)

For example, in Fig. 2 we have U = {1, 2, 3}, PX = ∅ and
PW = ∅; consequently, αj in Fig. 2 produces intervals on
all Xi and W i. In Fig. 3 we have U = {1, 2, 3}, PX =
{1, 2} and PW = {3}; consequently, αj in Fig. 3 does not
produce intervals on X1, X2 and W 3. In Fig. 4 we have U =
{1, 2, 3}, PX = {1, 2, 3} and PW = {1, 2, 3}; consequently,
αj in Fig. 4 does not produce an interval on any Xi and
W i.

We can now classify the three cases by using PX and PW .
When both PX and PW are empty, we are in Case 1; when
both PX and PW equal U , we are in Case 3; otherwise,
we are in Case 2. Next, we shall consider the three cases
individually.
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Fig. 2. Case 1: 0 ≤ αj ≤ hmin. Variables for (a) X̃i and (b) W̃i.
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Fig. 3. Case 2: hmin < αj ≤ hmax. Variables for (a) and (b) W̃i.

C. Case 1: 0 ≤ αj ≤ hmin

When 0 ≤ αj ≤ hmin, the α-cuts on all UMFs and
LMFs of X̃i and W̃i exist, as shown in Fig. 2. We denote
the interval on Xi as [ai, bi], and the interval on Wi as
[ci, di], respectively. If we consider all the embedded T1
FSs, as shown in Figs. 1(a) and 1(b), then ai ∈ [ail, air],
bi ∈ [bil, bir], ci ∈ [cil, cir] and di ∈ [dil, dir].

Note that in (11) and (12) for the FWA, each of ai, bi, ci

and di can assume only one value; consequently, fL and fR

are crisp numbers. However, in Case 1 of the LWA, ai, bi, ci

and di can assume values continuously in their corresponding
α-cut intervals. Numerous different combinations of ai, bi,
ci and di can be formed. fL and fR need to be computed
for all the combinations. By collecting all fL we obtain a
continuous interval [fLl, fLr], and, by collecting all fR we
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Fig. 4. Case 3: hmax < αj ≤ 1. Variables for (a) X̃i and (b) W̃i.

obtain a continuous interval [fRl, fRr], so that

YLWA(αj) = [fLr, fRl] (23)

and
Y LWA(αj) = [fLl, fRr] (24)

as shown in Fig. 5.

Llf
Lrf Rrf

Rlf

jα

Lf Rf

LWAY�LWAY
LWAY

u

y
0

1

α ′
α ′′

Fig. 5. Variables for ỸLWA.

To find YLWA(αj) and Y LWA(αj) we need to find
fLl, fLr, fRl and fRr. Consider fLl first. It is the minimum
of fL [see (11)] when ai ∈ [ail, air], ci ∈ [cil, cir], and
di ∈ [dil, dir], i.e.

fLl = min
∀ai∈[ail, air ]

∀ci∈[cil, cir ],∀di∈[dil, dir ]

fL (25)

Substituting fL in (11) into (25), we obtain

fLl = min
∀ai ∈ [ail, air ]
∀ci ∈ [cil, cir ]
∀di ∈ [dil, dir ]


 min
∀ k∈[1, n−1]

k∑
i=1

aidi +
n∑

i=k+1

aici

k∑
i=1

di +
n∑

i=k+1

ci




≡ min
∀ai ∈ [ail, air ]
∀ci ∈ [cil, cir ]
∀di ∈ [dil, dir ]

∑kL

i=1 aidi +
∑n

i=kL+1 aici∑kL

i=1 di +
∑n

i=kL+1 ci

(26)

Because ai appear only in the numerator of (26), the
smallest values of ai should be used to find the smallest
value of (26). i.e.

fLl = min
∀ci∈[cil,cir ]
∀di∈[dil,dir ]

∑kL1
i=1 aildi +

∑n
i=kL1+1 ailci∑kL1

i=1 di +
∑n

i=kL1+1 ci

(27)

where kL1 is the switch point for a particular combination
of (a1l, . . . , anl, ci, . . . , cn, d1, . . . , dn).

