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Classification of Battlefield Ground Vehicles Using
Acoustic Features and Fuzzy Logic Rule-Based
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Abstract—In this paper, we demonstrate, through the multicat-
egory classification of battlefield ground vehicles using acoustic
features, how it is straightforward to directly exploit the informa-
tion inherent in a problem to determine the number of rules, and
subsequently the architecture, of fuzzy logic rule-based classifiers
(FLRBC). We propose three FLRBC architectures, one non-hi-
erarchical and two hierarchical (HFLRBC), conduct experiments
to evaluate the performances of these architectures, and compare
them to a Bayesian classifier. Our experimental results show that:
1) for each classifier the performance in the adaptive mode that
uses simple majority voting is much better than in the non-adap-
tive mode; 2) all FLRBCs perform substantially better than the
Bayesian classifier; 3) interval type-2 (T2) FLRBCs perform better
than their competing type-1 (T1) FLRBCs, although sometimes not
by much; 4) the interval T2 nonhierarchical and HFLRBC-series
architectures perform the best; and 5) all FLRBCs achieve higher
than the acceptable 80% classification accuracy.

Index Terms—Acoustic signal, Bayesian classification, fuzzy
logic rule-based classification, ground vehicles, interval type-2
fuzzy logic rule-based system.

I. INTRODUCTION

MOST distance-based classification problems are solved
by using one or more of the following approaches [6].

• Assume that class-conditional probability density
functions are of a certain parametric form (e.g., Gaussian
mixture model or hidden Markov model); then estimate the
parameters by using the maximum-likelihood or Bayesian
methods; and, finally, use the resulting distributions for
classification.

• Assume that the discriminant functions are of a certain
parametric form (e.g., linear discriminant function, support
vector machine), and then adjust the parameters to opti-
mize some criterion function.

• Use mode-free methods, e.g., -nearest-neighbor, multi-
layer neural networks, or fuzzy logic rule-based classifiers
(FLRBC).

According to the No Free Lunch Theorem [32]: “Although
some of these approaches may perform better than others for
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certain circumstances, there is no one approach that is univer-
sally superior to the others.” Whether one approach can per-
form well for a specific classification problem is heavily re-
lated to questionable choices that the designer of the classifier
makes based on his insights into that problem [6], [8]. There are
some questions one has to face at the very beginning of a clas-
sifier design, e.g., 1) the number of components included in the
Gaussian mixture model, 2) the dimensionality of the hidden
states of the hidden Markovian model, 3) the kernel function
and parameters chosen for the support vector machine, 4) the
number of neighbors chosen for the -nearest neighbor method,
5) the numbers of hidden layers and neurons included in, the
inter-connectivity among neurons, and the activation functions
chosen for the neural network model, and 6) the number of rules
included in, the membership functions (MF), and the fuzzy set
models (either type-1 or interval type-2) chosen for the FLRBC.

The designer may try to answer these questions based on his
knowledge about the classification problem, or by treating them
as machine learning problems at a higher level and then using
machine learning techniques, or, by using stochastic methods
(e.g., a genetic algorithm) [6], [8]. No matter which approach
is utilized, a priori knowledge (i.e., the designer’s information
about the classification problem or his experience with different
classifier design techniques) is exploited in one way or another.
It is difficult, and generally an open problem, to make direct
connections between such knowledge and the concrete config-
urations of classifiers. For example, when designing multilay-
ered neural network classifiers, knowing the dimensionality of
the features and the number of categories does not help much
in determining the number of hidden layers, or the number of
neurons in each layer (except for the first and the last layers), or
the interconnectivity among the neurons.

Interestingly enough, for those classification problems where
the a priori knowledge can be represented in the form of ex-
pert opinions, a FLRBC is able to incorporate such knowledge;
hence, it may be able to outperform other classifiers. Because
a FLRBC provides a framework to incorporate both subjective
and objective information, and to process both linguistic and
numeric information, it has already been been applied to many
classification problems where both expert opinion (subjective
knowledge) and design samples (from which objective knowl-
edge can be extracted) are available, or where the features are
represented as words (e.g., the degree of pain is severe) [1]–[3],
[9], [10], [14], [15], [21].

In this paper, we demonstrate, through the application of
classification of ground vehicles from acoustic features, how it
is straightforward to directly exploit the information inherent
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about this problem to determine the number of rules, and
subsequently the architecture, of such a FLRBC.

The rest of this paper is organized as follows. We first describe
this classification problem and data pre-processing in Sections II
and III, respectively; then provide a brief review of theories of
fuzzy logic rule-based systems (FLRBS) in Section IV before
we propose classifier designs in Section V and present exper-
imental results in Section VI, and finally draw conclusions in
Section VII.

II. PROBLEM DESCRIPTION

The acoustic emissions of ground vehicles contain a wealth of
information which can be used for vehicle classification under
certain circumstances (e.g., in the battlefield). The model for the
acoustic emissions can be simplified to be the addition of peri-
odic components and noise. The former accounts for the peri-
odic movements in the engine, and the latter accounts for the
propulsion process in the engine and the interactions between
the vehicle and the roads [26]. Because the operation mecha-
nisms are different for different vehicles, it is believed to be pos-
sible to distinguish among different vehicles based only on their
acoustic emissions.

There has been some previous research devoted to multicat-
egory classifications of ground vehicles based on acoustic sig-
nals [5], [20], [24], [30]. Choe et al. [5] first performed the dis-
crete wavelet transform of the acoustic data to generate multiple
resolution-level spectrograms, then used the statistical parame-
ters and the energy content of the wavelet coefficients in each
spectrogram as the features, and finally compared these features
against the reference vehicle features in the database to deter-
mine which class the input acoustic signal belongs to. Liu [20]
adopted the cochlear filter and A1-cortical wavelet transform of
the acoustic signal to obtain multiple resolution-level spectro-
grams in the auditory frequency domain, and used these repre-
sentations and vector-quantization based clustering algorithms
to classify vehicles. Sampan [24] used 30 features describing
the energy envelope of the acoustic signal in the time domain,
and a multi-layer perceptron network and a FLRBS to classify
four different categories of vehicles. Wellman [30] investigated
three feature extraction methods—simple power spectrum esti-
mates, harmonic line association (HLA), and principal compo-
nent analysis (PCA)—and used an artificial neural network to
classify vehicles.

