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ABSTRACT

In sensor networks, where power and bandwidth are at
a premium, there is a clear need to use compression to limit
the amount of information exchanged by the sensors. In this
paper we study the signal compression problem in situations
where signals are being processed for the purpose of source
localization. In these scenarios compression should be op-
timized for the accuracy of source localization, rather than
to provide a reproduction of the signals with some desired
fidelity. We show how this leads to novel design techniques
that have clear advantages over standard quantizer design
approaches.

1. INTRODUCTION

Networks of sensing nodes have excited much interest in re-
cent literature. Typically, large numbers of these sensors are
randomly deployed, and coordinate to establish a commu-
nication network [1], [2]. Noisy signal measurements are
collected from each sensor, and fused at a central processor
to estimate some environmental parameter. For example, in
a source tracking application, different sensor observations
are correlated to estimate the relative time delays between
them, and thence, the source location [3]. While each sensor
has both processing and communication elements, limita-
tions on power and bandwidth motivate the use of compres-
sion at the sensor — the rule of thumb is that computation
is cheaper than communication. Compression techniques
would exploit the high degree of both temporal and spatial
correlation of sensor data.

Recent work on distributed source coding [4] has lever-
aged spatial redundancy of sensor data for compression. The
fidelity criterion in these methods is, as with most traditional
quantization techniques, the error between the original and
the reconstructed observations. However, the real objective
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in many sensor processing scenarios is to estimate some sig-
nal parameter from the quantized and fused observations.
Given the fusion algorithm at the center, each sensor should
quantize its data so as to preserve the quality of the ulti-
mate objective. In the tracking application described above,
the fidelity criterion would be the degradation in the final
source location estimate, rather than in the sensor data it-
self. Therefore, the goal for an application specific encoder
in this context would be to achieve the best estimate at a
given rate, or minimize the rate required to achieve a loca-
tion estimate with given accuracy.

In this paper, we investigate whether special quantizer
design techniques are required for this scenario. We propose
and test quantizer designs where the goal is to optimize the
accuracy of the location estimate.

2. PROBLEM STATEMENT

We consider the case of two sensors, each capturing and
transmitting a delayed and noisy version of the same signal.
The task is to estimate the time delay � between the received
signals.
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The time delay between �����	��
 and �����	��
 is calculated
from the cross-correlation function between the signals; Our
best estimate of � would simply be the lag at which the
cross-correlation peaks. Now, if we were to quantize the
two signals,
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where �����	��
 and �"�!�	��
 are the quantization noise val-
ues. The new (empirical) cross-correlation function, based
on � input samples, is
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While conventional encoding schemes seek to minimize

the squared error between
��
	 and ��	 , the new scheme seeks

quantizers such that
���� ����
 still peaks at � � � � .

3. QUANTIZER FORMULATION

Without loss of generality, we assume that the true delay
between the signals is zero. Then,��� ����
� �� � � �	���	��
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Under the assumption that the noise affecting each of

the sensors is white, and that the two noise sources are un-
correlated, the effect of the noise will be eliminated if the
correlation is computed over a sufficient number of samples� : ��� ����
� �� � � ���	��
 ���	� ����


and
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Thus, when we consider the noiseless case, our goal is to

design a quantizer such that given a signal ���	��
 , its quan-
tized version

�� �	��
 leads to empirical autocorrelations that
are as close as possible to those that would have been com-
puted based on the original signal. When noise power is
unknown, the best we can do is use the quantizer optimized
for the noiseless case.

At any lag � , the error in the correlation function can be
written as follows.
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At high rates, one can think of standard approximations
used in quantizer analysis which assume that the quantiza-
tion noise ��� is white and uncorrelated with the input sig-
nal. Under those conditions, the expected value of ����� ����

at � ��� will tend to the power of the noise, whereas the
expected value of the error at other lags would be zero. The
error at lag zero is then higher, on average, than the error at
any other lag. This is not necessarily true at lower quanti-
zation rates, and an optimal quantizer design would have to
aim at minimizing the error in correlation at any lag. How-
ever, as a first approximation, we concentrate on minimizing
the error at lag zero:
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Writing the total error as the sum of the errors in each
quantization bin  	 , we have�� � 	 !" ��$# %�& �('*),+.- �� � �	��
 � � � �	��
0/1 (4)

� �� � 	 � 	32 �� �	 �54 � - � � �	��
� 	 6 (5)

where � 	 is the number of input samples in quantization
bin  	 . Now,

798 ����� ����
*:�� �� � 	 � 	32 �� �	 � �� 	 � � - 798 � ��; �=<  	>: 6
(6)

which can be made zero simply by setting

�� �	 � 798 � � ; �=<  	�: (7)

Indeed, the new quantizer design is analogous to tradi-
tional MSE, which preserves the fidelity in � by minimizing798 � �� � � 
 � : ; here, we preserve the fidelity in � � (or the cor-
relation at lag zero) by minimizing

798 � �� � � � � 
 � : .
Following the analogy with conventional nearest neigh-

bor design, and replacing � by � � , we have

� �?@- � �� �	 � �� �	 A��� (8)

where � ?@- is the partition between adjacent reconstruc-
tion levels

���	 and
���	 A�� .

