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Abstract

Proxy caching has been used to speed up web browsing and reduce networking costs. In this paper we
study the extension of proxy caching techniques to streaming video applications. A trivial extension consists
of storing complete video sequences in the cache. However this may not be applicable in situations where the
video objects are very large and proxy cache space is limited. We will show that the approaches proposed
in this paper (referred to as selective caching), where only a few frames are cached, can also contribute to
significant improvements in the overall performance. In particular we will discuss two network environments
for streaming video, namely, Quality-of-Service (QoS) networks and best-effort networks (Internet). For QoS
networks, the video caching goal is to reduce the network bandwidth costs; for best-effort networks, the goal
is to increase the robustness of continuous playback against poor network conditions (such as congestion,
delay and loss). Two different selective caching algorithms (SCQ and SCB) are proposed, one for each
network scenario, to increase the relevant overall performance metric in each cases, while requiring only a
fraction of the video stream to be cached. The main contribution of our work is to provide algorithms that
are efficient even when the buffer memory available at the client is limited. These algorithms are also scalable
so that when changes in the environment occur it is possible, with low complexity, to modify the allocation

of cache space to different video sequences.
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I. INTRODUCTION

Interest in proxy based caching has increased with the growth in Internet traffic and
the initial research in this area (e.g., within the Harvest project [1]) has quickly led to the
development of commercial products and continuing research activity (e.g., [2], [3], [4], [5], [6],
[7]). The great majority of recent research and development on proxy caching has focused on
techniques that can handle generic web objects; among the “cacheable” objects no distinction
is made between, say, an HTML text file and a JPEG image. As real-time streaming video
is becoming a significant proportion of network traffic and, given the large data volumes
involved and its variable-bit-rate (VBR) nature, even a few popular video applications can
result in potential network congestion problems. The congestion can cause not only packet
loss, but also packet delays, which degrade the video playback quality dramatically (since
the packets that arrive after their playback time are useless).

In this paper we focus on the caching problem specifically for streaming video objects.
Some recent work has proposed that having caching strategies which are specific for particular

types of objects can help improving the overall performance. In particular, for some objects,



it is possible to perform “partial caching”, where only part of the objects are stored on the
proxy, as opposed to the “complete caching” where the objects are stored completely. An
example can be found in “soft caching” for images ([8], [9], [10]). Approaches for partial
caching for video have also been proposed in [11], [12]. In this paper, we study a “selective
caching” strategy [13], which selects only certain parts of the video to be cached. We will
show that the strategy to use depends on the specific network environment; and we focus on
two representative scenarios, namely networks with Quality-of-Service (QoS) and best-effort
networks. We provide a selective caching method for each of these scenarios.

Our proposed caching methods are frame-wise selection algorithms, i.e., the smallest
caching unit we consider is one frame of the video (each frame may contain different number
of bytes). Since there can be frequent changes on caching parameters (e.g., the popularity of
the video objects), it is desirable to enable the proxy to be scalable, i.e., to be able to easily
increase/reduce the portion of video being cached while still maintaining good performance.
This scalability is inherent in our proposed frame-wise selective caching methods, by which

the proxy can simply add/drop the selected frames as the environment changes.

A. System architecture
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Fig. 1. System architecture. The proxies are set close the clients, and are connected to the video server via

either a QoS (a) or best-effort network (b).

The server-proxy-client model used in this paper is shown in Fig. 1. The clients are

attached to the proxy and all their requests for videos go through the proxy. The proxy



allocates a certain cache space for each video sequence. Upon the client’s request, if the
frames are cached, the proxy will send them from its cache to the client directly; otherwise,
the proxy will retrieve the frames from the video server. For a video streaming session,
usually there is an end-to-end playback delay d, which is the interval between the time when
the first packet is sent and the time when the first frame is displayed. For a continuous
playback, the transmission of any given frame cannot exceed the delay d. We are also
interested in other parameters for the design of selective caching, such as the server-proxy
and proxy-client channel characteristics; the cache space (H) allocated on the proxy for a
particular video; and client buffer size (B.). We consider two network cases in the following
and will propose different strategies for selective caching for each of them.

Case 1: Proxy caching in QoS networks (see Fig. 1a). The bandwidth on the server-
proxy channel can be reserved, and the cost of reservation is proportional to the reserved
bandwidth. The goal of caching in this case is to reduce the amount of bandwidth C' that
has to be reserved on the server-proxy backbone channel (therefore reducing the network
cost), while minimizing the required client buffer size B, to achieve that reduction, given a
limited cache space H.

Case 2: Proxy caching in best-effort networks without QoS on the server-proxy channel,
as for example in the current Internet (see Fig. 1b). The delivery of data over these channels
is vulnerable to congestion, delay and loss, which are harmful for real-time streaming video
delivery. The caching goal for this case is to provide more robustness' for continuous playback
against poor network conditions on the proxy-server channel.

To improve the streaming performance given that the proxy-client channel is fast and
reliable, one could consider using the proxy as an external buffer for each client, i.e., such
that a client with minimal buffer resources can store some of the incoming video data at
the proxy. In this case the proxy would need to allocate separate storage resources to each
client for each streaming session (even when some sessions may be accessing the same video
object). Thus, as a proxy may serve a large number of clients simultaneously, this scenario
may require the availability of high performance caching resources at the proxy, including
not only memory but also output bandwidth. Both these resources have to increase as

1See Section IV for detailed definition of robustness.



the number of clients is increased, since all the clients active at any given time will be
simultaneously using the proxy for secondary storage.

Thus, in this paper, we focus on a less resource-intensive caching scenario where caching
storage is assigned to each video object, rather than to each client. The assumption here is
that the data stored for each video object changes only when the popularity of the video
object changes and that the storage is shared by all clients accessing a given video object.
Therefore the requirement of the cache storage space is reduced. In additional, this approach
reduces the amount of data that the proxy has to provide to the clients (since only certain
video frames need to be served from the proxy) and also requires substantially less real time
storage management (since only when the popularity of an object changes is the storage
devoted to it modified.)