In our problem, there are nine different kinds of vehicles that
have to be classified into one of four categories—heavy-tracked,
heavy-wheeled, light-tracked and light-wheeled—based on
their acoustic emissions collected on a so-called normal ter-
rain. Table II summarizes the category label and the number
of runs for each kind of vehicle. Although the aforementioned
research [5], [20], [24], [30] has shown that the classification of
ground vehicles based on their acoustic emissions is attractive,
it is still very challenging to accomplish this, because the
features that are extracted from the acoustic measurements
are time-varying and contain a lot of uncertainties (see Sec-
tion III-D). This is due to variations of the environmental
conditions (e.g., terrain and wind), vehicle-traveling speed, and
signal-to-noise ratio (SNR) of the acoustic measurements that is
subject to the variability of the distance between the vehicle and

TABLE I
ACRONYMS AND THEIR FULL DESCRIPTIONS

the sensor system. Consequently, any classifier that makes use
of acoustic measurements of ground vehicles for classification
must account for these time-variations and uncertainties [33].

Even before we provide explicit details about the features we
used as well as the FLRBCs, it is worthwhile for us to explain
that our approach is different than the aforementioned research
in the following ways.

• Our features were extracted from short time intervals
(about one second) within which the acoustic measure-
ments can be assumed to be stationary. We believe that
to use long time intervals is too challenging because the
nature of the unstationarities over such intervals are un-
known. Additionally, using short time interval features for
classification allows prompt decisions, which is desirable
in a battlefield scenario.

• Because our features can vary from one short time interval
to another, we developed both type-1 (T1) and interval
type-2 (T2) FLRBCs. The T1 FLRBCs do not have a direct
mechanism to model the unknown varieties of the features,
but the interval T2 FLRBCs do; hence, the latter have the
potential to outperform the former [21].

• We used one fuzzy logic rule for each kind of vehicle (for
a total of nine rules) to describe the relationship between
the features and vehicle category labels, then used fuzzy
sets in each fuzzy logic rule to model the variations of fea-
tures caused by variable operating conditions (e.g., trav-
eling speed, wind, temperature and humidity), and finally
optimized the parameters of MFs by using training sam-
ples. In this way, our a priori knowledge that there are
nine possible vehicles helped to establish the architecture
of each FLRBC.

• We designed three multicategory classifiers, one nonhier-
archical and two hierarchical, all of which were greatly in-
fluenced by our previous work into binary classification
of battlefield ground vehicles [34]–[36] (i.e., tracked vs.
wheeled vehicles, heavy-tracked versus light-tracked vehi-
cles, and heavy-wheeled vs. light-wheeled vehicles).

In the next few sections, we explain these differences in more
detail. Since we use numerous acronyms throughout this paper,
we first list their full descriptions in Table I.

III. PREPROCESSING

Preprocessing, including data analysis, prototype generation,
feature extraction and uncertainty analysis, was used to establish
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TABLE II
THE NUMBER OF RUNS FOR HEAVY-TRACKED, LIGHT-TRACKED,

HEAVY-WHEELED AND LIGHT-WHEELED VEHICLES

appropriate models for the features that were extracted from the
acoustic measurements. Because many readers of this journal
may not be so familiar with the specifies for this application, we
briefly provide some of them next.

A. Data Collection

We used the acoustic-seismic classification/identification
data set (ACIDS) that consists of acoustic data collected for nine
kinds of ground vehicles on the normal terrain. The number of
runs for each kind of vehicle is summarized in Table II.

The acoustic data were collected by using a sensor system
that is a three-element equilateral triangular microphone array
with a length of 38.1 cm between microphones. As shown in
Fig. 1, a run corresponds to a ground vehicle traveling at a con-
stant speed toward the sensor system, passing the closest point
of approach (CPA), and then moving away from the sensor
system. Although the traveling speed of a ground vehicle is
approximately constant within each run, it varies from run to
run, ranging from 5 to 40 km/hr. The variation of the traveling
speed, along with the environmental variations (e.g., wind and
terrain), makes the acoustic emissions of the same vehicle dif-
ferent from run to run. Within each run, when the vehicle is far
away from the sensor system (in the beginning and ending parts
of a run), the acoustic measurements mainly consist of back-
ground noise, whereas when the vehicle is closer to the sensor
system (in the middle part of a run), the acoustic measurements
consist of acoustic emissions of the ground vehicle as well as
the background noise. The variation of the distance between the
traveling vehicle and the sensor system makes the SNR of the
measurements variable within each run. The above two sources
of variations are both embodied in the uncertainties of the fea-
tures that are extracted from the acoustic measurements.

B. Prototype Generation

A complete run contains anywhere from 56 to 420 seconds
worth of measurements, where the different lengths of runs are
due to the different conditions under which the data were col-
lected. At the sampling rate of 1025.641 Hz, there are, there-
fore, a great number of measurements in each run. As already
mentioned, these measurements are nonstationary because their
SNR varies within each run. These two factors make it im-
practical to process all measurements of a run simultaneously;
hence, we segmented them into one-second blocks, and treated
one block (rather than a whole run) as one prototype.

Fig. 1. Acoustic measurements of a typical run obtained from one sensor.

Since the middle part of each run has higher SNR and con-
tains more information about the vehicle than its beginning and
ending parts (see Fig. 1), we used this part of the measurements
to generate prototypes, and used the following two ways to lo-
cate the measurements with high SNR.

• CPA-based prototypes: We first located the CPA (where
the measurements have the maximum magnitude), and
then slid a 1024-point rectangular window (about one
second) with 50% of window overlap to the left and right
of the CPA, to obtain 80 CPA-based prototypes from each
run.

• Non-CPA-based prototypes: We first estimated the back-
ground noise level of a run as the energy of its first data
block, and then compared each succeeding data block with
this background noise level. If the energy of a succeeding
data block was above the background noise level for a cer-
tain threshold1, then this data block was considered to be a
non-CPA-based prototype.

During our classifier evaluation experiments, we mainly used
CPA-based prototypes because: 1) the number of CPA-based
prototypes for each kind of ground vehicle is proportional to
its number of runs, and since the number of runs available for
each of the nine kinds of vehicles is different (see Table II), the
knowledge of the a priori probability of each kind of vehicle
was implicitly used during the training and testing of a classi-
fier; and 2) CPA-based prototypes are more robust to noise than
non-CPA-based prototypes, because the estimation of the en-
ergy level for each data block was sensitive to the noise. How-
ever, because CPA information may not be available during the
real-time operation period, we also used non-CPA-based proto-
types during our evaluation experiments to test the performance
of classifiers for the more realistic battlefield scenario that deci-
sions must be made before a vehicle reaches the CPA.

C. Feature Extraction

We used the harmonic line association (HLA) feature vector
[23], [30], i.e., the magnitudes of the second through 12th har-

1After examining the energy distribution of all runs, the threshold was set at
8 dB.
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Fig. 2. Feature distributions of the light-tracked vehicle, LT-a. Each curve cor-
responds to a feature distribution within one of the 15 available runs, which
is characterized by a Gaussian function centered at and about

. For a better visualization effect, the origin for showing the distribution
of is shifted to the point in the figure.

monic frequency components,2 for vehicle classification, be-
cause it is low-dimensional, has physical meaning, outlines the
magnitude spectrum envelope, and is simple to extract based on
the algorithm in [23]. In the rest of this paper, the features are
denoted , and their corresponding feature spaces are
denoted .

