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Abstract

Popular transform coding techniques provide ex-
cellent lossy compression for natural images but fall
short with “simple” images, i.e., images represented
by only a small portion of the available intensity val-
ues. In this paper we propose a novel image-domain
compression technique aiming at simple images, or,
more generally, simple regions within a compound im-
age. The proposed method is a contert-adaptive bit-
plane coder based on a binary arithmetic coder. The
context information allows us to exploit the strong cor-
relation across the bit-planes of simple images. Given
the bit-plane coding structure our coder produces an
SNR-scalable embedded bit stream which can be loss-
less when completely decoded.

1 Introduction

Transform-based image coding methods such as
JPEG [1] and wavelet coders [2] are excellent at com-
pressing natural images at various compression rates.
However these methods fall short when the histogram
of an image has only a small number of active inten-
sity values, i.e., a large portion of intensity values are
never used to represent the image. We call such im-
ages “simple.” Examples of simple images of inter-
est include: bi-level images; gray-scale or color im-
ages scanned from bi-level images; computer generated
graphics with simple textures, cartoons, screendumps,
diagrams, etc.

It is intuitively obvious that simple images are eas-
ier to compress than natural images, with high com-
pression rates being achievable even if lossless com-
pression is used. However a transform-domain repre-
sentation is not necessarily as useful for simple images
as it is for natural images. For example, transform
coders produce a significant number of coefficients
which have to be represented with higher precision
that the original pixels. This is especially inefficient
when the original image was simple and contained just
a few different gray-scale levels. Also strong Markov
statistics in simple images, which can facilitate data
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source modeling and adaptive coding techniques, are
not preserved through transform. Moreover, while the
sharp edges in simple images are usually important
visual objects requiring lossless or near-lossless com-
pression, lossy transform coders can result in blurring
sharp edges.

Our goal in this paper is to introduce an efficient
image-domain compression algorithm that is particu-
larly useful for simple images. The algorithm is pro-
posed in the context of lossless and near-lossless com-
pression since simple images are not only easier to
compress but visually more susceptible for compres-
sion artifacts than natural images. However, even in
a lossy compression environment, these types of ap-
proaches are useful. In particular, for compound im-
ages which contain both natural and simple regions,
efficient performance can be achieved even with loss-
less or near-lossless compression of the simple image
regions.

A previous work that treats the simple im-
age/subimage with a dedicated compression algorithm
can be found in the course of RICOH’s CREW algo-
rithm development [3, 4]. An early version of CREW
depends on wavelet transform to obtain good coding
performance for general continuous-tone images [3].
Performance degradation of this wavelet-based coder,
when applied to images having “unusual” first-order
Markov statistics, is considered in the improved ver-
sion of CREW [4] which opts for a binary mode.
CREW'’s binary mode is an image-domain bit-plane
coding algorithm based on a bi-level image coder sim-
ilar to JBIG [5], the ISO/ITU bi-level image compres-
sion standard. This algorithm is applied to parts of
the image which are deemed to be simple based on
a suitable segmentation criterion. With this option,
CREW has achieved significant gains in compression
performance for simple images and compound images
containing large simple regions.

Our proposed coder is also based on bit-plane cod-
ing in the image domain. Thanks to its bit-plane
coding nature, the proposed coder has the important
feature of generating an embedded bit stream for the
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Figure 1: Bit-planes obtained from an 8-bit gray-scale
image. In this figure one line of pixels in the image is
converted into bit-planes.

compressed image. However there is a vital distinc-
tion between our algorithm and CREW’s binary mode
in that our algorithm uses a novel context modeling
technique to effectively exploit the strong correlation
across the bit planes of simple images.

JPEG-LS [6] and CALIC [7] are other well-known
image-domain algorithms that offer good lossless
compression performance for the general class of
continuous-tone images. However, as these algorithms
have been developed with more emphasis on natu-
ral image compression, they are not expected to take
the full advantage of simple images. Moreover both
JPEG-LS and CALIC are not able to generate embed-
ded bit streams while our proposed coder enables pro-
gressive transmission or SNR scalability of the com-
pressed image through the embedded bit stream.