In both cases, the proxy-client channel delivers the data originated from both server and
proxy. In our model we assume that the main network bottleneck (in terms of both cost
and reliability) is the server-proxy channel, and therefore the proxy-client link is assumed to
have “left-over” bandwidth even when video transmission is ongoing. One example of such
a scenario would be accessing a relatively low bandwidth video stream through a DSL/cable
link. Another example would that where proxy and client are co-located within the same
local area network [11]. The algorithms proposed here are good approximations for the
case when there is a substantial amount of “left-over” bandwidth, in which we can assume
that the delay in delivering a frame from the proxy to the client is very small (even when
transmission of other frames from the server is taking place simultaneously.) This will enable
us to assume that, since they can delivered in a very short time, frames stored at the proxy
consume practically no client buffer memory. Therefore, to simplify the analysis, we exclude
them from client buffer consumption in the rest of this paper. For the scenario when when
the “left-over” bandwidth on proxy-client channel is not large enough to ignore the delay
between proxy and client, our buffer analysis can still be used as an approximation for the
proposed selective caching algorithms. In the extreme case where there is no “left-over”
bandwidth, and therefore the client cannot receive data simultaneously from the proxy and
the server, our proposed will reduce to the prefix caching proposed in [12], which will provide

the optimal solution.
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We will show that the performance of some “partial” video caching strategies may be
limited by client buffer size constraints. For example, it is obvious that in QoS networks
caching any part of the video can reduce the server-proxy bandwidth C since less data has
to be retrieved from the server directly. However, the bandwidth may be reduced at the
expense of increasing in the required client buffer size B,., because the frames that are stored
at the server (not cached at the proxy) will have to be buffered at the client until they are
displayed. We will show that the increment in B, varies among different selective caching
strategies which lead to the same bandwidth reduction. Similar constraints also exist in the
case of video caching for best-effort networks. Therefore, there are trade-offs between the
reduction of C' (or improvement of U) and the memory size B, to achieve it. Our goal is
to find proper selective caching methods such that the best performance is achieved under a
constraint on B.. Thus one of the main differences between our work and other proposed
caching algorithms (see below) is that we will consider the storage constraints at both client
and proxy.

In summary, the main assumptions we make in our work, which also explain how it differs
from other proposed caching algorithms (see below), are (i) that memory at the client is
constrained, (ii) that cost considerations preclude using the proxy cache to provide dynamic
“additional memory” for each client buffer, and (iii) that there is some “left-over” bandwidth
in the proxy-client link. We will propose two approaches for selective caching in each of the
above cases, namely, Selective Caching for QoS networks (SCQ) and Selective Caching for
Best-effort networks (SCB).

B. Related work

Proxy caching for video has been explored in [12], [11], [14] under network conditions
similar to those in Case 1 (QoS networks in Fig. 1a). Prefix caching, proposed by Sen et
al. [12], is a special form of selective video caching, which involves caching only a group of
consecutive frames at the beginning of the video sequence to smooth and reduce the bit-rate
of a VBR video. We will show that our proposed SCQ algorithm, compared to prefix caching,
requires less client buffer B, while achieving the same bandwidth reduction (Case 1), and

that SCB can improve robustness more than prefix caching (Case 2). Note that when B, is



large, SCQ/SCB can reduce to prefix caching (see Sections III and IV-B).

Wang et al. propose a “video staging” algorithm in [11], which prefetches to the proxy
a portion of bits from the video frames whose size is larger than a pre-determined “cut-
oftf” rate, to reduce the bandwidth on the server-proxy channel. Therefore some frames are
separated into two parts: one is cached on the proxy and the other remains on the server.
By contrast, our proposed algorithms are frame-wise caching schemes so that a frame is
either not available at the proxy or it is stored in its entirety. One advantage of frame-wise
caching is that those frames available in the proxy can actually be played by the client (this
would not be possible with partially cached frames) in the event where congestion prevents
any data from being delivered from the server for some period of time. Another advantage
of frame-wise caching scheme is that the proxy can easily add (or drop) more frames when
cache space increases upon the changes of caching condition (such as network status, video
object popularities, cache space, etc.), by using a caching table created off-line (proposed in
Section IV-D). As an example, with a staging approach, if the popularity of a video increases
the proxy will need to increase the percentage of data in all frames (sending a request to the
server to achieve this). Instead, with frame-wise caching only a few complete frames need to
be requested from the server.

Ma et al. [14] also study a frame-wise video caching problem slightly different from that
in Case 1, where selective caching is performed but the algorithm attempts to select groups
of consecutive frames rather than isolated frames, in order to reduce the complexity of proxy
management. In our work, by using a caching table, the proposed SCQ/SCB algorithms can
select isolated frames (during iterations) to maximally improve the overall performance with-
out increase the complexity for proxy online operations. Another major difference between
our proposed work and other works in [14], [12], [11] is that we provide a caching strategy
(SCB) for video delivery over best-effort networks, which are the most popular nowadays
but are not explicitly considered in those works.

Both proposed SCQ/SCB algorithms consider non-layered coded video streams, while
caching for layered (scalable) video can be found in [15], [16]. Rejaie et al. [15] propose a
video caching algorithm for scalable video, which co-operates with the congestion control

mechanism (for best-effort networks in Case 2) proposed in [17]. This work studies the
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caching replacement mechanism and cache resource allocation problem, according to the
popularity of video objects, e.g., more layers of the video with higher popularity will be
cached, and vice versa. Therefore the overall streaming performance can be improved (e.g.,
less network congestion, better playback quality). Kangasharju et al. formulate the caching
problem for layered video differently, aiming to maximize the overall revenue for the service
providers [16]. Tewari et al. [18] and Reisslein et al. [19] study cache replacement of
streaming media (in non-layered format) to improve the cache hit ratio and therefore the
streaming quality. Our work can be complementary to [18], [19], as we are focusing on the
problem of selecting which part of the video should be cached, after the cache space for this
particular video has been allocated.

The rest of this paper is organized as follows. Section II gives the background and def-
initions. Section III addresses the video caching problem for QoS networks and proposes
the SCQ algorithm, while the SCB algorithm is proposed in Section IV to solve the caching
problem for best-effort networks. The experimental results are shown in Section V. Finally,

Section VI concludes the paper.

II. BASIC DEFINITIONS

Most standard video codecs (e.g., [20], [21]) produce VBR data after compression, which
leads to high data burstiness. Usually there is a small start-up playback delay d (here we
define it as the duration between sending out the first packet and playing the first frame)
for most existing streaming video services to allow the client buffer to store a few beginning
frames before playback starts. This delay is useful to (i) smooth the burstiness of VBR video
data [22]; and (ii) to provide robustness against packet delay resulting from poor network
conditions (in best-effort networks), thus playback from the client buffer is possible even
when frames are being delayed. For this reason, we always cache this beginning portion of
video data, which is referred as the “required initial buffering segment” (1,.,), such that the
client can start to playback with a smaller start-up delay. When we can assign more cache
space than I,.., for a given video, we can choose between continuing to cache the immediately
following frames (as would be done in a prefix caching technique), or instead selecting other

intermediate frames to be cached. In this paper, we consider the latter option, i.e., selective



caching rather than prefix caching.