4. DISCUSSION

While the new quantizer design does minimize the error��������
 , the correlation error at other lags also needs to be
minimized for a fully optimal design. From Eq.1, ��� ����




can again be written as the sum of errors in each quantiza-
tion bin:�� � 	 ��$# %�& �('*),+.- �	���	� � ��
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For a good quantization scheme, especially with sym-
metric reconstruction levels, the average quantization error
goes to zero; Hence, at � �� � , the second term in Eq.12
may be ignored for large � . For IID sources, the first term
in the summation is minimized when

��
	 � 798 � ; � <  	>:
— which is in fact the traditional MSE centroid. In gen-
eral, minimizing the error at lag zero does not guarantee
minimizing the error at other lags, and there is a trade-off
between the two. In this study, we present results optimized
for ��� ����
 , ignoring (and possibly incurring a penalty due
to) ��� ����
 .

5. EMPIRICAL METHOD

Given a training set, sequence length � , and the required
number of quantization levels, we use the standard approach
of alternating two steps, namely, fixing the encoder and op-
timizing the decoder, and then fixing the decoder and opti-
mizing the encoder.

Focusing on the scalar quantization case, the design is
as follows.

In the first step, we assume that the quantization bins
have been chosen and then we select the reproduction level
for each bin according to Eq. 7. In the second step, we as-
sume that the reproduction levels are fixed, and we decide
how to assign an input in the training set to a given repro-
duction level with the target to minimize the error variance.
Partitions between adjacent quantization bins evolve as Eq.
8.

6. PRELIMINARY RESULTS

Computer simulations were run with randomly generated
source signals, with both IID Gaussian and IID Uniform dis-
tributions. The additive noise at each sensor was simulated
as white Gaussian. Scalar quantization codebooks and par-
titions were iteratively generated (e.g., Table 1) for the con-
ventional MSE quantizer (denoted MSE) and the new quan-
tizer (denoted NP-NC) derived above. As a comparison

case, we also experimented with a halfway-optimal quan-
tizer that combined the new centroid condition, with stan-
dard nearest neighbor partitioning (denoted MSE-NC). Re-
ceived signals at both sensors, with true delay between them
set to zero, were quantized with each of the three schemes.
The average values of the index at which the correlation
function peaked was measured. These peak indices were
compared with the unquantized peak estimates for each of
the quantizers at several quantization rates, noise levels and
sequence lengths (Figs. 1, 2, 3, 4). Average error values, for
both quantization error ��� and correlation error ��� ����
 , were
also compared for the different quantizers (e.g., Table 2).

We see that in all cases, estimates of the correlation
peak do improve as sequence length increases, since the
additive sensor noise tends to average out. At shorter se-
quence lengths, the quantization schemes with the new cen-
troid alone (MSE-NC) and new partition with the new cen-
troid (NP-NC) give estimates that are closer to the true peak
at 0, than MSE. Table 2 shows that while MSE may mini-
mize the variance of the quantization error �

�
��� , NP-NC is

indeed the best choice to minimize the mean and variance
of the correlation error at lag zero. Further, the distribution
of quantization bin probabilities (Table 3) suggests that we
may be able to achieve a lower entropy with the new quan-
tization scheme than with MSE.

In most cases, the new scheme does present an improve-
ment over standard quantization, but the new estimate is not
as close to the true correlation peak as might be desired;
and in some cases (Fig.4), the new scheme is not clearly
better. The explanation for this might be looked for in Sec-
tion 4; the quantizer design optimized for ��� ����
 does in-
cur a penalty from the correlation error at other lags. The
question of a fully optimal quantizer design for this problem
remains open.
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Quantization � ?�� � ?�� � ?��
MSE -0.9825 0.0 0.9825

MSE-NC -1.16 0.0 1.16
NP-NC -1.4804 0.0 1.4804

Quantization
���� ���� ���� ����

MSE -1.512 -0.4530 0.4530 1.512
MSE-NC -1.709 -0.6115 0.6115 1.709
NP-NC -1.960 -0.736 0.736 1.960

Table 1. Partitions and Codebooks, Input
	 ����
 � 
 , 4 Levels

MSE MSE-NC NP-NC798 ��� :�
 � �� ��� -0.4555 -0.3611 -0.2551
�
�
��� 0.1174 0.1311 0.1723798 ��� ����
*: -0.1167 0.0009 0.0005

�
�
��� & � ' 0.9371 0.7967 0.6950

Table 2. Average Error Values, Input
	 ����
 � 
 , 4 Levels

MSE 0.1633 0.3371 0.3367 0.1629
MSE-NC 0.1233 0.3771 0.3765 0.1231
NP-NC 0.0696 0.4308 0.4300 0.0696

Table 3. Bin Probabilities, Input
	 ����
 � 
 , 4 Levels
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Fig. 1. Uniform Process, [-1, 1], � arg max
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