The paper is organized as follows. In Section 2 we
describe our image coding algorithm, named Embed-
ded Image-Domain Adaptive Compression (EIDAC).
As a means to increase the compression efficiency of
EIDAC, histogram compaction is also discussed in the
this section. Experiments and results are presented in
Section 3.

2 Coding of simple images
2.1 Description of EIDAC algorithm

Given an input image, the compression algorithm
processes the bit planes of the image successively, from
the most significant bit (MSB) plane to the least signif-
icant bit (LSB) plane, thus achieving an embedded bit
stream. See Fig. 1 for an example of the bit planes ob-
tained from an 8-bit image. An adaptive binary arith-
metic coder is used to compress each bit plane. The
conditional probability model of the adaptive arith-
metic coder is instrumental for good compression per-
formance and it is described in detail below.

For an input bit to the binary arithmetic coder in
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Figure 2: Causal contexts to generate the conditional
probability model for an input bit to the binary arith-
metic coder in EIDAC. Two sets of bits, (a) Cintra
and (b) Cinter, are used to exploit the correlations
among neighboring bits within the current bit-plane
and across the bit-planes, respectively.
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the current bit plane, the context model is composed
of two sets of bits: one set containing neighboring bits
in the same bit plane, Cj,¢rq, and the other containing
bits from the other bit planes, Cj,ter- To avoid the use
of overhead we use causal contexts, i.e., only the bits
from the causal past, which are thus known to the
encoder and the decoder, are used. An example of
causal context model is shown in Fig. 2.

The reason for considering two separate sets of con-
text bits is clear. First, the strong spatial correlation
among image pixels also extends to some extent to
its bit planes and thus using Cj,sr, Will be beneficial.
Second, Cinser is particularly useful because we are
running our algorithm on simple images. Consider as
an example a bi-level image scanned as an 8-bit im-
age as shown in Fig. 1. In this case the two more
likely intensity levels are going to be 00000000, and
1111 11115. There are possibly a few levels that differ
only in some of the LSB’s from these two predominant
levels. Thus, if a particular pixel’s MSB is 1, the less
significant bits would also be 1 with high likelihood.
This motivates the fact that, for simple images, gain
can be achieved by using information about the previ-
ously scanned bit-planes and thus justifies the poten-
tial benefits of Cipter- Note that the situation is simi-
lar even if the original images are not scanned from a
bi-level source. Since the number of gray-scale levels
is much less than the maximum of 256 in those simple
images, for each given pattern of, say, 4 MSB’s, the
number of possible combinations of 4 LSB’s is likely to
be less than 16. This can result in high compression
ratios when our context modeling method is used.

Note that, for the simple context modeling exam-
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Figure 3: Cj,ter employed for the experiment in Sec. 3.
Although we can include more bits from the upper bit
planes for more compression gain, we limit the Ci,er
bits only to the ones shown in this figure to avoid
excessive computation and memory requirements.

ple of Fig. 2, we use only 4 bits for Cj,r, and up
to 7 bits for Cinger. Though this context model can
be good enough for bi-level or near-bi-level images, a
more sophisticated context model can be employed to
fully exploit the available information. For instance,
any bits in the wupper bit planes (i.e., the bit planes
already encoded) can be used to define Cje while a
larger causal neighborhood can be considered to de-
fine Cintrq- In fact, for images with strong spatial
correlation, we can achieve more compression gain by
including the surrounding pixels’ upper bit plane in-
formation. However we cannot arbitrarily increase the
number of bits used for context modeling due to the as-
sociated increase of algorithm complexity—especially
due to exponential increase of memory requirement.
For the experiment in the later section, we employ a
more complex Ci,er as shown in Fig. 3.

Once the context model has been selected, the com-
pression algorithm processes each bit plane in the
usual raster scan order. The only necessary side infor-
mation is the dimension of the input image. Further
compression can be achieved by using histogram com-
paction as described below.