Assume there are N frames in a video V, denoted as F'(i),i = [1,2,..., N]|; each frame
F(i) has a size of R(7) bytes, and a constant playback duration of Tr seconds (e.g., Tr =
1/30 second). We discretize the time axis ¢ with intervals of Tr. The total size of the video
is Riptar = S, R(i). We define a “caching indicator sequence”, A = [a(1),a(2),...,a(N)],

to indicate whether the i** frame F (i) is cached or not:

, 0 if frame F'(¢) is not cached
a(i) = , - (1)
1 if frame F'(4) is cached

A sequence A uniquely defines which part of video is cached, and can represent a selective
caching scheme. We denote A4, (or simply @) as the zero sequence, i.e., the sequence where no
frames are cached so that all a(i) = 0. A possible A must satisfy the cache space constraint
N

R(i)a(i) < H, a(i)e A (2)
=1

K3
We also denote A' as the indicator sequence where only I,., is cached. H is pre-determined

for each video object.

III. VIDEO CACHING IN (QOS NETWORKS
A. Problem formulation

An example of a QoS network is shown in Fig. 1a. We assume that a CBR bandwidth is
reserved on the server-proxy backbone, and the cost of reservation is proportional to that
bandwidth. Therefore we always reserve only the minimum required bandwidth for video
delivery in a particular streaming session. Define C, as the required bandwidth of a CBR
channel to deliver the video V' on time for real-time playback without jitter, given a finite
start-up delay d. Due to the data burstiness of VBR video, C) is usually higher than the
average video data rate, R,,y, to avoid decoder buffer underflow. Feng et al. [23] proposed
a general method to find such C; for pre-coded video without caching (where C, is defined
as critical bandwidth) in [23]. We will show that C, changes after some frames are cached,
and is a function of caching indicator 4. One of our objectives in this case is to choose A
to minimize C,(A) by caching selected frames, so that the bandwidth reservation cost on

server-proxy channel can be reduced.



9

However, while there may exist many possible A which lead to the same maximum re-
duction on C,(.A), they may require different amount of client buffer size B, to achieve that
reduction, as shown in the analysis below. Considering both bandwidth and buffer size, we
formulate the video caching problem for QoS networks as follows.

Problem formulation 1: Given a limited proxy cache space H for a video sequence
(H < Riptar), a pre-encoded video stream V with N frames and a fized delay d, among
all possible A satisfying (2), find A* which mazimally reduces C,(A) after caching while

requiring a minimum B, to achieve that bandwidth reduction.

B. Analysis on bandwidth reduction

To calculate C,(.A), here we will extend the solution in [23] with minor modifications. We
will only refer to the results from [23]; readers can refer to [23], [24], [25] for more details.
Assume the transmission starts at time ty = —d, and playback starts at ¢ = 0, the start-up
delay is d (d > 0). Frame F (i) is scheduled to be displayed at time ¢ = 4. Define S4(t) as
the cumulative frame rate at time t, for a given A,

t
Sa(t) = ;(1 — (1)) R(2). (3)
Define C(t) as the server-proxy channel bandwidth at time ¢. A feasible channel rate function

C(t) to ensure a continuous playback must meet the following constraint:

th C(i) > Sa(t), forall tel[l,N]. (4)

i=—d

S4(t) and t__,C(i) can been thought of as the video data consumption curve at the client
and the data supply curve from the channel, respectively. Since cached frames do not consume
the server-proxy bandwidth and they can be fetched when needed (right before decoding)
from the proxy, then the cached frames can be excluded from the client consumption curve
in (3). Eq. (4) means that the supply curve should be greater than the consumption curve
in order to avoid client buffer underflow (see Fig. 2). For a CBR channel, the bandwidth

cannot exceed the constant allocated rate, so that

C(t) <Cy(A), forall t¢e][l,N]. (5)



Define the slope function of a video sequence to be L4(t),

La(t) = Sa(t)/t.

10
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Fig. 2. Cumulative rate and slope functions. (a): Cumulative frame/channel rate. Curve (1), (2) and (4)
are cumulative channel rate functions, >, C(i). Among them only (1) and (4) represent CBR channels.
Curve (3) is the cumulative frame rate, S4(t). Curve (1) and (2) are feasible channel rate, while (4) is
not. (b): Slope function L 4(t) is drawn in curve (3). The minimum CBR channel bandwidth that has

to be reserved is C, = max{L(t)}.

Fig. 2 shows an example of S4(t) and L4(t). In fact, L4(t) represents the lower bound of
a feasible C(t), and C, can be obtained as (see [23], [24], [25] for a proof)

Cr(A) = max {L4(t)},

1<t<N

t €[1,N], (7)

i.e., the minimum bandwidth C,(A) that has to be reserved on a CBR channel is the max-

imum value of the video slope function L 4(t), which is reached at time t,q, referred to as

the consumption peak time,
(8)

Suppose we want to cache one more frame F'(k) after some frames have already been

tpear, = arg max {L4(1)}.

cached. Let A and Ay be the caching indicator sequences before and after caching F(k),
respectively. The following proposition shows the change in bandwidth after caching F'(k).
Proposition 1: For a given F(k) and A, max{L4,(t)} = max{L4(t)} — Al, where

R(k)/tpear,; k € [1,tpear],

0, otherwise.

Al = (9)
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See Appendix for a proof. An illustration is shown in Fig. 3. This means that max{L 4, (¢)}
can be reduced if and only if k£ € [1,%,¢qx]. Therefore we should cache a frame before t,eqr to
reduce C,, and the reduction Al depends only on the size of the cached frame but not on its
position, i.e.,

Cr(Ag) = Cr(A) — R(k) [tpear, if k € [1, tpear]- (10)

The above conclusion indicates that caching successive frames from the beginning of the
video sequence is one of the caching schemes that can reduce C, maximally. As an example,
“prefix caching”, which selects the group of beginning frames to be cached until the cache

space is full, is a good approach to reduce the bandwidth requirements [12].