The most important step in the HLA method is the estimation
of the fundamental frequency , because only after this occurs
can the harmonic frequencies be located and their magnitudes be
taken as features. The algorithm used to estimate in the HLA
method was first developed in [23]. Compared with the max-
imum-likelihood estimation method [17] that requires to be
initially known within an accuracy of 0.5 Hz, the HLA method
in [23] does not rely very strongly on a mathematical model for
the acoustic emissions of ground vehicles, and requires less a
priori knowledge about ; hence, we chose the HLA method.

D. Uncertainties of the Features

Since all classifiers (described in Section V) were designed
(trained) using CPA-based prototypes, our analysis about the
uncertainties of the features also focused on such prototypes. In
each individual feature space , we first calculated the mean
and standard deviation (SD) (denoted and , re-
spectively) for each run to reflect the uncertainties of features
within runs, and then calculated the mean of , SD of

, mean of , and SD of for each kind of ve-
hicle to reflect the uncertainties of features across runs. For the
light-tracked vehicle LT-a, Fig. 2 shows the feature distributions
(characterized by and ), and Table III summarizes
the four statistics across runs. Observe from Table III that: 1)
the SD of is not negligible when compared to the mean
of , 2) the SD of is also not negligible when com-

2On one hand, we used the 11-dimensional features because the studies pre-
sented in [23], [30] have used the same approach and achieved fair performance.
On the other hand, our study presented in this paper was focused only on the
classifier designs. The interested readers can refer to [25] for a study on the min-
imum sufficient number of features for this application.

TABLE III
STATISTICS OF THE FEATURES FOR THE LIGHT-TRACKED VEHICLE, LT-A

Fig. 3. Interval T2 fuzzy sets. (a) Gaussian primary MF with an uncertain mean
and an uncertain SD. (b) Gaussian primary MF with an uncertain SD.

pared to the mean of , and 3) the SD of is of the
same order of magnitude as the SD of .

These results demonstrate that feature uncertainties exist
both within and across runs. They also provide a basis for
choosing appropriate fuzzy set models for the features, i.e.,
the ideal models must be able to account for the simultaneous
variations in the and of the features. T1 FLRBCs
cannot directly model such simultaneous variations, because
the T1 MFs only provide a point value at each feature measure-
ment. Interval T2 FLRBCs, on the other hand, can model such
simultaneous variations, because the interval T2 MFs provide
a range of values at each feature measurement. Based on our
feature uncertainty analysis, we chose to model the antecedent
that is associated with each feature as an interval T2 fuzzy set
whose MF is a Gaussian function that has both an uncertain
mean and an uncertain SD, as shown in Fig. 3(a). We also chose
to model each input as an interval T2 fuzzy set whose MF is a
Gaussian function that is centered at the measured feature but
has an uncertain SD, as shown in Fig. 3(b), so as to account for
feature extraction uncertainties.
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IV. PRELIMINARY KNOWLEDGE OF FUZZY LOGIC RULE-BASED

SYSTEMS

Because we establish nonhierarchical and hierarchical
FLRBCs (in Section V) all based on FLRBSs, it is appropriate
to briefly review the operations and optimization procedure of
such a system.

A FLRBS consists of four components: rule-base, fuzzifier,
fuzzy inference engine and output processor [21]. The rule-base
contains rules that are extracted from expert knowledge,
mathematical models, or data. Each rule describes a relation
from the domain to the range ,
and can be expressed as the following IF–THEN statement:

: IF is and and is , THEN is

in which represents the th rule, is the antecedent asso-
ciated with the th input variable , and is
the consequent associated with the output variable . Given a
vector of measurements, , the fuzzifier con-
verts them into fuzzy sets , one for each dimen-
sion. The fuzzy inference engine then computes the firing degree
for each rule which describes how much the input fuzzy sets,

, match the antecedents, . The output
processor computes a crisp output, , by using the firing de-
grees and the consequents or all rules.

In summary, through fuzzification, inference and output pro-
cessing, the FLRBS maps the input to an output ac-
cording to the rules. The literature about FLRBSs is very ex-
tensive, and we refer the readers to, e.g., [14], [21], and [29].
Because the input fuzzy sets, antecedents and consequents can
be either T1 or interval T2 fuzzy sets, the specific computations
of fuzzification, inference and output processing are different
for T1 and interval T2 FLRBSs. We summarize these computa-
tions next.

A. Type-1 FLRBS

In a T1 FLRBS, the input fuzzy sets, antecedents, and conse-
quents are all T1 fuzzy sets, and output processing only consists
of defuzzification. For consistency with our later descriptions of
FLRBCs, we illustrate the operations of and optimization pro-
cedure for the T1 FLRBS based on the following assumptions.

• Each input fuzzy set, , is a T1 fuzzy
set whose MF is a Gaussian function that is centered at
with SD , i.e.,

(1)

where represents a Gaussian function for the
variable , with mean and SD . Using such a measure-
ment model leads to a non-singleton fuzzifier.

• Each antecedent, , is a T1 fuzzy set whose MF is a
Gaussian function that is centered at with SD , i.e.,

(2)

• The center-of-sets defuzzification method [21], [27] was
used. In this method, each consequent fuzzy set is rep-
resented only by its centroid .

a) Operations:: For a T1 FLRBS, the inference engine ob-
tains one firing degree for each rule. We used the Mamdani in-
ference method implemented via the product t-norm, so that the
the firing degree of the th rule, , is com-
puted by using the sup-star composition as [21], [29]

(3)

For a T1 FLRBS, our output processing consists of center-of-
sets defuzzification [21], [27], which leads to the crisp output,

, computed as

(4)

b) Optimization:: The parameters of a T1 FLRBS include
the input fuzzy set parameters antecedent parame-
ters and , and consequent parameters , where

and . There are therefore a total of

(5)

design parameters. These parameters were tuned so as to mini-
mize a given objective function (whose structure is provided
in Section V) by using the following steepest descent algorithm:

(6)

In (6) is a generic symbol standing for all parameters that
are optimized, and is the learning parameter. Note that

is computed as:

(7)

where is the crisp output of the T1 FLRBS. The calculation of
depends on the specific form of , and the formulas for
are summarized in Appendix A (see, for example, [21],

[29], and [37] for the details of these formulas).

B. Interval Type-2 FLRBS

In an interval T2 FLRBS, the input fuzzy sets, antecedents
and consequents are all interval T2 fuzzy sets, and the output
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TABLE IV
FORMULAS FOR AND [21]

processing consists of type-reduction followed by defuzzifica-
tion. For consistency with our later descriptions of FLRBCs, we
illustrate the operations of and optimization procedure for the
interval T2 FLRBS based on the following assumptions.

