Proxy caching for efficient video services over the Internet !

Zhourong Miao, Antonio Ortega
Integrated Media Systems Center, Signal and Image Processing Institute,
Department of Electrical Engineering-Systems,
University of Southern California,

Los Angeles, CA 90089, Email: {zmiao, ortega}@sipi.usc.edu

Abstract: Proxy caching has proven to be a key component of emerging Internet middle-ware.
Currently, proxy caching is used to speed up web browsing and reduce networking costs, as
popular web objects are likely to be present in the proxy cache. In this paper we study the
extension of proxy caching techniques to video. A trivial extension consists of storing complete
video sequences in the cache. We will show how other approaches, where only a few frames are
cached due to the large scale of video data size and possibly limited cache space on proxy, can
also contribute to significant improvements in performance. In particular we will discuss two
video caching strategies, initial caching and selective caching, to store part of the video stream
onto proxy. We will show that by selective caching, we can maximize the robustness of the video

stream against network congestion, while not violating the limited decoder (user) buffer size.

1 Introduction

Interest in proxy based caching has increased with the growth in Internet traffic and the initial
research in this area (e.g. within the Harvest project [1]) has quickly led to the development of
commercial products (e.g., [2, 3]) and to continuing research activity (e.g., [4, 5]). Currently,
proxy caching is used to speed up web browsing and to reduce networking costs, i.e, some of
the most popular web objects are likely to be in the cache and thus will be fetched from the
proxy, which is close to the client, instead of requiring access to the web server. Studies and
everyday use have demonstrated that proxy caching can result in significant improvements in
network access efficiency.

Video is becoming a significant proportion of Internet traffic and, given the high data volumes

involved, even a few popular video applications can result in potential congestion problems. Thus,
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when pre-encoded video sequences are likely to be accessed by many users, ISPs have resorted
to approaches such as replicating complete video sequences in mirror sites “closer” to the end
users. Obviously, this is already a form of caching, and it indicates the potential benefits arising
from caching strategies specifically targeted for video. These will be the focus of this paper.
Note that while for objects such as images the main advantage of caching is the reduction in
latency, video caching has other additional benefits. For example, we will show that video caching
allows us to increase the robustness in the delivery of streamed video, by reducing the effect of
variations in channel bandwidth. Likewise, caching may prove to be useful to facilitate efficient
implementation of additional functionalities, such as random access ( rewind, fast forward, etc.).

The great majority of recent proxy caching research and development has focused on tech-
niques that can handle generic web objects, i.e., a decision is made about whether an object
should be cached based on the type of object, or on meta-data provided by the content creator,
but among “cacheable” objects no distinction is made between, say, an HTML text file and a
JPEG image. Some recent work has proposed that having caching strategies that are specific of
particular types of objects can help improve the overall performance. For example, the idea of
“soft” caching as applied to images [6, 7, 8, 9] results in images being recoded, i.e., compressed
with lower quality, instead of simply being removed from the cache when there is not sufficient
space in the cache. Other object types, such as for example images stored in Flashpix format,
may not be cacheable unless the proxy supports the specific access syntax for these objects (e.g.,
the proxy is able to understand instructions specifying the image tiles to be provided to the
users.)

In this paper, we consider the role of proxies for video stream caching to improve the per-
formance of playback of pre-encoded video over the Internet. We will discuss the potential
advantages of caching frequently accessed video streams, or parts of them. We will assume that
the client access to the proxy is faster, or at least more reliable (in the sense of being subject to
fewer rate variations), than access to the server?. We will assume that the proxy can support the
same streaming protocol used by client and server, so that it can provide the requested frames,
if they are stored in the proxy cache, or alternatively, pass the request to the server.

Clearly, the most immediate approach to video caching would be to let only complete video

sequences be cached. However, since the size of video data is significant it is also important to

2Obviously video sequences that do not meet these characteristics, e.g., those stored in a fast and reliable server,

need not be cached.



consider approaches that will store only parts of the video sequences. We will call this approach
selective caching. This can be seen as a counterpart of the soft caching approach discussed earlier,
with image recoding replaced by temporal video scalability.

The paper is organized as follows. We start by discussing in Section 2 how latency combined
with appropriate rate control can help increase the video quality and reduce the effect on the
decoded video of network unreliability. Then, in Section 3, after introducing the concept of
decoder buffer contents trace (3.1), we study the role of initial segment caching (3.2) and selective
caching (3.3) in reducing latency and improving reliability. We will also show how caching
can provide an improved implementation of functionalities such as rewind, fast forward, etc..
In Section 4, we show the simulation and implementation results to evaluate the approaches
proposed in Section 3. Section 5 concludes the paper.

