COMPUTATIONALLY SCALABLE PARTIAL DISTANCE BASED FAST SEARCH MOTION
ESTIMATION

Krisda Lengwehasatit*

PacketVideo Corp.
Core Engineering Division
10350 Science Center Drive
San Diego, CA 92121
krisda@packetvideo.com

ABSTRACT

In this paper, we present a class of algorithms that use a par-
tial distance metric to speedup the motion estimation pro-
cess. The partial distance metric is used within the motion
search to eliminate unlikely candidates through a threshold-
ing process that enables computation scalability. We also
propose a multiresolution variant which further reduces the
complexity. Our results are comparable to state of the art
approaches present a regular structure and are computation-
ally scalable.

1. INTRODUCTION

The task of motion estimation is to find the best match for
the block currently coded from a region in the previously
reconstructed frame. The matching metric typically used is
the sum of absolute difference (SAD) defined as

SAD(niv,B) =

Z [t (ng, ny) — Ii—1 (ng + mug,ny +muy)|, (1)
(nz,ny)€B

where Ii(ngz,ny) is the intensity level of the (ng,n,)-th
pixel at frame ¢, B is the set of all pixel in the macroblock
(size 16x16) of interest, and 77w is a candidate motion vec-
tor in a search region I'. The “best” motion vector, i.e.,
the one having the minimum matching metric denoted by
MV*(T, B), can be found through exhaustive search.

MV*(T, B) = arg rpinF SAD(mv, B). (2)
mve

*Thiswork has been done in part while this author was at University of
Southern California

TThis work has been supported in part by Integrated Media Systems
Center, aNationa Science Foundation Engineering Research Center, coop-
erative Agreement No. EEC-9529152 and by the National Science Foun-
dation under grant M1P-9804959.

Antonio Ortega f

Integrated Media Systems Center

Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, California 90089-2564
ortega@si pi.usc.edu

It can be seen that the major source of complexity in
motion estimation comes from the metric computation that
must be performed for every candidate. Thus, there are ba-
sically two approaches to speedup the motion estimation;
either reducing the number of candidate vectors for which
the metric will be computed, i.e., fast search (FS), or re-
ducing the complexity of the metric calculation itself, i.e.,
fast matching (FM). In the FS approach, only a subset of
promising candidates in the search region, v+ C I' in (2),
is considered. Examples of FS approaches include the 2-D
log search [1], the new three step search [2] and the diamond
center-based search [3]. These algorithms are based on the
monotonicity assumption of the matching metric as a candi-
date vector moves further away from the global minimum.
A good initial point can also be used to reduce the risk of
being trapped in local minima. Hierarchical [4], multires-
olution [5] and spatio-temporal [6] techniques have been
used to find a good initial point by exploiting the corre-
lation of neighboring candidate vectors and motion vector
from neighboring blocks for better initial candidate. In the
FM approach?, the basic idea is to reduce the metric compu-
tation complexity by using a computationally cheaper lower
bound (e.g.,[7]) or trying to use a smaller set of pixels in a
macroblock, i.e., using 8 C B in (1) (e.g., the well known
partial distance search (PDS) by Bei and Gray [8]), while
maintaining the accuracy of the SAD. In the PDS, the metric
calculation stops once it is clear that the metric of a tested
vector will exceed that of the best found-so-far one. In our
previous work [9], we proposed a probabilistic version of
the PDS which gives a suboptimal solution but allows the
computation to be scalable.

Unlike our previous work [9] in which only the FM ap-
proach is considered, in this paper we propose algorithms
that combine both FM and FS techniques. Thus, we use
the partial SADs (PSADSs) to limit the number of candidates

1\We consider only algorithms that are based on the conventional SAD,
although our work could be extended to other additive cost functions.



which are computed. Our algorithms use thresholds as a
way to trade off the computational savings and the motion
estimation accuracy which, in turns, affects the coding effi-
ciency.

2. PDS-BASED CANDIDATE ELIMINATION

We first describe the PDS algorithm. Let us denote the par-
tial SAD of candidate v by PSAD; = SAD(mw, z;), Vi
where the z; are embedded subsets of pixels, i.e., z; C B
and z; C z; for¢ < j. Therefore, PSAD is the SAD metric
computed on a subset of pixels. The PDS algorithm can
be summarized as follows. Candidates are evaluated se-
quentially. When a given candidate is evaluated, we know
the best-so-far candidate with its corresponding best-so-far
SAD, SADyss. We can compare PSAD; of the current
candidate with the SADyss. If PSAD; > SADyy, it is
clear that the SAD will be larger than SAD,y, and there-
fore the current candidate can be eliminated. If PSAD; <
SADysf, we compute the next stage PSAD;; and com-
pare to SADygs again until the termination occurs or the
complete SAD is computed. Then the process is repeated
for the next candidate.