C. Client buffer analysis

Recall that we need to select frames to be cached to (i) mazimally reduce C,(A), and (ii)
require the minimum B, to achieve that reduction. Selecting different frames to be cached
within the period of [1,¢,cqx] leads to different requirements of B.. This can be explained
by the following buffer analysis. Define a byte-level buffer trace function, B,(t), as the
amount of video data (in number of bytes) in the client buffer during playback (given a
cache sequence A), which can be written as (11) (see [23]),

Balt) = 3 () = Sult), (1)
where C(i) < C,(A) in (7). The required client buffer size, B,q:(A), is the maximum value
of B4(t). Thus we need to minimize By, (A) in order to reduce the required client buffer
size to achieve the reduction of C,(.A) stated in Proposition 1. We also denote t,,,, as the

buffer peak time, when B4(t) reaches to B,a.(A),

tmas = arg max {B(t)}- (12)

We first examine the change from By(t) to By, (t) for the period of 1 <t < #,cq, after
).

Because the channel bandwidth is constant, see (4) and (5), we have C(t) = C,(A) for

1 <t < tpear (so that C(t) = C,(Ag) after caching F'(k)). From (11) and (10) we have

caching one frame F'(k) (note that 1 < k < tpeq according to Proposition 1

B, (t) = Cr(Ag)t — Sa,(t)
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— C.(A)t— R(k)—

— S, (1), (13)

tpeak
where 1 < t < .4, Note that after caching F'(k), Sa,(t) = Sa(t) for 1 < ¢t < k; and
Sa, (t) = Sa(t) — R(k) for k <t < tpeqr. Thus we have
BA(t)_R(k) . ) 1§t<k7

B (1) =
Ba(t) = R + R(E) b <t < tyear.

(14)

Eq. (14) means that after caching frame F'(k), the new buffer trace decreases before k (due
to the reduction of C,), and increases during [k, t,eqr| (due to the removal of R(k) from the
consumption curve)?. It also indicates that at any particular time ¢ € [1, tpeqx], the amount
of increment/decrement of By, (t) depends only on R(k). More specifically, if tpae < tpeaks

we can reduce Bi,q.(Ag) only if we cache frame F(k) after t,,4,, and we will have

Bmam(Ak) = Bmax(A) - Ab; if tmam <k S tpealca (15)
where  Ab= ™ pg). (16)
tpeak

The change of By, (t) for the remaining period t,eqx <t < N may not be easily expressed in a
closed form. However, based on the results from [23], [24], [25] we can find that the mazimum
buffer occupancy may increase (or at least not decrease) for the period of ¢y, < ¢t < N. This
is because B, (tpeak) = Ba(tpear) = 0, and the only difference is that a smaller bandwidth
(C 4, (7)) is available to transmit the video data for ¢ > )., after caching frame F'(k) (see
[23] for details). Proposition 1 and (14) assume that tyeqr O timar do not change after F'(k) is
cached. However those results still hold when #,.q% oOr ¢, changes, except that the absolute
values of Al and Ab will become smaller, which would not affect the conclusions in next

section.

D. Proposed SCQ algorithm

The results in (10) and (15) lead to the following conclusion for caching one frame F(k):
one can cache the frame at tpeak, F (tpear), in order to minimize C,(A) and Bpar(A). The

reasons are:

2Eq. (14) is obtained as the delay of transmitting F'(k) (over the proxy-client channel) is small, and the delay is
ignored to simplify the analysis. The frames after F(k) are received earlier than they would have if caching is not

used.
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1. From Proposition 1 we have to cache a frame before t,c.; to reduce C.

2. From (14) and (15), if B,,4, is reached before ,cqr (i-€., tyaz < tpear), caching the frame
F(tpear) can also reduce By,.,. More specifically, in this case, caching any frame within the
period of (tmaz, tpear] has the same effect in terms of reducing both By, and C,. Similarly,
caching any frame of a given size within the period of [1, t,,4,.] has the same effect on reducing
C, while increasing B,q,. See Fig. 4 for an illustration. Therefore, simply selecting frame
F(tpeqr) is guaranteed to reduce B, and C,, without requiring to compute t,,4,.

3. If B, is reached after tpear (i-€., timaz > tpear), caching any frames before ¢, can not
reduce (or may increase) By,q;. However, from (14), we can see that caching frame F'(¢,cq)
has the effect of reducing B4(t) for the longest duration of [1,?peqk]. Also as more frames
are cached, ?peq; tends to increase monotonically. Once t,4; < tpeqk, We will have the above
situation 2, and the new By, is already reduced if we keep on caching frame F'(¢,cqr)-

The above analysis shows that the changes on C,(A) and By (.A) depend only on the
cached frame size (i.e., the absolute values of Al and Ab depend only on R(k)), not the exact
position of the cached frame, as long as that frame falls in the range of [1, ¢,cq]-

For a VBR video, the frames around ,.,; may have different sizes, the search for the opti-
mal selection of frames to be cached can be complex when cache space H is large. Therefore
we propose an heuristic approach, SCQ, for selective video caching in QoS networks, which
selects frames iteratively. During each iteration, SCQ computes the L 4(t) and locates tpeqk
using (8), then selects the frame at tpeqr (i-€., F'(tpear)) to be cached. This process is iterated
until the cache space is full. The detailed procedure is summarized in the following steps.
Step 1. Initialization. Set n = 1 (n is the iteration index). Cache the required initial
segment I,., and set A correspondingly (see Section II). Let A™ be the cache indicator
after the n' iteration. Set H <= H — I,

Step 2: Find ¢,
Step 3: Cache frame F(t%,,.), set a(t?...) = 1; set H <= H — R(t"..;)-

peak peak peak

. = argmaxy{ L 4= (t)} for the n'* iteration.

Step 4: If there is no cache space left (H < 0), procedure ends. Otherwise, set n < n + 1,
go to Step 2 (start next iteration).
We will obtain the solution A* = A™ at the last iteration. Note that usually ¢,z > tpeak

during the initial iterations. Therefore increasing of B,,,, can not be avoided since we have
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to cache a frame before #,.. to reduce bandwidth. B, starts to decrease once t,,45 < tpeak
after more frames are cached, and SC(Q tries to keep that initial increment as small as

possible. See the results in Section V.