• Each input fuzzy set, , is an interval T2
fuzzy set whose MF is a Gaussian function centered at
with an uncertain SD where , i.e., the
lower and upper MFs of are given as [21] [see, also,
Fig. 3(b)]

(8)

(9)

• Each antecedent, , is an interval T2 fuzzy set whose MF
is a Gaussian function with an uncertain mean where

, and an uncertain SD where
, so that its lower and upper MFs are [37] [see,

also, Fig. 3(a)]

if

if

(10)

if

if
otherwise

(11)

• A special case3 of the center-of-sets type-reduction
method—height type-reduction— was used [19], [21]. In
this method, each consequent fuzzy set is represented
as a crisp number .

3In the original center-of-sets type-reduction method, each consequent fuzzy
set is represented by its centroid which is an interval . Because the
consequent fuzzy sets in our classification problem correspond to the vehicle
category labels and are represented by crisp numbers, this original type-reduc-
tion method was tailored to fit in with the special situation.

c) Operations: For an interval T2 FLRBS, the inference en-
gine obtains two firing degrees for each rule—the lower and
upper firing degrees—by using the extended sup-star compo-
sition [21], i.e., the lower and upper firing degrees of the -th
rule, and , are computed4 as

(12)

(13)

The formulas for computing and are summa-
rized in Table IV.

For an interval T2 FLRBS, output processing consists of type-
reduction followed by defuzzification. Type-reduction obtains
an interval output, , by using the iterative pro-
cedures developed by Karnik and Mendel [11], [21], that use
the just-computed lower and upper firing degrees as well as the
consequent values. The end-points of the type-reduced set,

and , can be expressed5 as (see Appendix B)

(14)

(15)

4Due to space limitations, we do not provide derivations here. They are in
[19], [21].

5The reasons that we introduce and into the formulas of and
are mainly for the convenience of partial derivative formulas, as shown

in (C.17)–(C.20)
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Defuzzification of the interval T2 FLRBS obtains a crisp output,
, from the type-reduced set as

(16)

Optimization: The parameters of an interval T2 FLRBS
include the input fuzzy set parameters
antecedent parameters and , and

consequent parameters , where and
. There are, therefore, a total of

(17)

design parameters. These parameters were also tuned by using
the steepest descent algorithm in (6). The partial derivatives

of the interval T2 FLRBS were also computed as in (7),
where the formulas for for all of the parameters of the in-
terval T2 FLRBS are summarized in Appendix C (see [37] for
details of these formulas).

V. CLASSIFIER DESIGNS

In this section, we design three architectures for the
FLRBCs—nonhierarchical, hierarchical in parallel and hi-
erarchical in series—each of which is implemented based on
T1 or interval T2 fuzzy set and fuzzy logic theories. The per-
formance of these FLRBCs are base-lined against a Bayesian
classifier that is also described below.

In the rest of this paper, without any explicit indications, we
use lower-case letters (e.g., or ) to represent numbers, and
upper-case letters (e.g., ) to represent random variables (for
the Bayesian classifier) or fuzzy sets (for FLRBCs).

A. Bayesian Classifier

The Bayesian classifier was established based on assumptions
about the conditional probability density function (pdf) of the
features in each category. This classifier consists of nine con-
ditional probability models, each of which corresponds to one
kind of vehicle, and is described by a Gaussian pdf

(18)

where represents the feature vector and
represents the th kind of vehicle. and are the mean

and covariance matrix of the multivariate Gaussian distribution
associated with , and are estimated as the sample mean and
sample covariance of the training prototypes (how prototypes
were divided into the training and testing sets is described in
Section VI) of .

Note that one can use more complicated models, e.g.,
Gaussian mixture models, to describe the feature distributions
of each kind of vehicle. As mentioned earlier in Section I, the
performance of a classifier is heavily dependent upon the de-
signer’s experience and a priori knowledge about the problem.
We chose the above model because it is compatible with using
one rule per vehicle in a FLRBC.

Given an unlabeled feature vector as the input, our
Bayesian classifier first computes the log-likelihood
for each kind of vehicle as

(19)

and then compares all likelihoods to determine that is as-
sociated with the maximum likelihood. Finally, our Bayesian
classifier assigns to the same category as .

B. Nonhierarchical FLRBC

The nonhierarchical FLRBC is based on encoding
the labels of the four categories into two-dimensional
vectors, with , ,

, and corresponding
to the heavy-tracked, light-tracked, heavy-wheeled, and
light-wheeled vehicles, respectively. It is constructed as a
traditional FLRBS but with two-dimensional consequents and
outputs. The rule base of the non-hierarchical FLRBC has nine
rules, one for each kind of vehicle, i.e.,

: IF is and and is , THEN is

where represents the rule for the th kind of vehicle ,
and the consequent is a two-dimensional vector en-
coding the category label of . Given an unlabeled feature
vector as the input, this FLRBC obtains a
two-dimensional output vector through fuzzifi-
cation, inference and output processing6, and makes a final deci-
sion for based only on the signs of according
to Table V.

This FLRBC architecture was implemented using both T1
and interval T2 fuzzy sets, as described in Sections 4.1 and
4.2, respectively. For our application there are 11 features

and nine rules ; hence, based on (5)7 there
are a total of the 227 parameters in the T1 nonhierarchical
FLRBC. Because a rule corresponds to one kind of vehicle,
the consequent and antecedent parameters of each rule were
initialized during optimization based on the category label
and the training prototypes of its corresponding vehicle. More
specifically, the consequent of a rule was initialized
as ( or ) if the vehicle
belonged to the heavy-tracked (light-tracked, heavy-wheeled or
light-wheeled) category. The antecedent parameters of a rule,

and , were initialized as the sample mean and sample SD
of the training prototypes of the corresponding vehicle, and the
input parameters, , were initialized as the
average over all nine rules.

6The computations for the output processing [i.e., (4) for the T1 implemen-
tations, and (14)–(16) for the interval T2 implementations] are applied twice,
one for each dimension, with being substituted by ( or 2) for the
computations of the th dimension.

7Equation (5) has been changed to when it is used, since there
are two consequent parameters for each rule in this non-hierarchical FLRBC
architecture as well as in sub-system 2 of the HFLRBC-S architecture as detailed
in Section V-D.
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Based on (17)8 there are a total of 436 parameters in the
interval T2 nonhierarchical FLRBC. These parameters were
initialized during optimization based on the final optimal pa-
rameters of the competing (just-designed) T1 nonhierarchical
FLRBC, according to the following:

(20)

(21)

(22)

(23)

where and was set equal to 0.1 during the experi-
ments. Note that in these equations the left-hand sides are the
initial values of the parameters of the interval T2 nonhierar-
chical FLRBC, and the right-hand sides are the optimal values of
the parameters of the previously-designed T1 non-hierarchical
FLRBC.