Similarly, we can also express fLr, fRl and fRr as

fLr = max
∀ci∈[cil,cir ]
∀di∈[dil,dir ]

∑kL2
i=1 airdi +

∑n
i=kL2+1 airci∑kL2

i=1 di +
∑n

i=kL2+1 ci

(28)

fRl = min
∀ci∈[cil,cir ]
∀di∈[dil,dir ]

∑kR1
i=1 bilci +

∑n
i=kR1+1 bildi∑kR1

i=1 ci +
∑n

i=kR1+1 di

(29)

fRr = max
∀ci∈[cil,cir ]
∀di∈[dil,dir ]

∑kR2
i=1 birci +

∑n
i=kR2+1 birdi∑kR2

i=1 ci +
∑n

i=kR2+1 di

(30)

So far, we have only fixed ai for fLl and fLr, and bi for
fRl and fRr. Next, we show that it is also possible to fix ci

and di for fLl, fLr, fRl and fRr.
Theorem 1: It is true that

akLl, l ≤ fLl ≤ akLl+1, l (31)

and that fLl in (27) can be specified as

fLl =

∑kLl

i=1 aildir +
∑n

i=kLl+1 ailcil∑kLl

i=1 dir +
∑n

i=kLl+1 cil

; (32)

where kLl is the switch point for fLl. i.e., fLl is obtained
by setting

di = dir for i ≤ kLl

ci = cil for i ≥ kLl + 1

}
(33)

in the right-hand side of (27). This means that fLl only
depends on the UMF of W̃i, W i. ¥

Theorem 2: It is true that

akLr, r ≤ fLr ≤ akLr+1, r (34)

and that fLr in (28) can be specified as

fLr =

∑kLr

i=1 airdil +
∑n

i=kLr+1 aircir∑kLr

i=1 dil +
∑n

i=kLr+1 cir

; (35)

where kLr is the switch point for fLr. i.e., fLr is obtained
by setting

di = dil for i ≤ kLr

ci = cir for i ≥ kLr + 1

}
(36)

in the right-hand side of (28). This means that fLr only
depends on the LMF of W̃i, W i. ¥

Theorem 3: It is true that

bkRl, l ≤ fRl ≤ bkRl+1, l (37)

and that fRl in (29) can be specified as

fRl =

∑kRl

i=1 bilcir +
∑n

i=kRl+1 bildil∑kRl

i=1 cir +
∑n

i=kRl+1 dil

; (38)



where kRl is the switch point for fRl. i.e., fRl is obtained
by setting

ci = cir for i ≤ kRl

di = dil for i ≥ kRl + 1

}
(39)

in the right-hand side of (29). This means that fRl only
depends on the LMF of W̃i, W i. ¥

Theorem 4: It is true that

bkRr, r ≤ fRr ≤ bkRr+1, r (40)

and that fRr in (30) can be specified as

fRr =

∑kRr

i=1 bircil +
∑n

i=kRr+1 birdir∑kRr

i=1 cil +
∑n

i=kRr+1 dir

; (41)

where kRr is the switch point for fRr. i.e., fRr is obtained
by setting

ci = cil for i ≤ kRr

di = dir for i ≥ kRr + 1

}
(42)

in the right-hand side of (30). This means that fRr only
depends on the UMF of W̃i, W i. ¥

Using the above theorems we can show:
Theorem 5: fLr ≤ fRl for all 0 ≤ αj ≤ hmin. i.e.,

there is a gap (fLr, fRl) between the left-hand interval
fL = [fLl, fLr] and the right-hand interval fR = [fRl, fRr].
¥

D. Case 2: hmin < αj ≤ hmax

When hmin < αj ≤ hmax, the α-cuts on all UMFs exist.
As shown in Section III-C, fLl and fRr depend only on the
UMFs; thus, the formulas for them remain unchanged, i.e.
Theorems 1 and 4 can still be used to compute fLl and fRr

in Case 2. However, when hmin < αj ≤ hmax, the α-cuts
on some LMFs do not exist; i.e. the α-cut cannot produce
intervals on those LMFs lower than αj , as shown in Figs. 3(a)
and 3(b). Because fLr and fRl do depend on the LMFs, i.e.,
fLr in (35) depends on air, dil and cir, and fRl in (38)
depends on bil, cir and dil, we need to find new solutions
for them in Case 2.