IV. VIDEO CACHING IN BEST-EFFORT NETWORKS

An example of video caching in best-effort networks is shown in Fig. 1b. The server-proxy
channel bandwidth may have variations due to network congestion or other poor conditions.
These variations can cause dramatic degradation on continuous video playback quality, since
packets that arrive too late are considered to be lost. Thus it is useful for the client to buffer
a certain number of frames before and during playback, in order to increase the likelihood
that frames are available for playback in the decoder buffer during the periods of packet lost
(delay). The more frames are buffered at a given time, the more robustness there will be
against the packet delay.

However, the frames in VBR video have different sizes, which means that the number of
buffered frames in the client’s buffer may not be constant during playback. Periods during
which the number of frames in the decoder buffer becomes low are referred to as the risky
periods (less robust). Our caching goal here is to improve the robustness by increasing the
number of frames in the client buffer during risky periods.

As we are focusing on an off-line caching algorithm that only has the knowledge of the
video sequence, we do not make any assumptions about the actual bandwidth variations
while deriving the caching algorithm. The risky periods of the video sequence can be located
before transmission by analyzing the decoder buffer contents during a “virtual” playback,
where a constant server-proxy bandwidth C' (close to the average video bit-rate) is applied.
Note that the network congestion may happen any time during a real-time session. However
the congestion is more likely to cause quality degradation when the client buffer contains
fewer frames, i.e., during the risky periods identified in our analysis. In the simulation,
we transmitted video (with partial caching) using a server-proxy channel with bandwidth
variations to verify the effectiveness of the buffer analysis and the caching algorithm.

We define a frame-level buffer trace function, B/ (t), which indicates the number of frames

available at the client during the playback. A measurement of the robustness of a video
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stream U can be defined as

U= mtin{Bf )}, (17)

i.e., the minimum value (referred to as a trough) of the buffer trace in number of frames.
Risky period is the time when a trough occurs, i.e., t, = argmin,{B/(¢)}. There might
be many risky periods/frames in one session. The larger B/(t), the more robust this video
stream will be around time ?.

The robustness metric U defined in (17) corresponds to using a MazMin criterion (as
we will try to maximize U by caching frames, see below). Obviously there are alternative
ways to define robustness such as, for instance, the average number of frames in the buffer

(referred to as a MazAverage criterion):

U, = %téBf(t). (18)

Each of these two measures of robustness, U or U,, leads us to different algorithms to select
which frames should be cached. For most scenarios in this paper, we use the MaxMin
criterion for robustness, and we will use the MaxAverage criterion only to break the tie
among multiple choices that all improve U in the same way (see Section IV-C).

Note that B/(t) (measured in number of frames) is used to calculate robustness; while
B(t) (measured in number of bits, see (11) ) is used to determine the occupancy of the client
physical buffer during playback. It should be emphasized that both the frames in the client’s
physical buffer and the cached frames at the proxy are counted as the awvailable frames for
the client. In other words, cached frames can increase B/ (¢) (and therefore the robustness),

while not occupying client physical buffer, i.e., they do not increase B(t)3.

A. Problem formulation

In this case the decoder buffer size B, is the bottleneck in improving U. For example,
a straightforward way to improve U is to cache the “earlier” frames from the beginning of
video sequence. Thus the client can retrieve the “later” non-cached frames from the server,
while it is displaying the cached frames retrieved from proxy. At the time when those “later”

8 Again, this is true because the cached frames can be fetched quickly from proxy right before their playback time,

such that they can be excluded from the consumption of client physical buffer, see explanation in Section-I.
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frames that are not cached start to be displayed, many of them are already buffered at the
client, and therefore U is improved. However, this method could soon fill up the client
buffer since the frames retrieved from the server are not played until all the cached frames
(scheduled to be displayed at earlier time) are displayed. Thus the server may have to slow
down the transmission speed when the client buffer is full, which waste the bandwidth to
further increase the robustness. Therefore a proper selection scheme should be designed
under the constraint a limited memory buffer B.. We formulate the caching problem as
follows (assume B, is known).

Problem formulation 2: Given a limited cache space (H < Ryq) on the proxy, a pre-
encoded video stream V with N frames and a fized delay d, among all possible A satisfying
(2), find the cache indicator sequence A* such that the robustness U = mindBl. (1)} is

mazimized, without exceeding the maximum client buffer size By,ay-

B. Analysis on buffer trace after caching

The byte-level buffer trace function B(¢) can be computed from (11). The frame-level
buffer trace function B/ (t) can be obtained by simulating the transmission frame by frame,
assuming that the nominal channel rate C' is provided. An example is shown in Fig. 5.

We first study the case of caching a single frame. For a given A, and available channel
bandwidth C, if the client buffer size (Bp.) is large enough, i.e., By, > max{B4(t)},
then based on (11) we have

Bu(t) = C(t+d)—Sa(t)

= O+~ (SR Yator)

= By(t) + 3 a(i)R(i), (19)

i=1
where By(t) is the buffer trace (in bits) where no frame is cached (A = ¢). From (19) it
can be seen that caching one frame F (k) increases the buffer trace B(t) for the duration
t € [k, N] by the cached frame size R(k). This is because, after being cached, frame F(k)

will be fetched from the proxy rather than from the server, thus all the non-cached frames

later than F'(k) are “shifted” to an earlier transmission time (because frame F'(k) is skipped
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for transmission) from server. Those later frames (after F(k)) will stay in the client buffer
for a longer period and thus increase B4(t) (and corresponding B/ (t)), by caching F(k).

A simple example of the “raise” in B4(t) after caching F(k) is shown in Fig. 6. However,
(19) does not hold if there is a tight buffer size limitation, i.e., By, < max;{B4(t)}. If
the decoder buffer is full, then the server and proxy have to reduce the transmission speed,
which means C(7) is smaller than C, otherwise packets will be discarded due to client buffer
overflow.

Proposition 2: If there exists a tyq, (defined in (12)) such that By(tmaz) = Bmas (where
Binaz 15 the known mazimum buffer size), then caching one frame F(t;) which is located
before tmazr (ti < tmasz) can only increase the buffer trace by approzimately R(t;) between

time t; and t,qq, where t; is the transmission time of frame F (t;), and ti < ti < timas-

,

By(t) if t <t ,
BA(l) = By(t) + R(t;) ift; <t <t .., (20)
Biox ift! . <t <tma,
| By(t) if £y <t < N.

See the Appendix for a proof. In short, before B4(t) reaches B,q, (€., t; <t <t ), itis

max

“lifted” according to (19), and as a result B4(t) will reach B,,,, at an “earlier” time ¢, .