During training all of the 227 the parameters of the T1 non-hi-
erarchical FLRBC and the 436 parameters of the T2 non-hier-
archical FLRBC were optimized by using the steepest descent
algorithm in (6) to minimize the following classification error
objective function:

(24)

where represents the training set, and is the de-
sired classification result for , i.e.,
( or ) if belongs to the
heavy-tracked (light-tracked, heavy-wheeled, or light-wheeled)
category.

C. Hierarchical FLRBC in Parallel

The hierarchical FLRBC in parallel (HFLRBC-P) con-
sists of four sub-systems, as shown in Fig. 4. The first three
sub-systems, which operate in parallel, are for the binary classi-
fication of tracked versus wheeled (T/W), heavy-tracked versus
light-tracked (HT/LT), and heavy-wheeled versus light-wheeled
(HW/LW) categories, respectively. The fourth sub-system
makes final decisions based on the decisions from the first three
sub-systems.

Each of the first three sub-systems is a FLRBS. Sub-system
1 contains nine rules for the classification of tracked versus
wheeled categories, each of which corresponds to one kind of
vehicle; sub-system 2 contains five rules for the classification
of heavy-tracked versus light-tracked categories, each of which

8Equation (17) has been changed to when it is used, since
there are two consequent parameters for each rule in this non-hierarchical
FLRBC architecture as well as in sub-system 2 of the HFLRBC-S architecture
as detailed in Section V-D.

Fig. 4. HFLRBC-P that consists of four sub-systems.

corresponds to one kind of tracked vehicle (see Table II); and
sub-system 3 contains four rules for the classification of heavy-
wheeled versus light-wheeled categories, each of which corre-
sponds to one kind of wheeled vehicle. Despite these differ-
ences, the rules of these sub-systems all have the same form,
namely

: IF is and and is , THEN is
and

where is the number of rules of sub-system repre-
sents the th rule of sub-system , and the consequent is
a scalar. Given an unlabeled feature vector as the input,
each of the first three sub-systems obtains an intermediate
output through fuzzification, inference
and output processing. Sub-system 1 computes two weights,

and , by using the the following
logistic function with parameter ( is optimized during
training):

(25)

Weights and are associated with tracked and
wheeled categories, respectively. Similarly, sub-system 2
computes two conditional weights, and

, which are conditioned on belonging to
the tracked category and are associated with heavy-tracked
and light-tracked categories, respectively, as ( and is
optimized during training)

(26)

Sub-system 3 also computes two conditional weights,
and , which are

conditioned on belonging to the wheeled vehicle and are
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associated with heavy-wheeled and light-wheeled categories,
respectively, as ( and is also optimized during training)

(27)

Sub-system 4 then computes four weights, ,
and , that are associated with the

heavy-tracked, light-tracked, heavy-wheeled, and light-wheeled
vehicle categories, respectively, as

(28)

These weights can be interpreted as approximations to the pos-
terior probabilities for the four categories, e.g., is the ap-
proximate probability of belonging to the tracked category,

is the approximate conditional probability of be-
longing to the heavy-tracked category given that it belongs to
the tracked category, and is the approximate probability
of belonging to the heavy-tracked category. Sub-system 4
makes a decision for the input feature vector based on the four
weights in (28), i.e., by assigning to the category with the
highest weight.

The HFLRBC-P architecture was implemented also using
both T1 and interval T2 fuzzy sets. In the T1 HFLRBC-P, the
antecedents and fuzzifier were modeled using the same as-
sumptions we made in Section IV-A for the T1 FLRBS; and, in
the interval T2 HFLRBC-P, the antecedents and fuzzifier were
modeled using the same assumptions we made in Section IV-B
for the interval T2 FLRBS. The computations of sub-systems
1–3 are as described in Section 4. Note, also, that sub-system 4
is the same for both the T1 and interval T2 HFLRBC-Ps.

By applying (5) to sub-systems 1–3, and adding the three
parameters for , it is straightforward to show
that there are a total of 450 parameters for the T1 HFLRBC-P.
Since each rule corresponds to one kind of vehicle, the conse-
quent and antecedent parameters of this rule were initialized
during optimization based on the label and prototypes of its
corresponding vehicle. More specifically, in sub-system 1,
the consequent of one rule was initialized
as (or ) if its corresponding vehicle belonged to the
tracked (or wheeled) category; in sub-system 2, the consequent

of one rule was initialized as (or )
if its corresponding vehicle belonged to the heavy-tracked (or
light-tracked) category; and in sub-system 3, the consequent

of one rule was initialized as (or )
if its corresponding vehicle belonged to the heavy-wheeled (or
light-wheeled) category. In each sub-system, the antecedent
and input parameters were initialized in the same way as de-
scribed in Section V-B for the T1 nonhierarchical FLRBC, and

the parameters for the logistic function, , were
initialized as 1.

By applying (17) to sub-systems 1–3, and adding the three
parameters for , it is straightforward to show
that there are a total of 879 parameters for the interval T2
HFLRBC-P. These parameters were initialized during opti-
mization based on the optimal parameters of the competing
(just-designed) T1 HFLRBC-P as in (20)–(23). Additionally,

, were initialized as

(29)

where represents the initial value for the interval T2
HFLRBC-P, and represents the optimal value
for the T1 HFLRBC-P.

During training, all the parameters of the HFLRBC-P were
tuned simultaneously by using the steepest descent algorithm
in (6) to minimize the following classification error objective
function:

(30)

where are the
desired weight values for the heavy-tracked,
light-tracked, heavy-wheeled and light-wheeled cat-
egories, i.e.,

or when
is a feature vector of the heavy-tracked, light-tracked,
heavy-wheeled, or light-wheeled vehicle, respectively.

D. Hierarchical FLRBC in Series

The hierarchical FLRBC in series (HFLRBC-S) consists
of three sub-systems, as shown in Fig. 5. Sub-system 1 is
for the binary classification of tracked versus wheeled cate-
gories, sub-system 2 is for the four-category classification of
heavy-tracked, light-tracked, heavy-wheeled and light-wheeled
vehicles and utilizes the output of the first sub-system as well
as the input feature measurements, and, sub-system 3 makes
final decisions based on the outputs of the second sub-system.

Both sub-systems 1 and 2 are complete and separate FLRBSs.
Sub-system 1 consists of nine rules, each of which is associated
with one kind of vehicle and has the following form:

: IF is and and is , THEN is
,

where represents the -th rule of sub-system 1, and the con-
sequent is a scalar. Sub-system 2 also consists of nine rules,
each of which is associated with one kind of vehicle and has the
following form:

: IF is and is and and is ,
THEN is ,

where represents the -th rule of sub-system 2, and the con-
sequent is a two-dimensional vector. Additionally, the
antecedent for the intermediate output of the first
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Fig. 5. HFLRBC-S that consists of three sub-systems.