2.2 Histogram compaction

If the number of active intensity levels is small, we
can use side information to specify what pixel values
are in use and represent each pixel intensity with a
reduced number of bits. For example, suppose that
only 29 active pixel values are used in a given image.
Then we can represent the original image using only
5 bits per pixel (i.e. we need to code 5 bitplanes, in-
stead of 8) after specifying those 29 levels explicitly as
side information. The decision on whether to use his-

togram has to take into account the trade-off between
bits added by overhead and bits saved by removing
redundant bit planes. For example, suppose we spec-
ify the active pixel values with a 256-bit overhead (for
8-bit gray-scale images) where the i-th bit is set to
1 if the grayscale level ¢ — 1 is present in the origi-
nal image or set to 0 otherwise. Obviously, histogram
compaction would not be worth considering if the bit
plane reduction savings are less than the 256 bits of
overhead.

3 Experiments and results

We implemented the EIDAC algorithm using 4 bits
for Cintre as in Fig. 2: the adjacent bits to the current
bit in W, N, NW, and NE directions. The number
of bits used in Cj,ter depends on the bit plane and
can be as many as 15 bits. When encoding the k-th
bit plane BPk, £ = 0,...,7, we consider 7 — k bits
from the upper bit planes at the pixel location for the
current bit, where BP7 denotes the MSB plane and
BPO the LSB plane. Cinger also includes 4 bits from
each of BP7 and BPk +1 at the pixel locations for the
Cintrqe bits. See Fig. 3 for the Ciper bits.

We start by emphasizing that EIDAC, in its ver-
sion without histogram compaction, generates an em-
bedded bit stream as shown in Table 1 and Fig. 4.
Embedded coding enables both lossy compression and
lossless compression, and is a convenient feature for a
number of applications in addition to facilitating rate
control.

The compression performance of EIDAC and other
lossless image-domain coders for the test images are
summarized in Table 2, where we use the test im-
ages used by the Piecewise-Constant Image Coder
(PWC) [8], a lossless algorithm aimed at compression
of computer graphics images. These images are avail-
able on the Internet [9] and were converted first to
grayscale, as our current version of EIDAC can only
handle 8-bit gray-scale images.

To the best of our knowledge PWC is the best coder
to be found in the literature for compression of simple
images so that this coder serves here as a benchmark.
The results in the column labeled I-JBIG are obtained
by applying JBIG independently to the the bit planes
of the test images. In the next column are the com-
pression results using Compuserve’s Graphical Inter-
change Format (GIF). We also consider Context-based
Adaptive Lossless Image Coder (CALIC), one of the
best lossless coding algorithms for general gray-scale
images [10]. Note that I-JBIG and EIDAC are the
only embedded schemes among those in Table 2.

EIDAC is used with and without histogram com-
paction (EIDAC and EIDACH, respectively, in the



| Reconstruction Level | BP7 | BP6 | BP5 | BP4 | BP3 | BP2 | BP1 | BPO ]
[ DataSize || 3,100 | 6,026 | 8,505 | 5,686 | 5,873 | 9,026 | 9,167 | 9,348 |

Table 1: Transmitted data size (in bytes) for progressive image reconstruction experiment for books. BPk
corresponds to reconstruction down to the k-th bit plane. Note that BP7 represents a bi-level reconstruction
image and BP0 the lossless reconstruction.

