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ABSTRACT

Recent subband image coding techniques owe much of
their success to an effective use of adaptive quantization
and adaptive entropy coding. It is often the case that
adaptive quantization is achieved by defining a discrete
set of quantizers from which one is chosen for a given
set of coefficients. This type of forward adaptation thus
requires that overhead information (the choice of quan-
tizer) be sent to the decoder. Then, the quantized co-
efficients are transmitted using adaptive entropy cod-
ing, typically through backward adaptive arithmetic
coding. In this paper we show that a combination of
forward and backward adaptation methods can be used
to update the quantizers thus reducing the overhead
requirements while still providing good performance.
Specifically, we present an algorithm where each coeffi-
cient is classified into several classes based on the past
quantized data and where the quantizer to be used for
each class can itself be adapted on the fly.

1. INTRODUCTION

Subband, or wavelet, coding has been shown in recent
years to provide a very useful framework for image
compression. It is well known that subband decom-
positions have the advantage of avoiding the annoy-
ing blocking artifacts typical of DCT based schemes
while achieving good energy compaction and in fact
recent developments in subband based image compres-
sion have greatly outperformed the DCT-based JPEG
standard [1]. There are two major components in the
emergence of wavelet based compression, which were
both utilized in Shapiro’s breakthrough work [2]. First,
subband coders allow the use of efficient data-structures,
such as the zerotree in [2] or the cross-band context in-
formation used by the arithmetic coder in [3]. These
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techniques exploit local crossband correlations — a fea-
ture that has proven useful for many images.

A second component has been the use of adaptive
compression techniques, 1.e., those schemes which al-
low any of the three major building blocks of typical
image coding, namely, transform or linear decomposi-
tions, quantization, and entropy coding, to change on
an image by image basis or even locally within an im-
age. In [2, 3] this is achieved using adaptive arithmetic
coding. In other cases, the coder can select the sub-
band decomposition for the given image [4] or both the
subband decomposition and the quantization stepsize
for regions of the image [5]. Finally algorithms such
as those in [6] rely on assigning different quantizers to
different regions of the image. In this paper we concen-
trate on the design of adaptive quantizers suitable for
subband coding.

Note that arithmetic coding achieves adaptation by
keeping track of past transmitted symbols, while most
adaptive quantization schemes used for images select
the quantizers based on the original data. Thus, these
adaptive quantizers require overhead information to be
sent to the decoder, whereas adaptive arithmetic coders
do not require any overhead information. As an exam-
ple, both in [5] and [7], from a discrete set of available
quantizers the encoder can select the best quantizer for
a given block or region of the image.

Our goal is to demonstrate that backward adap-
tive quantization schemes are also useful in image com-
pression. As a starting point we consider the adaptive
quantizer introduced in [8, 9] which estimates the dis-
tribution of the data based on the previously quantized
information. It has been shown that for image sub-
bands it is useful to separate the coefficients in a given
subband into different classes so that different quantiz-
ers can be applied to each class. We propose a novel
approach to classification which relies only on the past
quantized data. For each class, a Laplacian model is fit-
ted and the Laplacian parameter is transmitted as side
information. We will also demonstrate how the Lapla-
ctan parameter of a given class can itself be adapted on



the fly, again based on past quantized data.
Throughout this paper we will consider as a baseline
a simple subband coder where each band is coded inde-
pendently using a uniform threshold quantizer (UTQ)
[10] and the same bit allocation is used in all the cases
to be compared. Note that our goal is to demonstrate
the potential gain in introducing these techniques. More
sophisticated quantizers and schemes taking advantage
of interband correlation can be incoporated into our
proposed scheme and would give better results.

2. CLASSIFICATION

In [7] a method is proposed to classify blocks of sub-
band coefficients into classes based on their “activity”.
Each class is modelled as a Laplacian source with a
different parameter and each block within a subband is
thus assigned to a class, and its corresponding Lapla-
cian model, and is quantized with a quantizer matched
to the model. The classes are determined at the en-
coder and sent to the decoder as side information. In
addition, for each block of coefficients the class index is
also sent as side information. In order to keep the over-
head at a reasonably low level, blocks, rather than in-
dividual coefficients, are classified. Moreover, the num-
ber of classes is also kept small in order to reduce the
overhead per block.