TABLE V
CLASSIFICATION DECISION FOR BASED ON

sub-system was modeled as a T1 fuzzy set with logistic MF, i.e.,

(31)

where was initialized during optimization as (or ) if
was associated with a tracked (or wheeled) vehicle.

Given an unlabeled feature vector as the input, sub-system
1 obtains an output through fuzzification, inference and
output processing. This output together with the feature vector

are then used as the inputs to sub-system 2, which obtains
the crisp output vector also through fuzzifi-
cation, inference and output processing. Sub-system 3 makes
the final classification decision for based on the signs of

according to Table V [with the replacements
for ].

The HFLRBC-S architecture was also implemented using
both T1 and interval T2 fuzzy sets. In the T1 HFLRBC-S,
except for the antecedent and fuzzifier of sub-system 2 for
the intermediate output , all the other antecedents and
fuzzifier were modeled using the same assumptions we made in
Section 4.1 for the T1 FLRBS; and the fuzzifier of sub-system
2 encoded the intermediate output of the first sub-system
into a singleton fuzzy set.

In the interval T2 HFLRBC-S, except for the antecedent and
fuzzifier of sub-system 2 for the intermediate output , all
the other antecedents and fuzzifier were modeled using the same
assumptions we made in Section 4.2 for the interval T2 FLRBS;
and the fuzzifier encoded the intermediate output into an
interval T1 fuzzy set , which is the type-reduced
set of the first sub-system. The computations of sub-systems 1

and 2 are as described in Section IV. Note, also, that sub-system
3 is the same for both the T1 and interval T2 FLRBC-Ss.

By applying (5) (see footnote 7) to sub-systems 1 and 2, and
adding the parameters for , it is straightfor-
ward to show that there are a total of 454 parameters in the T1
HFLRBC-S. Since each rule corresponds to one kind of vehicle,
the consequent and antecedent parameters of this rule were ini-
tialized during optimization based on the label and the proto-
types of its corresponding vehicle, i.e., in sub-system 1, the con-
sequent was initialized as (or ) if its
corresponding vehicle belonged to the tracked (or wheeled) cat-
egory, and the antecedent and input parameters were initialized
in the same way as described in Section V-B for the T1 nonhier-
archical FLRBC. In sub-system 2, the consequent was
initialized as ( and ) if
its corresponding vehicle belonged to the heavy-tracked (light-
tracked, heavy-wheeled, or light-wheeled) category; the param-
eter of the antecedent , was initial-
ized as (or ) if its corresponding vehicle belonged to the
tracked (or wheeled) category; and, the remaining antecedent
and input parameters were initialized in the same way as de-
scribed in Section V-B for the T1 nonhierarchical FLRBC.

By applying (17) (see footnote 8) to sub-systems 1 and 2, and
adding the parameters for , it is straightfor-
ward to show that there are a total of 872 parameters in the in-
terval T2 HFLRBC-S. These parameters were initialized based
on the optimal parameters of the competing T1 HFLRBC-S in
a similar way to (20)–(23). Additionally, in sub-system 2, the
parameter of the antecedent , was ini-
tialized as

(32)

where represents the initial value for the interval T2
HFLRBC-S, and represents the optimal value
for the T1 HFLRBC-S.

During training, all the parameters of the HFLRBC-S were
optimized by using the steepest descent algorithm in (6) to
minimize the objective function in (24) [with the replacements

for ].

VI. EXPERIMENTS AND RESULTS

We performed various experiments to evaluate the Bayesian
classifier and FLRBCs. Here we only provide the details and
results for the 10-fold cross-validation and leave-two-runs-out
experiments. Additional experiments can be found in [37]. Note
that this is an application where9 80% or better correct classifi-
cation is considered to be excellent.

A. 10-Fold Cross Validation Experiment

In the 10-fold cross validation experiment, we first randomly
divided the CPA-based prototypes of all runs into 10 even folds,
and then performed 10 designs for each classifier. In the -th
design, the prototypes of the -th fold were used for testing,
and the prototypes of the remaining nine folds were used for
training.

9This number was provided to us by our ARL sponsors.
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The pseudo code for this 10-fold cross validation experiment
is:

Index the CPA-based prototypes of all runs;

//There are 80 CPA-based prototypes/run
runs in total.

Randomly permute the index of all CPA-based

prototypes;

Divide all CPA-based prototypes into 10 even

folds according to their indices;

for designs in total

Use CPA-based prototypes of the th

fold for testing;

Use CPA-based prototypes of the remaining

folds for training;

Estimate the parameters for the Bayesian

classifier by using the training data;

Test the Bayesian classifier using testing

prototypes, and save the testing

classification error rate as ;

Initialize the parameters of the T1 FLRBC;

for
//train and test for 1000 epochs

Optimize the T1 FLRBC using training

prototypes;

Test the T1 FLRBC using testing

prototypes, and save the testing

classification error rate as ;

Save the minimum of for

as ;

Save the optimal parameters as ;

Initialize the parameters of the interval

T2 FLRBC based on ;

for
//train and test for 1000 epochs

Optimize the interval T2 FLRBC using

training prototypes;

Test the interval T2 FLRBC using

testing prototypes, and save the

testing classification error rate
as ;

Save the minimum of for

as ;

Save the optimal parameters as ;

Compute the mean and SD of and

for .

TABLE VI
AVERAGE AND SD OF THE TESTING CLASSIFICATION ERROR RATES ACROSS

THE 10 DESIGNS OF THE 10-FOLD CROSS-VALIDATION EXPERIMENT, AND THE
NUMBER OF DESIGNS THAT THE TESTING CLASSIFICATION ERROR RATE OF

ONE (T1 OR INTERVAL T2) IMPLEMENTATION IS SMALLER THAN THE OTHER.
NOTE THAT THE DESIGNS WHERE THE TESTING CLASSIFICATION ERROR RATES
OF THE T1 AND INTERVAL T2 IMPLEMENTATIONS ARE TIED ARE NOT COUNTED

The results of the 10-fold cross-validation experiments are
summarized in Table VI. Observe that: 1) while the SD values of
the testing classification errors of all classifiers are of the same
magnitude, the mean values of the testing classification errors of
all FLRBCs are much smaller than that of the Bayesian classi-
fier, which suggests that all FLRBCs perform much better than
the Bayesian classifier; 2) for most of the designs, the interval
T2 FLRBCs have smaller testing classification errors than their
competing T1 FLRBCs; 3) in terms of the mean value of the
testing classification error, the interval T2 HFLRBC-S architec-
ture performs the best; and 4) all FLRBCs are able to achieve
higher than the 80% acceptable classification accuracy.