Comparing ai and bi with their ranges in Case 1, we see
that they change in Case 2, i.e. (see Fig. 3)

ai ∈ [ail, a
′
ir] (43)

bi ∈ [b′il, bir] (44)

where
a′ir =

{
bir ∀ i ∈ PX

air ∀ i ∈ U − PX
(45)

and
b′il =

{
ail ∀ i ∈ PX

bil ∀ i ∈ U − PX
(46)

Similarly (see Fig. 3),

ci ∈ [cil, c
′
ir] (47)

di ∈ [d′il, dir] (48)

where
c′ir =

{
dir ∀ i ∈ PW

cir ∀ i ∈ U − PW
(49)

and
d′il =

{
cil ∀ i ∈ PW

dil ∀ i ∈ U − PW
(50)

Following the same procedure used to prove Theorem 2, we
obtain:

Theorem 2′: It is true that

a′kLr, r ≤ fLr ≤ a′kLr+1, r (51)

and that fLr in Case 2 can be specified as

fLr =

∑kLr

i=1 a′ird
′
il +

∑n
i=kLr+1 a′irc

′
ir∑kLr

i=1 d′il +
∑n

i=kLr+1 c′ir
; (52)

where kLr is the switch point for fLr, and, a′ir, c′ir and d′il
are defined in (45), (49) and (50). ¥

Theorem 3′: It is true that

b′kRl, l ≤ fRl ≤ b′kRl+1, l (53)

and that fRl in Case 2 can be specified as

fRl =

∑kRl

i=1 b′ilc
′
ir +

∑n
i=kRl+1 b′ild

′
il∑kRl

i=1 c′ir +
∑n

i=kRl+1 d′il
; (54)

where kRl is the switch point for fRl, and, b′il, c′ir and d′il
are defined in (46), (49) and (50). ¥

Observe, from Fig. 5, that when fLr < fRl, the interval
[fLl, fRr] determined by the α-cut on the UMFs is divided
into two sub-intervals, [fLl, fLr] and [fRl, fRr], which are
separated by a gap (fLr, fRl). The FOUs must lie within
[fLl, fLr] and [fRl, fRr], but they cannot enter the gap
(fLr, fRl). What if fLr ≥ fRl? This cannot happen in Case
1 (see Theorem 5) but may happen in Case 2, because in
Case 2 the ranges of ai, bi, ci and di are extended, and
the extended ranges have the effect of eliminating the gap.
Observe that when fLr ≥ fRl, the right bound of [fLl, fLr]
exceeds (or equals) the left bound of [fRl, fRr]. i.e. the two
intervals [fLl, fLr] and [fRl, fRr] partially overlap and the
gap is covered. When that happens, the FOU of ỸLWA lies
completely within the interval [fLl, fRr], which is shown at
αj = α′′ in Fig. 5.

Although we stated Theorems 2′ and 3′ in the context
of Case 2, they are not limited to Case 2. Actually, we used
(43), (44), (47) and (48) instead of hmin < αj ≤ hmax in the
derivations, and these equations can also represent Case 1 by
properly setting their parameters, i.e., letting all PW and PX

be empty sets. It is easy to show that (52) and (54) for Case
2 coincide with (35) and (38) in Case 1, respectively. This
means that Theorems 2′ and 3′ can also be used to calculate
fLr and fRl in Case 1, i.e., they give the same outputs as
those of Theorems 1 and 2. In the next subsection we will
show that Theorems 2′ and 3′ can also be applied to Case 3.

E. Case 3: hmax < αj ≤ 1

When hmax < αj ≤ 1, the α-cuts on all UMFs exist.
Consequently, Theorems 1 and 4 can still be used to compute
fLl and fRr in Case 3. However, none of the α-cuts on
the LMFs of X̃i and W̃i exists; thus, we need to find new
solution for fLr and fRl in this case.