2.1. Context-based classification

We now show that if the quantized data for classifica-
tion is used then these two shortcomings can be over-
come. Classification can then be done on a coefficient
by coefficient basis and, if needed, an increased num-
ber of classes can be used. This idea has been used
for lossless compression of images, as in [11], and is
also analogous to the context-based adaptation used in
some arithmetic coders, see for example [3].

While many scan orders are possible (column-wise,
Peano scan, etc.), we assume a row-wise raster scan
without loss of generality. Consider the neighboring
quantized coefficients of the current coefficient Xj ;,

for example {Xi_lyj, Xi—l,j—l, Xl-yj_l, XZ.C/Q j/z}’ where
Xf/2 . 1s the quantized coefficient in the coarser level
J12

subband of same orientation (thus it is possible to ex-
ploit crossband correlation). The encoder can establish
a rule to classify each coefficient X; ; as a function of
the neighboring quantized coefficients. In this work
we ignore the crossband effects and consider the aver-
age magnitude in a three coefficient neighborhood, i.e.,
our classification is based on %(|f(i_17j| + |)A(i_17j_1| +
|Xi j_1]). To motivate the performance of this scheme
consider Figs. 1 and 2. Fig. 1 depicts an example where
four classes are used and clearly indicates that the high
energy areas can be correctly classified. Fig. 2 shows
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Figure 1: Classification map obtained by using a four-
coeflicient context comprising pixels from the LH band and
the LH2 band (band of same orientation at coarser reso-
lution). Each coefficient is classified into one of 4 classes.
Black indicates the least active regions and white depicts
the more active.

the resulting histograms of unquantized data in each
of the four classes and also indicates that classification
based on the quantized context has separated the pixels
into four classes with varying degrees of activity, i.e.,
higher activity results in higher variance.

The encoder classifies the coefficient data into classes
and then estimates the Laplacian parameter for each
class as follows. For each class, we have data Y7, ..., Y,
and the Laplacian model assumes that Yj,...,Y, are
1.i.d. from a Laplacian density, which is equivalent to
having |Y1|, |Y2|, ..., |Ya| as i.i.d. data from an expo-
nential source fi(y) = Ae™*¥ for y > 0. Then the
log-likelihood of parameter A given the data is {(A) =
nlogA—A>", |Yi|, which, when maximized with respect
to A, gives the maximum likelihood estimator

A=n/) il

The encoder explicitly sends to the decoder the Lapla-
cian parameter for each class, which is used by encoder
and decoder to define the quantizer to be used. As
compared to a block-based method we have the advan-
tage of achieving classification regions with arbitrary
shapes. This will prove particularly useful because each
region can then be allocated a different number of bits.

2.2. Classification thresholds selection

The above examples have shown how classification based
on the quantized past provides a good localization of
the various types of coefficients. We now introduce a
method to determine good thresholds. We first quan-
tize the subband coefficients with a uniform quantizer
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Figure 2: Histograms of the actual coefficient values in each
of the 4 classes obtained from the context based classifica-
tion, from low activity (top) to high activity (bottom).

with quantization step close to what we eventually ex-
pect to use. Note that this is a major simplification
since the quantization stepsize of the UTQ is not known
a priori, and will be different for each class of data. A
better technique would involve an iterative procedure
where, first, given the thresholds the quantizers are de-
signed and, second, given the quantized data a new
classification is performed.

Given the quantized data we can determine to which
class each (unquantized) coefficient belongs. We start
by considering a large number of classes N and select a
set of monotonically increasing thresholds 7g, . .
such that each of the resulting classes has roughly the
same number of coefficients. For simplicity, we as-
sume that each of the classes is approximately Lapla-
cian. The Laplacian parameter for each class can be
estimated from the data as described in Section 2.1.
The algorithm operates iteratively by removing at each
stage the two adjacent (in the sense of corresponding to
consecutive thresholds) classes which have the smallest
classification gain. As in [7] we estimate the classifica-
tion gain using the variance of the data in each class,
say o? and 0'2'2+1: and comparing it with the variance
o? if the two classes were merged. Given that n; and
n;+1 are the number of occurrences of the two classes,
the estimated Laplacian parameter A of the two classes
put together is A = (n; +nip1) - (ni/Ai + nig1/Aig1) ™t
Under the Laplacian assumption the variances are o7 =
1/A? and thus the classification gain is
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where p; = n;/(ni+n;41), can be written as function of
the Laplacian parameters. We use a greedy algorithm
which merges the two classes that have the smallest

classification gain until the desired number of classes is
reached.