B. Leave-Two-Runs-Out Experiment
Leave-two-runs-out means that we randomly picked one

tracked run and wheeled run so as to use their prototypes for
testing, and then used the prototypes of the remaining runs
for training. There are 61 tracked runs and 28 wheeled runs
(see Table II); hence, this experiment could be performed

times, each experiment corresponding to
one possible combination of one tracked run and one wheeled
run. However, because 1 708 is a rather large number, we
only performed this experiment 200 times, and then used the
bootstrap method [39] to estimate the confidence interval of the
mean of the classification error rate.

During this experiment, we established the concepts of
non-adaptive and adaptive operational modes, where the
former refers to the classification decision for one data block

being based only on itself, whereas the latter refers to the
classification decision for being based on all available data
blocks prior to and including . We used the following simple
majority voting rule: the adaptive decision of is the same as
the majority of the nonadaptive decisions for the data blocks
prior to and including . Theoretical analyses that are based on
the assumption that local decisions for different observations
are independent, as well as experiments, have shown that the
simple majority vote can greatly improve the performance
of decision-making [4], [7], [12], [13], [18], [22], [28], [31],
[38]. We did not use any other fusion method because of the
computational simplicity of the majority vote, something that
is very important when our classifiers would be used in a bat-
tlefield environment. In our case, when the local decisions are
dependent, because they use some of the same measurements,
we still observed that the simple majority-voting based adaptive
working mode achieved much better performance than the
non-adaptive working model. Other ways to combine multiple
classifiers are described in [16].
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The pseudo-code for the leave-two-runs-out experiment is:

for //200 times in total

Randomly pick one tracked run and one

wheeled run out of the pool, and use

their Non-CPA-based prototypes for

testing;

Use CPA-based prototypes of the remaining

runs for training;

Estimate the parameters of the Bayesian

classifier using training prototypes;

Test the Bayesian classifier using testing

prototypes, and save the classification

error rate for the non-adaptive mode as

, and for the adaptive mode as ;

Initialize the parameters of the T1 FLRBC

using training prototypes;

for //train and test for 400
epochs

Optimize the T1 FLRBC using training

prototypes;

Test the T1 FLRBC for the
non-adaptive

mode using testing prototypes, and

save the testing classification

error rate as ;

Save the minimum of for

as ;

Save the optimal parameters as ;

Test for the adaptive mode, and save

the classification error rate as ;

Initialize the parameters of the interval

T2 FLRBC based on ;

for
//train and test for 400 epochs

Optimize the interval T2 FLRBC using

training prototypes;

Test the interval T2 FLRBC for the

non-adaptive mode using testing

prototypes, and save the testing

classification error rate as ;

Save the minimum of for

as ;

Save the optimal parameters as ;

Test for the adaptive mode, and save

the classification error rate

as
;

Compute the mean of the classification error

rates for , and apply the

bootstrap method to calculate their 95%

confidence intervals.

TABLE VII
AVERAGE AND 95% CONFIDENCE INTERVAL (CI) OF THE AVERAGE OF THE

CLASSIFICATION ERROR RATES FOR THE LEAVE-TWO-RUNS-OUT EXPERIMENTS

TABLE VIII
NUMBER OF DESIGNS OF THE LEAVE-TWO-RUNS-OUT EXPERIMENTS FOR

WHICH THE CLASSIFICATION ERROR RATE OF ONE (NONADAPTIVE OR
ADAPTIVE) MODE IS STRICTLY SMALLER THAN THE OTHER. NOTE THAT THE
DESIGNS WHERE THE CLASSIFICATION ERROR RATES OF THE NONADAPTIVE

AND ADAPTIVE MODES ARE TIED ARE NOT COUNTED

Note that for the leave-two-runs-out experiment the training
prototypes were presented 400 epochs rather than 1000 epochs,
as was done for the 10-fold cross validation experiments. This is
because in the leave-two-runs-out experiment more prototypes
were used for training than in the 10-fold cross validation ex-
periments. On the one hand, more training data mean a longer
training process; on the other hand, we did not want the classi-
fiers to be over-fitted to the training data.

The results of this experiment are summarized in Ta-
bles VII–X. Observe the following.

• Comparing the the nonadaptive and adaptive working
modes (see Tables VII and VIII) for each classifier, the
average classification error rate of the adaptive mode is
much smaller than that of the nonadaptive mode. Even
the upper-bound of the 95% confidence interval of the
adaptive mode is smaller than the lower-bound of the 95%
confidence interval of the nonadaptive mode. The number
of designs for which the classification error rate of the
adaptive mode is smaller than that of the nonadaptive
mode is larger than the number of designs for which the
classification error rate of the nonadaptive mode is smaller
than that of the adaptive mode. This indicates that the
performance of each classifier in the adaptive mode is
much better than in the nonadaptive mode.

• Comparing the Bayesian classifier and the FLRBCs, for
both the non-adaptive and adaptive working modes (see
Tables VII and IX), the average classification error rates
of the Bayesian classifier are greater than those of each
of the FLRBCs. Even the lower-bounds of the 95% con-
fidence intervals of the Bayesian classifier are greater than
the upper-bounds of the 95% confidence intervals of each
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TABLE IX
NUMBER OF DESIGNS OF THE LEAVE-TWO-RUNS-OUT EXPERIMENTS FOR

WHICH THE CLASSIFICATION ERROR RATE OF A PARTICULAR CLASSIFIER IS
NO LARGER THAN THE MINIMUM CLASSIFICATION ERROR RATE FROM ALL

SEVEN CLASSIFIERS BEING COMPARED

of the FLRBCs. The numbers of designs that the classifi-
cation error rates of the Bayesian classifier are the smallest
among all the seven classifiers are rather small (two for the
nonadaptive mode, and 25 for the adaptive mode, out of
200 designs). This indicates that the Bayesian classifier is
worse than the FLRBCs.

• Comparing the T1 and interval T2 implementations of
FLRBCs (see Tables VII and X), for each FLRBC ar-
chitecture and for both the nonadaptive and adaptive
working modes, the average classification error rates of
the interval T2 implementation are smaller than those
of the competing T1 implementation, and the numbers
of designs for which the classification error rates of the
interval T2 implementation are smaller than those of the
competing T1 implementation are larger than the numbers
of designs for which the classification error rates of the T1
implementation are smaller than those of the competing
interval T2 implementation. This indicates that the interval
T2 implementation of each FLRBC architecture performs
somewhat better than its competing T1 implementation.

• For the nonadaptive working mode, in terms of the average
classification error rate and the number of designs with the
smallest classification error rate (see Tables VII and X), the
interval T2 nonhierarchical and HFLRBC-S architectures
perform the best.

• For the adaptive working mode, in terms of the average
classification error rate (see Table VII), the T1 and interval
T2 HFLRBC-S perform the best; whereas, in terms of the
number of designs with the smallest classification error rate
(see Table IX), the interval T2 HFLRBC-P and the interval
T2 HFLRBC-S perform the best.