(where /.. < taz )- Then the proxy and/or server have to reduce transmission speed after
time ¢/, when the buffer is full, until it is drained to accept further data. This reduction

cancels out the “extra” frames cumulated in the buffer, so that the remaining buffer trace
for t > t,,4, is the same as if no frames are cached. See Fig. 7 for an illustration.

Caching multiple frames is similar to the single frame case. When additional frames are
cached, the buffer trace B(t) is “raised” consequently, and may hit the maximum bound
B, at more points. Therefore, we conclude that each cached frame can only increase the
buffer trace between its scheduled transmission time t; and next nearest tpqg, if it exists,

where B(tmaz) = Bmaz-

C. Proposed SCB algorithm

Based on the above conclusions, we now propose the Selective Caching for Best-effort

networks (SCB), which iteratively selects one frame that is located within the range of
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[tmaz, tr], Where ¢4, is the closest buffer peak time before ¢,. An example of SCB is shown
in Fig. 8, where troughs occurs at t; and t; before caching. According to Proposition 2,
caching frames before the buffer peak time ¢, will not lift B/(t) after ¢,. So after caching
frames before before ¢; to increase B (t1), we should select frames between ¢, and ¢, to
increase BY(t;) (see Fig. 8(b)), and therefore improve U defined in (17). The details of SCB
algorithm are summarized in the following steps.

Step 1. Initialization. Same as Step 1 in SCQ algorithm. See Section III-D.

Step 2. In the n'” iteration, find the most risky period " = argmin,{ BS(t)}, e.g., time ¢,
in Fig. 8a. If there are multiple ¢, choose the first one (the MaxMin criteria is applied first,
and MaxAverage is applied to break the tie choices if needed).

n
max

Step 3. Find the nearest buffer peak time ¢, before the chosen ¢ (e.g., t2 for risky time ¢,

in Fig. 8b). If no maximum peak exists before ¢, set ¢ =0 (e.g., t = 0 for ¢; in Fig. 8a).

max

Note that "

max

Step 4. Select one frame F'(c") which is right after ¢7,,. (obtained in Step 3) to be cached,

max

set the a(c”) = 1. Update the trace B, (t) and set H <= H — R(c"). If H < 0, there is not

is obtained from the byte-level buffer trace B (t).

enough space left on proxy, procedure ends. Otherwise, set n <=n + 1, go to Step 2.

In each iteration, we first locate the ¢, for U, thus to increase U is the same as to increase
B/ (t,). From Proposition 2, we know that in order to increase B/ (t,), we have to cache the
frames after the nearest previous buffer peak time.* Since there might be multiple choices for
selecting, e.g., caching any frames between #,,,, and t, can increase B/(t,), the MaxAverage
criteria for robustness requires to select the frame furthest away from ¢, but after the nearest

previous peak, t,,,. This provides the largest increase in average robustness U,.

D. Caching table

Both SCQ/SCB algorithms select additional frames when there is more cache space avail-
able, while the frames selected earlier still remain being cached. Therefore we can perform

*Our goal is to increase the number of available frames in the buffer during the playback, which is measured by
BY(t). The exact value of Bf(t) may have a slightly different shape from B(t), due the variable size of frames in
VBR video. However, the increment in B(t) should also lead to the increment in B7(t) when there is more data in
the client buffer. Therefore the results in (19) and (20) can also be applied to approximate the increment in B (¢)
after caching a frame F'(k).
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the SCQ/SCB algorithms for the complete video sequence to determine the order of all
frames to selected for caching (this can be achieved by setting the cache space equal to the
size of the video), and store the results into a cache table. When the available cache space
increases or decreases, then the proxy can add or remove frames that need to be cached ac-
cording to the cache table, without re-computing the selection procedure. Thus, the caching
scalability and low complexity (for online operations of the proxy) can be achieved, by using

such a cache table.

V. EXPERIMENTAL RESULTS

Experimental results on the SC(Q algorithm described in Section III-D are shown in Fig. 9.
A video clip (part of movie Star Wars in MPEG-1 [26]) with 10,000 consecutive frames is
used for simulation. The original video has the average rate (Rg,) of 5,516 KBits/sec,
(peak frame rate is 9,812 KBits/sec). The total size of video clip (Ryorq;) is 280.6 MBytes.
Fig. 9a shows that the proposed SC(Q algorithm can reduce the server-proxy bandwidth
almost the same as that of the prefix caching algorithm. Fig. 9b shows that as expected,
the SCQ algorithm requires a much smaller client buffer size to achieve the same bandwidth
reduction as prefix caching.

In the experiments of SCB algorithm, the video clip having 10,000 frames is encoded with
MPEG-2 under rate control® similar to [27]. The original video data has an average rate
(Ravg) of 2,112 KBits/sec, with peak data rate 2,400 KBytes/sec. The average frame size
is 88 KBits. The average channel bandwidth, C, is also 2,112 KBits/sec. The client buffer
size (B,.) is 512 KBytes. Fig. 10a shows the robustness U = min,{B/(¢)} with respect to
the percentage of video being cached. Fig. 10b shows the average number of frames in the
buffer during the playback, or U, = >, B/(t). Note that as defined in Section IV-A,
the selective caching uses the MaxMin robustness criterion first rather than the MaxAverage
criterion to eliminate the worst case first. When only a portion of the video is cached, the
SCB outperforms prefix caching in both cases (for U and Uy,).

Fig. 11 shows the simulation results to verify the effectiveness of our definition of robustness

5The reason to apply rate control is to avoid large variance of video data rate to avoid potential network congestion

in a best-effort network.
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(U and U, ). We simulate the delivery of streaming video when it is partially cached. The
cached part of the video is sent to client from the proxy with no loss. The non-cached frames
are retrieved from server (via proxy), starting from the beginning of the playback session,
and the data is buffered at client until it is displayed. The client physical buffer size is
512KB.