Observe that Case 3 can also be represented by (43), (44),
(47) and (48) by setting all PX and PW to U ; thus, Theorems
6 and 7 in Section III-D can also be used here to compute
fLr and fRl. Because PX and PW are U , (45), (46), (49)
and (50) in Section III-D become

a′ir = bir ∀ i ∈ [1, n]
b′il = ail ∀ i ∈ [1, n]
c′ir = dir ∀ i ∈ [1, n]
d′il = cil ∀ i ∈ [1, n]





(55)

Substituting (55) into (52) and (54), we obtain

fLr =

∑kLr

i=1 bircil +
∑n

i=kLr+1 birdir∑kLr

i=1 cil +
∑n

i=kLr+1 dir

(56)

fRl =

∑kRl

i=1 aildir +
∑n

i=kRl+1 ailcil∑kRl

i=1 dir +
∑n

i=kRl+1 cil

(57)

Note that fLl and fRr, which determine the α-cut on Y LWA,
are calculated by (32) and (41), respectively. Comparing (56)
with (41), it is observed that fLr in (56) is the same as fRr

in (41) 2. Besides, fRl in (57) is also the same as fLr in
(32); thus, in Case 3,

fLl = fRl (58)
fLr = fRr (59)

Consequently,

[fLl, fLr] = [fRl, fRr] = [fLl, fRr] (60)

(60) means that the FOU of ỸLWA fills in the entire interval
[fLl, fRr] (see α′′ in Fig. 5), which is completely determined
by the α-cuts on the UMFs.

Theorem 6: When hmax < αj ≤ 1, the FOU of ỸLWA

fills in the entire interval [fLl, fRr]. Consequently, there is
no need to calculate fLr and fRl. ¥

F. Relations between the LWA and the FWA

By summarizing the results above, we can connect the
LWA and the FWA.

Theorem 7: The UMF of the LWA, Y LWA, is completely
determined by the UMFs of the attributes, Xi, and the UMFs
of the corresponding weights, W i (i = 1, 2, . . . , n). More
specifically, Y LWA is the FWA of Xi and W i. i.e. let

YFWA =
∑n

i=1 XiW i∑n
i=1 W i

(61)

Then,
Y LWA = YFWA ¥ (62)

Generally, it is impossible to find a similar theorem for
Y LWA, because to compute Y LWA we need to consider
three different cases; however, we can do that for a special
case of Y LWA, where all LMFs of X̃i and W̃i have the same
height.

2The switch point in (56) is denoted as kLr and that in (41) is denoted as
kRr ; however, because all bir , cil and dir are the same in (56) and (41),
when the KM algorithm is used to compute (56) and (41), the resulting
switch points will be the same. Consequently, (56) and (41) are the same.

Theorem 8: If all LMFs of X̃i and W̃i have the same
height, then Y LWA is the FWA of Xi and W i. i.e. let

Y ′
FWA =

∑n
i=1 XiW i∑n

i=1 W i

(63)

Then,
Y LWA = Y ′

FWA ¥ (64)

IV. LWA ALGORITHMS

A flowchart of the LWA algorithms is shown in Fig. 6.
To save computational cost, different α-cuts are chosen for
Y LWA and Y LWA [15]. The procedures in the two dashed
rectangles can be computed in parallel. Furthermore, the
KM algorithms in the two dotted rectangles in each dashed
rectangle can also be computed in parallel. The detailed
algorithms are given in [15].

As an example, consider X̃i and W̃i shown in Fig. 7(a) and
7(b), respectively. The resulting ỸLWA is shown in Fig. 7(c).
201 α-cuts were employed. The dashdot curve in Fig. 7(c)
indicates the overlapped area where fLr(αj) > fRl(αj) (see
Section III-D).
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Fig. 7. MFs of (a) X̃i (b) W̃i and (c) ỸLWA.

V. CONCLUSIONS

In this paper, we have introduced the concept of the LWA.
α-cuts and KM algorithms were employed to compute it.
Because the LWA is a generalization of the FWA from T1
FSs to IT2 FSs, there should be close relations between them.
We have shown that finding the LWA, ỸLWA, is equivalent
to finding its UMF, Y LWA, and LMF, Y LWA. Moreover,
Y LWA is the FWA of the UMFs of the attributes, X̃i,
and the UMFs of the corresponding weights, W̃i. Y LWA is
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more complicated than Y LWA, but it can also be computed
efficiently by using α-cuts and KM algorithms. For the
special case where all the LMFs of X̃i and W̃i have the
same height, Y LWA is the FWA of the LMFs of X̃i and
W̃i. Hence, the computational cost of a LWA is about twice
that of a FWA.
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