The choice of the sequence of subsets z; can be made
such that the terminations occur earlier. We have found that
by using a set of pixels uniformly distributed around the
macroblock, the PDS computation is better than, say, hav-
ing z; as one row of pixels. Therefore, in our implementa-
tion we use 16 stages, each of which is a 16-pixel uniformly
distributed set for z;’s (see also [9]). Note that if the candi-
date with the smallest total SAD is coincidentally computed
first, it is certain that the computation of other candidates
will be terminated at their earliest stage. We will refer to
this case as an ideal case for minimal complexity. How-
ever, in practice, the best candidate is obviously not known
beforehand. Only a good initial candidate can be guessed.
However, if only the pixel difference operator is considered,
the ideal complexity can be achieved without knowing the
best candidate beforehand by using Algorithm 1.

Algorithm 1 (Ideal Candidate Elimination (ICE-PDYS))

Step 1: Compute the PS AD; of every candidate in the
search region. Set the current stage of every candidate to 1.

Step 2: Find candidate whose current stage is less than
16 (total number of stages) such that its PSAD is smallest.

Step 3: If there exists such candidate, update this can-
didate’s PSAD to the next stage and repeat Step 2. Other-
wise, return the candidate with smallest SAD (current stage
is 16).

This algorithm can seen to be analogous to the tradi-
tional greedy bit allocation in which one bit at a time is it-
eratively allocated to the transform coefficient showing the
maximal distortion improvement. Here we take the most

promising candidate at any given stage (given its PSAD)
and spend on it the additional computation to update it.
However, this approach is complex since it requires finding
the minimum PSAD at each step and each candidate is ac-
cessed several times. We can, however, reduce the complex-
ity overhead by limiting the number of times each candidate
is considered, i.e., reducing the number of PSAD calcula-
tion stages. In this paper, we propose a two-step Candidate
Elimination PDS (see Alg. 2). In the first step we com-
pute the partial SAD of all candidates up to stage m. Then
the candidate with minimal PSAD,, is considered first by
continuing SAD calculation from stage m. Then other can-
didates’ SADs are computed using the PDS, i.e., at every
stage after the m-th stage its PSAD is compared with the
best-so-far SAD. In fact, the PDS can also be used in the
first step when PS AD,,’s of every candidate are computed.
In this case, the stage number where termination occurs (be-
fore m), n(5), must be kept as the starting point for the sec-
ond step SAD calculation. The algorithm is summarized as
follows.

Algorithm 2 (2-Step Candidate Elimination (2-CE-PDS))

Step 1: With a preselected m value, find MV*(T, z,,)
using PDS and keep the partial SAD, SAD(mv;, Tp(j))
where n(j) < m is defined above for the j-th candidate.

Step 2: Update SAD(MV*(T, z,,), B) first, set it to
SADys s and use PDS to compute SAD (mv;, B) Vj,mv; #
MV*(T,zp), starting from PSAD,, ;.

No sorting is needed as in ICE-PDS. Only finding min-
imum in the first step is needed. This method does not
employ an initialization technique like other FS algorithms.
The second step initial candidate is based solely on the first
step PSAD. With this algorithm, the memory corresponding
to the search area has to be accessed only twice. From our
experiments, we found that using the value m = 1 provides
good complexity result since the PSAD computation in the
first step is small. However, with the spirally outward order
of the full search ([10],[11]) the complexity savings from 2-
CE-PDS or even ideal ordering PDS are not so significant.

3. SUBOPTIMAL CE-PDS

To further reduce the complexity, we can limit the number
of candidates considered in the next stage by comparing the
PSADs with a threshold. Consider the 2-step algorithm with
a first stop at step m. In the second step, after updating
the best PSAD to obtain SADys¢, we can surmise that the
actual minimal SAD would have the value around (strictly
equal or less) the current SADy,¢. We can then set up a
threshold with the value proportional to the SADy s scaled
down to the number of stages in the first step. Specifically,



the threshold, T, is defined as
T=t-SADMV*(T,zy),B) -m/16

where £ is a control parameter to adjust the tradeoff between
the complexity and quality, e.g., if £ is small, fewer candi-
dates (those with smaller PSAD,,) are considered in the
second step thus reducing complexity. However acuracy
may be lost since the best candidate could have been elim-
inated from the motion search. As can be seen, the thresh-
old is proportional to the SAD scaled to the stage m. The
computationally scalable algorithm can be summarized as
follows.

Algorithm 3 (2-Step Threshold Fast CE-PDS (2T-FCE))

Step 1: Find MV*(T, z,,) using PDS and keep the par-
tial SAD, SAD(muv;,z:(j)) Ymiv; € T where t(j) < mis
the termination stage for the j-th candidate.