• In terms of the average classification error rate (see
Table VII), all FLRBCs are able to achieve higher than
the 80% acceptable classification accuracy even in their
nonadaptive working modes.

VII. CONCLUSION

When designing FLRBCs for multicategory classification of
ground vehicles using their acoustic features, we established one
fuzzy logic rule for each kind of vehicle, modeled the varia-
tions of the features within each kind of vehicle by using fuzzy
sets, and optimized the parameters by using the training sam-
ples. We applied this method of design to three FLRBC ar-
chitectures (nonhierarchical, hierarchical in parallel and hier-
archical in series), and described their structures, operations,
initializations and optimizations. To evaluate these FLRBCs,
we also constructed a Bayesian classifier, and compared the

TABLE X
NUMBER OF DESIGNS OF THE LEAVE-TWO-RUNS-OUT EXPERIMENTS FOR
WHICH THE CLASSIFICATION ERROR RATE OF ONE (T1 OR INTERVAL T2)

IMPLEMENTATION IS STRICTLY SMALLER THAN THE OTHER. NOTE THAT THE
DESIGNS WHERE THE CLASSIFICATION ERROR RATES OF THE COMPETING T1

AND INTERVAL T2 IMPLEMENTATIONS ARE TIED ARE NOT COUNTED

performance of all classifiers through 10-fold cross validation
and leave-two-runs-out experiments. Our experimental results
showed that: 1) for each classifier the performance in the adap-
tive mode that uses simple majority voting was much better than
in the non-adaptive mode; 2) all FLRBCs performed substan-
tially better than the Bayesian classifier; 3) interval T2 FLRBCs
performed better than their competing T1 FLRBCs, although
sometimes not by much; 4) the interval T2 non-hierarchical
and HFLRBC-S architectures performed the best; and 5) all
FLRBCs achieved higher than the 80% acceptable classification
accuracy.

Surprising to us is the fact that, although we have observed
lots of uncertainties and time-variations in the acoustic features,
we have not observed substantial improvements of interval T2
FLRBCs over T1 FLRBCs. In an extended work in which the
classification was performed by using the acoustic features of
multiple terrains that contain more uncertainties, we have ob-
served a more significant improvement of the T2 FLRBC over
the T1 FLRBC (mean of the classification error rates over more
than 800 experiments: 9.13% versus 12.8%).

These observations raise numerous important research ques-
tions, including but not limited to, the following.

• In which sense are interval T2 FLRBCs considered to out-
perform T1 FLRBCs, e.g., in terms of the classification
error rate, or generalizability, or robustness?

• How much uncertainty must be present in a problem so that
it is worthy of trading the complexity of interval T2 fuzzy
logic systems for better performance (than T1 fuzzy logic
systems)?

• How should the uncertainties contained in the feature mea-
surements be quantified?

To the best of our knowledge, these questions remain open and,
because they are beyond the scope of this paper, we do not pro-
vide discussions about them.

Finally, we believe that the FLRBC designs described in this
paper provide the following general methodology that can also
be applied to other applications such as face recognition, optical
character recognition, speaker recognition, etc.

1) Establish one fuzzy logic rule for each naturally distin-
guishable sub-category.

2) Model variations of features within each sub-category by
using fuzzy sets.

3) Optimize the parameters of the MFs by using training data.
Step 1) is novel because it immediately establishes the number
of rules for a FLRBC and consequently its architecture. This
may provide the FLRBC with an advantage over, e.g., a neural
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network classifier, because knowledge about each naturally dis-
tinguishable subcategory (e.g., our nine kinds of vehicles) does
not help to establish the number of layers, or interconnectivity
of all the neurons. How to accomplish this for neural networks
is an open question.

APPENDIX A
PARTIAL DERIVATIVES FOR A T1 FLRBS

The partial derivatives that are used to update the parameters
of a T1 FLRBS include and
( , and ), where is the consequent
parameter, and are the antecedent parameters, and is
the input parameter.

Observefrom(4)that isadirectfunctionoftheconsequent
parameters, , and firing degrees ; and, from (3) that
is a direct function of the antecedent parameters, and , and
input parameters, . Consequently, by using the chain rule, it is
straightforward to formulate the derivatives of with respect to
these consequent, antecedent, and input parameters as

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

APPENDIX B
TYPE-REDUCTION

Type-reduction is an extension of a T1 defuzzification pro-
cedure, and represents a mapping of a T2 fuzzy set into a T1
fuzzy set. The type-reduced set of an interval T2 fuzzy set is an
interval T1 fuzzy set, which is completely characterized by the
left and right end-points of its support [11], [21].

The type-reduction method we used for the interval T2
FLRBCs is a special case of the center-of-sets type-reduction,
which is expressed as:

(B.6)

where represents the type-reduced set, and and
are the left and right end-points of .

The left end-point, , is determined by using the
Karnik–Mendel iterative procedure [21], which we repeat here
for the convenience of the readers.

1) Reorder the rules so that .
2) Initialize by setting for

, and compute

3) Find so that .
4) Set for , and for

, and then compute

5) Check if . If yes, then and stop. Oth-
erwise, go to Step 6).

6) Set equal to , and go to Step 3).
It is easy to show [21], [11] that is obtained from this

algorithm when for those rules for which
, and for those rules for which .

We can therefore define an indicator function for each rule,
, that establishes whether a rule’s upper or

lower firing degree is used during the computation of , i.e.,

if
otherwise

(B.7)

Consequently, can be expressed as

(B.8)

The right end-point, , is determined by using a sim-
ilar Karnik–Mendel iterative procedure except for the following
three changes.

1) In Step 3), find so that
.

2) In Step 4), set for , and
for , and then compute

.
3) In Step 5), check if . If yes, then and

stop. Otherwise, go to Step 5).
is obtained from this algorithm when for

those rules for which , and for those
rules for which . We can therefore define another
indicator function for each rule, that es-
tablishes whether a rule’s upper or lower firing degree is used
during the computation of , i.e.,

if
otherwise

(B.9)
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Consequently, can be expressed as

(B.10)

APPENDIX C
PARTIAL DERIVATIVES FOR AN INTERVAL T2 FLRBS

The partial derivatives that are used to update
the parameters of an interval T2 FLRBS include

and , where is the consequent parameter,
and are the antecedent parameters,

and are the input parameters.
Observe from (16) that is a direct function of the two

end-points of the type-reduced set, and ; from (14)
and (15), that both and are direct functions of the
consequent parameters, , and lower and upper firing degrees

and ; and, from (12), (13) and Table IV, that both
and are direct functions of the antecedent param-

eters, and , and the input parameters,
. By using the chain rule, we formulate the deriva-

tives of with respect to these consequent, antecedent and input
parameters, as
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where represents the antecedent parameters
and represents the input pa-

rameters . Based on (14)–(16), we have
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Based on Table IV
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In all the above equations, and .
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