We use a binary erasure channel (BEC) [28] to model the server-proxy channel. A packet
(we use a fixed packet size of 512 bytes) is lost with probability €, and arrives to the client
correctly with probability 1 — €, where € is the channel packet loss rate. All lost packets
are recovered by retransmission. In this simulation all frames have to be played, thus if
a frame arrives too late to the client, due to delay or retransmission, the previous frame
is “frozen” on the screen until it arrives. We refer to the period during which a frame is
“frozen” as the “jitter duration” T;. The fraction of T;/Ty (where Ty is the total video
playback time) is used to measure the continuity of the playback. T;/Ty = 0 means that
the playback has no jitter; a larger 7;/Ty indicates that more jitter happens during the
playback. Thus a smaller 77 /Ty indicates more robustness for a continuous playback. The
experiment uses 1000 realizations, the packet loss is performed randomly with the given
channel error e. We can see from Fig. 11a shows that when a larger proportion of the video
is cached, the robustness is increased and the jitter duration is reduced. Fig. 11b shows the
jitter duration with different packet loss rate. In both cases, the proposed SCB algorithm
leads to smaller jitter duration than prefix caching since it select frames to be cached to
maximize the robustness.

In the presence of network congestion, the congestion duration can last over some unpre-
dictable time-scale. During the congestion all packets are delayed, and the bandwidth drops
to zero. Fig. 11c shows the results when both the channel congestion and the congestion
duration (denoted by d.) occurs randomly. d,. follows an exponential distribution with mean
of m.. We test the robustness with two cache schemes with different value of m.. Fig. 11c
shows that in both schemes, the jitter duration increases when m, becomes large. This is
true as jitter is more likely to happen when network congestion becomes severe (last longer).
As expected, the proposed SCB algorithm outperforms prefix caching algorithms with differ-

ent m.. The results showed in Fig. 11 verify the effectiveness of our definition of robustness
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criteria developed for SCB algorithm.

VI. CONCLUSIONS

In this paper, two novel approaches for proxy caching of video are presented for both the
QoS networks and best-effort networks (e.g., the Internet). The video caching performance
is measured differently in these network environments, i.e., for QoS networks, the metric of
interest is the network bandwidth cost; while the robustness of continuous playback against
poor network conditions is more important in best-effort networks. Therefore the caching
algorithms should be designed accordingly. We also emphasized that some resources, such as
client decoder buffer size and limited proxy cache space, are also critical for the design of video
caching algorithms. We proposed two caching algorithms, SCQ and SCB, for QoS and best-
effort networks, respectively. SCQ can reduce the network cost of bandwidth reservation near
optimally and requires a small client buffer size to achieve it; SCB can increase the playback
robustness while not violating the client buffer size budget. Both SCQ and SCB algorithms
provide good scalability for proxy space adjustment, and low complexity for proxy online
operations. The proxy can easily reduce/increase the cache space for a video object while
still maintain the good performance provided by these algorithms.

Both SCQ and SCB algorithms are designed for caching a single video object with a pre-
allocated cache space. In the situation that the total cache space is limited, to determine
how much cache space allocated to each video to maximize the overall performance can be
an interesting resource allocation problem (e.g., [4], [19], [16], [5], [18]. ). The proposed
caching algorithms (SCQ and SCB) in this paper are independent of any other cache space
allocation mechanisms, and can be used in conjunction with them. The cache table described
in Section IV-D can be used to find the trade-offs between the cache space and the caching

performance for each individual video sequence.
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APPENDIX
Proof of Proposition 1.
Proof: From (3) and (6) we get
L), 1<t<k
Ly, (t) = (21)

Lat) — R(k)Jt, k<t<N

Recall the definition of t,eq in (8). If & < tpeqk, from the second case in (21), we have
max{L 4, (t)} < max{L4(t)}, therefore caching a frame F(k) before t,.; can reduce the
required bandwidth C,. The reduction is Al = R(k)/tpear (note that this assumes t,eq
remains the same after caching F'(k); however the Proposition still holds if ¢,..; changes
except that the absolute value of Al is smaller than R(k)/tpeqr). Obviously if £ > tpea,
caching that frame cannot reduce the maximum of L 4(¢) which occurs before k. u

Proof of Proposition 2.
Proof: From (19), we know that without the physical buffer size constraint, B4(t) would
exceed By,.;. Thus to prevent the buffer overflow, the server and/or proxy has to reduce the
transmission speed (C(7)) at (or before) t,,..- However we assume the reduction of C(7) is
as small as possible® so that client buffer is always kept full during the period around 45" .
Therefore, at time 4., Ba(t) also reaches the maximum, B4 (tmaz) = Bmas-

Because R(t;) > 0 and t44 > t;, it is easy to see that there must exist ¢, .. < t;qz Such

that B(t = Bnaz. This means By(t) reaches B, at an earlier time ¢/ . due to the

ma.’,c)
increase of R(t;).

Fort; <t <t

mazx?

we know from (19),
Ba(t) = By(t) + R(f:), (22)

For ¢! = <t < tpas, Ba(t) remains full at B,,,,; (as the above assumption). We also have
max

BA(tmaz) = Bp(tmaz) = Bmaz For t > t44, from (11) we know that

tmam"'l tmam‘i‘l
Bu(tmez +1) = Z C(i)— Y R()
=1

6This can be easily achieved by sending feedback from client to proxy indicating the buffer fullness during the

transmission, so that the proxy/server can adjust the C(¢) accordingly.
"To always keep the buffer as full as possible is to maximize the robustness, by storing more frames in the buffer.
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tmam tmaz

= (Y Cl)= Y R())+ Cltmas + 1) = R(tmas + 1)
= B:(;mm) + C:?tlmw +1) — R(tmas + 1)

= Buaz + Cltmaz + 1) = R(tmaz + 1)

= By(tmas) + Cltmaz + 1) — R(tmaz + 1)

= By(tmaz +1)

Applying this recursively for all #,,,, <t < N, we can get

Ba(t) = By(t), where t,, <t < N. (23)

Finally, for ¢ < t; (#; is the transmission time of frame F(t;)), obviously there is no change

for the buffer trace, B4(t) = By(t). Combining these results we get (20). |
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LisT oF FIGURES