Step 2: Update SAD(MV*(T, x,,), B) first, set it to
SADysy and find MV*(~y, B) using PDS by updating
SAD(m;, B) for candidates
77’?11]' cy= {ni’vj|SAD(ni’vj,xt(j)) < T} from PSADt(j).

We can further reduce the number of candidates consid-
ered by exploiting the spatial correlation of SADs among
neighboring candidates, as in multiresolution motion esti-
mation approaches ([4, 5]). We assume that an initial can-
didate with full SAD is computed, SAD;,;:. The set of
thresholds at each step/resolution, T'(r) forr = 1, ..., R, are
computed based on SAD;,;; scaled to the r-th resolution
(i.e., T(r) = t - SAD;p;: - 1/4(B=")). At each resolution, a
subset of candidates corresponding to the resolution grid of
the motion field which coincides with the subset of pixels
used for the particular PSAD stage is considered. The first
resolution consists of z1, the second resolution corresponds
to z1,%2,23,24 and the third corresponds to the whole set B.
Let ~.. be such a set of candidates on the subsampled grid at
the r-th resolution. Let ¢, (mv) be the set of motion vectors
in the neighborhood of 2w in the r-th resolution.

The partial SAD of candidates in a particular resolution
determine which candidates (and their surrounding neigh-
bors) will be considered in the finer resolution. Note that
there can be many surviving candidates as a result of using
the PSAD thresholding instead of selecting only one sur-
vivor at each resolution as in the conventional MR. We pro-
pose two variants, breadth-first (MR1-FCE) in which the
current resolution determines the stage of PSAD calcula-
tion, whereas in the second variant, depth-first (MR2-FCE),
the SAD calculation can be completed even if we are not
in the finest resolution. The details of these multiresolution
algorithms are summarized as follows.

Algorithm 4 (Breadth-First Multiresolution (MR1-FCE))

Step 1:Find the SAD of the initial motion vector, set it to
SADysy. Compute T'(r) for r = 1,..., R as stated above.
Setr =1.

Step 2:Compute SAD(mv, z1) using PDS, V. mv €
M.rr+1

Step 3:1f SAD(mv, Tp(r—1)) < T'(r—1),1) use PDS to
update to SAD(mv, z, () and ii) compute the neighboring
SAD(¥,zy(y)) using PDS V& € ¢r.(mb).

Step 4:r < r+ 1. If r < R, repeat step 3. Otherwise,
go to step 5.

Step 5:1f SAD(mv, p(r-1)) < T(R — 1), i) use PDS
to update to SAD (m, z,(r)) and ii) compute SAD(¥, z,,(r))
using PDSY & € ¢r(mv).

Step 6:Return M Vj4¢ as the best motion search result.

Algorithm 5 (Depth-First Multiresolution (M R2-FCE))

Step 1:The same as Step 1 in MR1-FCE.

Step 2:The same as Step 2 in MR1-FCE.

Step 3:1f SAD(miv, zp(r—1)) < T(r—1),i) use PDS to
update to SAD(mv, z,(r)) and remove mv from the list of
candidates to be processed, and ii) compute the neighboring
SAD(,2py)) using PDSY ¥ € ¢r.(m) .

Step 4:r < r + 1. If r < R, repeat step 3. Otherwise,
go to step 5.

Step 5:The same as Step 5 in MR1-FCE.

4. EXPERIMENTAL RESULTS

Complexity-Distortion of H.263 sequences
0.01 T T T

x TMNFS

* 2T-FCE

dB difference from original
& '
°
?

O :HTFM

& MR1-FCE

MR2-FCE

~0.09 L L L L L L L
0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8

normalized CPU clock cycle

Fig. 1. Complexity-Distortion of motion estimation part of
TMN’s H.263 encoder averaged over several test sequences.
The complexity unit is the number of clock cycles normal-
ized by the original PDS. £ is varied for computational scal-
ability of the proposed algorithms (2T-FCE, MR1-FCE and
MR2-FCE). "TMN FS’ is TMN’s fast search and "HTFM’
is the algorithm in [9]. The result of conventional MR algo-
rithm is 0.347 normalized clock with -0.436 dB.



Complexity-Distortion for average MPEG? test sequences
0.02 T T T T

* :2T-FCE
4 :MR1-FCE
4 :MR2-FCE

O :HTFM

degradation (dB) from fullsearch
5 .
°
8

“014 ; ; ; ; ; ;
0.2 0.4 06 08 1 12 14 16
normalized complexity (clock cycle)

Fig. 2. Complexity-Distortion of motion estimation part of
MSSG’s “mpeg2encode” encoder averaged over several test
sequences. The complexity unit is the clock cycles normal-
ized by the original PDS. ¢ is varied for computational scal-
ability of the proposed algorithms (2T-FCE, MR1-FCE and
MR2-FCE). "HTFM” is the algorithm in [9]. The result of
conventional MR algorithm is 0.217 normalized clock with
-0.915dB.