3. ADAPTIVE QUANTIZATION

The above described scheme can be directly extended
to include quantizer adaptation within each class. As-
sume that we initialize the quantizer for one class based
on a Laplacian distribution of parameter A, which is
sent to the decoder as overhead information. This pa-
rameter reflects the overall characteristics of the class.
In order to adapt to local variations one can keep track
of the past quantized coefficients in the class. The local
Laplacian parameter can be estimated from the quan-
tized date using the following method. With the same
assumptions and notations as in Section 2.1 and for an
L-level quantizer with decision levels 0 = by < b <
ba < ... < by < 00, let pg be the frequency of occurence
of quantized data with levels 1,2, ..., k.

For any given k, we can get an estimator of A, called
Ak. Denote by Fy (y) the cumulative distribution func-
tion (cdf) of the exponential random variable with pa-
rameter A. That is, for y > 0,

y
Fi(y) = /0 Ae Mdt =1— e, (1)

Pk 1s a good empirical estimate, based on n data points,
of Fi(bx), which is the proportion of data falling into
levels 1 through £ if we have an infinite amount of data.
To be more precise, by Law of Large Numbers,

Dr — Fa(br),

as n — oo and in probability.
Solve equation (1) for A and we get

A= log(1— F(y))/v.

Hence a natural estimate of A based on F(bg) is

j\k = —log(l _ﬁk)/bk

The question remains how to choose k. Let py =
Fy(bg) = 1 — e~ A% then

Var(pr) = pr(1 — pr)/n,

since npy is Binomial (n, pg). By the d-method, we can
obtain an approximate variance of A\ as
1 pe(1—px) Pk Ak —1

nb? (1—pk)?  nbi(l1—pg)  nb}

It follows that for A to have a small variance, (e*%*

1)/b% should be small. However, as by — 0 or oo,



(e*** —1)/b? — co. Hence there is a value of by some-
where for the approximate variance to be at its mini-
mum. To know the precise value of this minimum, we
need to know A, which is unknown.

What we can do is to pick an initial estimate Ag
which corresponds to some bg, in the middle of the
range of the quantizer decision levels and then find £*
such that

k* = argmin, (e — 1)/by.

Or we can just use Ag. It seems reasonable to pick kg
such that pg, is around 1/2.

For each of the classes the encoder transmits to the
decoder the thresholds to be used in the classification
as well as the best Laplacian parameter that can be
matched to each of the classes. This parameter serves
to initialize the adaptive quantizer. The adaptation
algorithm estimates an updated Laplacian paramater
based on the past quantized data in each class. Since
the initial Laplacian parameter is a fairly good repre-
sentation of the data in the class we in fact use an av-
erage between that quantizer and the newly obtained
(local) one. This system could be further improved
by using overhead to help in determining the centroids
(cf. [12]), deciding on a block-by-block basis whether

to adapt the quantizer, etc.

4. RESULTS AND DICUSSION

In our experiments we consider a 3-level wavelet de-
composition using the Daubechies D4 filters of [13]. As
already mentioned the bit allocation is the same for all
the schemes considered and schemes differ only in terms
of the quantization. The first-order entropy is used
to compare our results. We compare UTQ with (i) a
classification based method with four classes (C-UTQ),
where each class is coded with a separate UTQ quan-
tizer, and (ii) an adaptive version (AC-UTQ) where
the Laplacian parameter is locally adjusted. The over-
head involved in each case is restricted to the three
class thresholds and the four Laplacian parameters for
each class. For example, with four classes, the maxi-
mum overhead involved would be of the order of 0.02
bits/coefficient for the coarser bands (assuming 16 bits
per parameter). The small overhead involved will al-
low us to consider an increased number of classes. It
can be seen from Table 1 that classification results in a
significant increase in performance (about 1dB PSNR)
and that further adaptation within each band is also
useful. We emphasize that similar gains can be po-
tentially achieved with more sophisticated quantiza-
tion schemes, since our method essentially discrimi-
nates among classes of data and the alternative quan-
tizing methods could then be trained on each class.
Also, we believe that further improvements are possi-
ble in the classification process. These, as well as the

| Rate [ UTQ | C-UTQ | AC-UTQ |
0.5bpp || 32.64dB | 33.58dB | 33.72dB
1bpp 36.43dB | 37.35dB | 37.50dB

Table 1: Performance comparison in PSNR (dB)

extension to other quantization environments and the
selection of larger number of classes, will be the subject
of future work.
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