System architecture. The proxies are set close the clients, and are connected to
the video server via either a QoS (a) or best-effort network (b). . . . . .. ...
Cumulative rate and slope functions. (a): Cumulative frame/channel rate.
Curve (1), (2) and (4) are cumulative channel rate functions, Y_; C(7). Among
them only (1) and (4) represent CBR channels. Curve (3) is the cumulative
frame rate, S4(t). Curve (1) and (2) are feasible channel rate, while (4) is not.
(b): Slope function L4(t) is drawn in curve (3). The minimum CBR channel
bandwidth that has to be reserved is C, = max{L4(t)}. . . . . . . . ... ...
Illustration of Proposition 1. The lower figure shows the slope functions before
and after caching one frame F'(k;), represented by L 4(t) (solid line) and L 4, (¢)
(dashed line), respectively. The upper figure is the corresponding cumulative
channel/frame rate functions. After caching an “earlier” frame before ¢4, i-€.,
k1 < tpeak, max{L 4(t)} reduces from c to ¢;. Obviously, caching a “later” frame
F(ky), i.e., ky > tpeqr, can not reduce max{L 4(t)}, which occurs at tpeqr. . - - -
lustration of caching one frame before or after ¢,,,,. Su,(t) and Sy4,(t) are
the cumulative frame rate functions after caching F'(k;) and F'(k2), (drawn in
dashed and dotted lines) respectively. Note that only one frame is selected in
each case. If R(k,) = R(ks) and k2 < tyas < k1 < tpear, Proposition 1 shows that
selecting F'(k1) or F'(ks) leads to the same reduction on bandwidth C,. However,
the corresponding changes in Bi,,, are different: caching F(k;) reduces Bpuz
from b to by (Ab = by — b < 0); while caching F(ky) increases By, from b to
by (Ab = by — b > 0). Therefore caching a frame between t,,,, and tpeqr (..,
F(k3)) can reduce By, while keeping the same reduction on C,. . . . . . . ..
Trace of client buffer size in number of frames and bits. . . . . . .. ... ...
(a): Bg(t), no frame is cached. (b): By, (t), frame F'(¢,) is cached. These figures
illustrated that by caching one frame F(¢;), the buffer trace can be “lifted” for

t > t1, when there is no buffer size limitation. . . . . . . . ... ... ... ...
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The client buffer size limitation is Byrax. (a): Bg(t), no frame is cached. (b):
By, (t), after F'(t1) is cached. (c): By, (t), after both F(¢;) and F'(t3) are cached.
With the buffer size limitation, the buffer trace after caching frames will not
follow that in Fig. 6. (b) shows that caching frame F'(¢;) only increase By, (t)
between t; <t < tpe. (¢) shows that caching frame F'(t3) can lift buffer trace
for all ¢ > t, because there is no maxima point after ¢,. . . . . . ... ... ..
(a): Trace where only I,., is cached and troughs occur at time ¢; and t4. (b):
After SCQ caching. First select frames before ¢1, but ¢4 still remains the same,
due to the maximum peak at £,, drawn in dotted line. Next select frames within
[t2, 4] to increase robustness for ¢4. . . . . . .. ...
(a) The bandwidth (C,(A), see (7)) that has to be reserved, v.s. the percentage
of the video been cached. (a): Both the proposed SCQ and prefix caching
can reduce C,(A) similarly as more portion of the video has been cached. (b):
The maximum buffer size, B, required at the client to achieve the caching
performance in (a). . . . ...
Robustness vs the percentage of the video been cached, using SCB and prefix
caching methods. (a) Robustness U defined in (17). (b) Robustness U, defined
in (18). . . . . o
Robustness verification, with 1000 realizations used in each case. (a): T;/Ty vs
percentage of the video being cached. (b): T;/Ty vs channel error €, when 20%

of the video is cached. (c): Ty /Ty vs average channel congestion duration d.. .
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Fig. 3. Ilustration of Proposition 1. The lower figure shows the slope functions before and after caching one
frame F(ky), represented by L 4(t) (solid line) and L 4, (t) (dashed line), respectively. The upper figure
is the corresponding cumulative channel/frame rate functions. After caching an “earlier” frame before
tpeaks 1-€., k1 < tpeak, max{L 4(t)} reduces from c to ¢;. Obviously, caching a “later” frame F'(k2), i.e.,

ko > tpeak, can not reduce max{L 4(t)}, which occurs at tpeqk-
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Fig. 4. Tlustration of caching one frame before or after t,,45- S4, () and S4,(t) are the cumulative frame

rate functions after caching F'(k1) and F(k3), (drawn in dashed and dotted lines) respectively. Note that

only one frame is selected in each case. If R(k1) = R(k2) and k2 < tiae < k1 < tpeak, Proposition 1 shows

that selecting F'(k1) or F(k2) leads to the same reduction on bandwidth C,. However, the corresponding

changes in By, are different: caching F'(k;) reduces Byqz from b to by (Ab = by — b < 0); while caching

F(k2) increases By, from b to by (Ab = by —b > 0). Therefore caching a frame between ¢,,4, and tpeqr

(e.g., F(k2)) can reduce Byq, while keeping the same reduction on C.
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Number of frames = 2000, Avg. data rate = 2.498 Mbps, d = 2 sec,
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Fig. 5. Trace of client buffer size in number of frames and bits.

B(t) 4 B,t) :No frame cached. B(o) B‘\(t)\

Fig. 6. (a): Bg(t), no frame is cached. (b): By, (t), frame F(t;) is cached. These figures illustrated that
by caching one frame F(t1), the buffer trace can be “lifted” for ¢ > t;, when there is no buffer size

limitation.
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Fig. 7. The client buffer size limitation is Bysax. (a): Bg(t), no frame is cached. (b): B4, (t), after F'(t,) is
cached. (c): Ba,(t), after both F(¢1) and F(t2) are cached. With the buffer size limitation, the buffer
trace after caching frames will not follow that in Fig. 6. (b) shows that caching frame F'(¢1) only increase
By, (t) between t; <t < timaz- (¢) shows that caching frame F(t3) can lift buffer trace for all ¢ > o

because there is no maxima point after ¢,.

_A y
B(f) B(t)
Cache
]m? frame
Pl L .

Fig. 8. (a): Trace where only I,., is cached and troughs occur at time ¢; and t4. (b): After SCQ caching.
First select frames before t1, but t4 still remains the same, due to the maximum peak at ¢, drawn in

dotted line. Next select frames within [t2,¢4] to increase robustness for 4.
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(a) The bandwidth (C,.(A), see (7)) that has to be reserved, v.s. the percentage of the video been

the video has been cached. (b): The maximum buffer size, Bz, required at the client to achieve the

caching performance in (a).
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Fig. 10. Robustness vs the percentage of the video been cached, using SCB and prefix caching methods.
(a) Robustness U defined in (17). (b) Robustness U, defined in (18).
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(a): Robustness (U ) vs cache size
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Fig. 11. Robustness verification, with 1000 realizations used in each case. (a): Ty /Ty vs percentage of the

video being cached. (b): Ty/Ty vs channel error €, when 20% of the video is cached. (c): Ty/Ty vs

average channel congestion duration d..