Figure 4: Progressive reconstruction example associated with Table 1. (a) The original image books (b) Black-
and-white reconstruction corresponding to BP7 (c¢) 3-bit reconstruction from BP5 (PSNR = 24.43dB) (d) 5-bit
reconstruction from BP3 (PSNR, = 36.68dB) (e) 7-bit reconstruction from BP1 (PSNR = 49.59dB)

[Tmage | RAW | IJBIG | GIF | CALIC | PWC | EIDAC [ EIDACy |
benjerry 27,060 | 6,876 | 4,386 | 6,004 | 2,408 | 4,027 3,541
books 56,022 | 14,767 | 11,117 | 23,220 | 8,601 | 9,348 8,577
ccittol 598,500 | 6,991 | 9,255 | 7,914 | 5,078 | 6,073 5,784
cmpndd 393,216 | 73,861 | 71,825 | 68,704 | 49,498 | 58,242 -
cmpndn 393,216 | 61,663 | 58,780 | 55,564 | 37,043 | 45,968 -
flax 17,340 | 1,037 799 759 129 176 95
gate 60,012 | 25,974 | 22,244 | 24,700 | 15,301 | 19,827 | 19,732
music 12,321 | 2,245 | 1,055 | 2,340 710 | 1,493 890
netscape 61,200 | 190,898 | 14,730 | 19,915 | 9,796 | 13,130 11,006
pattern 18,495 | 6,201 | 1,720 | 2,040 | 1,074 | 1,209 1,067
seadusk | 157,300 | 2,172 | 6,219 | 1,736 622 | 2,416 2,340
stone 22477 | 5042 | 4,703 | 14,755 | 3,981 | 3,417 2,780
sunset 307,200 | 79,251 | 94,248 | 77,049 | 48,702 | 66,022 -
winaw 294,345 | 25,987 | 18,562 | 34,045 | 11,414 | 14,580 12,796
yahoo 27,140 | 8,831 | 6,930 | 7,131 | 4,178 | 5,590 -
Total 2,448,544 | 340,796 | 327,482 | 345,975 | 198,535 | 251,518 | 244,520

Table 2: Comparison of compressed file sizes (in bytes) by various lossless compression algorithms for the (gray-
scale-converted) PWC test image set. Note that images cmpndd, cmpndn, sunset and yahoo have more than 128
levels of gray and therefore no histogram compaction is performed. For these images the rate achieved without
histogram compaction is used to compute the totals.



Image || CALIC | PWC | EIDAC |
aerial?2 362,144 6.29 | 6.34 6.24
bike 327,780 527 | 5.34 4.98

( )
( )
cafe (327,680) 623 | 645| 5.93
( )
( )
( )

goldhill (262,144 4.63 | 5.37 5.38
lena 262,144 4.11 4.97 4.90
woman 327,680 5.17 5.07 5.39
Average 531 | 5.69 5.46

Table 3: Lossless compression rates (bits/pixel) for a
set natural 8-bit images. In the parentheses are the
raw image file sizes in bytes.

table). Even without histogram compaction, EIDAC
can outperform the other compression schemes ex-
cept PWC. By using histogram compaction, EIDAC’s
achieves better compression performance than PWC
for some of the test images. It can be observed that
EIDACg tends to outperform PWC for the simpler
images in the test set.

Table 3 provides results for a set of natural images.
Whereas neither EIDAC nor PWC were specifically
designed with natural images in mind, this compari-
son is useful to evaluate the robustness of these algo-
rithms when used on images that are not as simple
as expected. It can be seen that EIDAC, the only
embedded algorithm considered, provides competitive
performance, and even outperforms CALIC for cer-
tain images. It can also be seen that it is more robust
than PWC to the lack of simple of characteristics in
the source images.

As a summary we have proposed EIDAC as an
efficient image-domain algorithm for compression of
simple images. Our experimental results show that
EIDAC outperforms other schemes such as GIF or
CALIC, but not PWC, which is also specifically tar-
getted at simple images. However, an important fea-
ture of EIDAC is its ability to produce embedded bit
streams, unlike CALIC, GIF, or PWC. The EIDAC
algorithm has been proposed to the ongoing JPEG
2000 standardization effort, as a part of the algorithm
contribution of [11]. EIDAC is used to complement
an embedded wavelet coder for tiling-based coding of
compound images where classification is used to de-
termine which parts of the image are simple. We are
currently exploring more sophisticated context model-
ing for both Ciirq and Cipier as well as teheniques for
histogram compaction that preserve embedded coding
property of EIDAC.
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