Figures 1 and 2 show the result of our proposed algo-
rithms compared with others using H.263 encoder [11] and

MPEG2 encoder [10], respectively. The complexity-distortion

tradeoffs are obtained from varying the parameter ¢ for thresh-
old. Each of the complexity-distortion operating pointd are
averaged among test sequences which are “Miss america”,
“Salesman”, “Foreman”, “Mother & daughter” and “Grand-
mother” for H.263, and “Mobile & calendar”, “Football”,
“Cheer”, “Bicycle”, and “Flower” for MPEG2.

It can be seen that our algorithms are better than TMN’s
fast search and the two MR algorithms give better C-D re-
sults than those of HTFM in [9]. It can be seen that for
mpeg2encode the MR approach gives much better results
since the initial candidate is the zero MV as compared to
the H.263 encoder’s result in which the initial candidate is
the median of MVs of neighboring block. As a result, there
is not much difference between the HTFM and the proposed
algorithms using TMN’s H.263 coder. Thus it can be con-
cluded that the proposed algorithms work well for the case
where no initial good candidate is provided among a large
set of candidates with high magnitude of redundancy (cor-
relations) since they use the only information available, i.e.,
the partial SAD. Therefore, they are suitable for a particu-
lar applications such as the first P-frame after an I-frame,
scenes with random motions, or high accuracy motion esti-
mation with large search region.

5. CONCLUSIONS

We have proposed algorithms that exploit the partial met-
ric information in speeding up the motion search. We ad-
dressed the importance of initial candidate and then we pro-
posed a method that use the PSAD to obtain the good can-
didate. Furthermore, we proposed an algorithm that elim-
inates a number of candidates considered while computing
the distance metric. We also proposed multiresolution based
algorithms that also take advantage of spatial correlation
among neighboring candidates. The experimental results
on H.263 and MPEG2 encoders show better complexity-
distortion performance than our previous work in [9] in the
case of fullsearch.

6. REFERENCES

[1] J.R. Jain and A.K. Jain, “Displacement measurement and
its application in interframe image coding,” |EEE Trans. on
Comm., vol. COM-29, pp. 1799-1808, December 1981.

[2] R. Li, B. Zeng, and M. L. Liou, “A new three-step search
algorithm for block motion estimation,” IEEE Trans. on Circ.
and Sys. for Video Tech., vol. 4, pp. 438-442, August 1994.

[3] J. Y. Tham, S. Ranganath, and M. Ranganath, “A novel un-
restricted center-biased diamond search algorithm for block
motion estimation,” |IEEE Trans. on Circ. and Sys. for Video
Tech., vol. 8, no. 4, pp. 369-377, August 1998.

[4] M. Bierling, “Displacement estimation by hierarchical block
matching,” in Proc. of VCIP'88, 1988, vol. 1001, pp. 942—
951.

[5] S. Zafar, Y. Q. Zhang, and B. Jabbari, “Multiscale video rep-
resentation using multiresolution motion compensation and
wavelet decomposition,” IEEE J. on Sdl. Areas in Comm,,
vol. 11, pp. 24-35, January 1993.

[6] J. Chalidabhongse and C.-C. Kuo, “Fast motion vector esti-
mation using multiresolution-spatio-temporal correlations,”
IEEE Trans. on Circ. and Sys. for Video Tech., pp. 477-488,
June 1997.

[7] Y.-C. Linand S.-C. Tai, “Fast full-search block-matching al-
gorithm or motion-compensated video compression,” |EEE
Trans. on Comm., vol. 45, no. 5, pp. 527-531, May 1997.

[8] C.-D.Beiand R. M. Gray, “An improvement of the minimum
distortion encoding algorithm for vector quantization,” |IEEE
Trans. on Comm., vol. COM-33, no. 10, pp. 1132-1133, Oc-
tober 1985.

[9] K. Lengwehasatit and A. Ortega, “Probabilistic partial dis-
tance fast matching algorithms for motion estimation,” Ac-
cepted for publication in IEEE Trans on Circ. and Sys. for
Video Tech., 1999.

[10] Mpeg Software Simulation Group, “MPEG2 video codec
version 1.2, http://www.creative.net
[~tristan/fMPEG/mssg/mpeg2vidcodec_v12.tar.gz

[11] “University of British Columbia, Canada, TMN H.263+ en-
coder version 3.2, .