Note that because the video sequences in this paper are pre-encoded, there are no constraints
on buffering at the source. Therefore, in the rest of the paper the term buffer in always refers to

the decoder buffer.

1.1 Related work

Both [10] and [11] address caching of video sequences. In [10] complete sequence are stored, with
their “tails” being removed from the proxy as the cache fills up. Instead, [11] propose caching
of the initial few frames (prefix) of a video sequence, as a way of reduces the overall latency. A
large number of frames can potentially be prefetched without substantial latency (since fetching
from a proxy is fast) and that will ensure a smooth playback. In our approach we consider the
more general case where any frames can be cached. The approaches of [10, 11] can then be
seen as particular cases, i.e., our algorithm can generate those solutions given a appropriate cost
function.

The work in [12] also allows arbitrary parts of a video sequence to be stored, but it assumes
that a layered coder has been used. Instead, we consider non-layered coder and our caching

discussions are make on a frame by frame basis.

2 Initial latency and initial buffering

Most popular video compression algorithms and standards (e.g. MPEG-1, MPEG-2 [13]) produce

variable bit rate (VBR) compressed bit streams. When transmitting the pre-encoded data over



a CBR channel (or even a VBR channel), a decoder buffer is usually required to smooth out
the variations in rate of the video data (i.e, the decoder receives a variable number of frames
per second, but decodes frames at a constant rate). Some studies [14, 15, 16] show different
approaches to cope with the decoder buffer underflow and/or overflow (note, that decoder buffer
underflow is the most significant problem since it will produce jitter in the display of video
frames) caused by the VBR video data, and possibly, by network congestion. Most strategies
among those, as well as some commercial applications® show that an initial latency will lead to
a smoother playback, by increasing the robustness against potential decoder buffer underflow
(jitter).

Let us consider first the trade-off between quality of the compressed video and its output
data rate. We discretize the time ¢ into units of duration of one frame display period (e.g, 1/24
second), assuming that the user starts to playback the stream at time ¢t = 0. Each frame is
labeled as F;, indicating that frame F; would be scheduled to be displayed at time ¢ = 4. Assume
the video length (total number of frames) is T

Frame F; is compressed into R; 4, bits with quantization step size gj. Different quantization
step sizes produce different compression ratios and quality. A large step size can give more
compression gain (less output bits for a frame) and poor quality (high distortion), and vice
versa. In this paper we assume that a generic quantization parameter (step size) x; is used for
each frame. We measure the distortion D; 4, for frame F;, with quantization parameter g, and

denote D as the total distortion of the video stream.
T
D=3 Dig. (1)
i=0

Let & = [z1, %2, ..., z7], be a T-dimensional vector where z; is the quantization step size for
frame F;. If we have K different quantization step sizes available for each frame, then each
element z; in vector Z can take K different values, z; € {q1,42,-...,qx}- Thus in total there can
be TK different vectors #. Define Q as the set including all the possible vectors Z.

For a pre-encoded video stream, the quality of each compressed frame can be adjusted to
produce a desired rate with high quality requiring more bits, and vice versa. Then for a given
deterministic channel rate model, decoder buffer size, and initial latency (measured in time or by
the number of frames to be pre-fetched before playback start), we can use rate control algorithms

to produce jitter-free compressed video data that meets the corresponding set of constraints. The

3For example, the RealAudio and RealPlayer [17].



problem can be formalized as follows.

Our goal will be to find the optimal solution z* €  that minimizes D, under a constraint
set C = {Rch, Tini> Bhign }, where D is the total distortion of the video stream, Ry, is the channel
rate, T;,; is the initial latency, and Bp,gp is the decoder buffer size. The initial latency 7;,; is the
time between the user starting to receive data and the time playback of the first frame starts.
This latency allows the user to pre-fetch some frames into buffer, aiding the smoothing of VBR
video data. 7;,; can also be replaced as Sy¢q, where Syeqy = TiniRc,. We define S, as the required
initial segment (in bits), and assume the user will prefetch it before playback. Note that because
we are considering pre-encoded video, we assume a certain set of constraints has been chosen
based on typical decoder configurations. Thus since video has been encoded assuming a latency
Tini, the user will have to prefetch S, bits before playback starts.

We would like to find z*, such that the output video stream has the best quality (lowest
distortion D), and, under constraint set C, can be played without any buffer underflow (jitter)
or overflow (exceeding Bj;gp)-

More formally, since the channel rate is assumed to be deterministic when compressing the
video data, it can be expressed as R.p(z) at time ¢ = i. Thus the explicit constraint equations

are:

t 4
> Rep(i) + Sreg— Y Rig, >0 Vte{1,2,..,T} (2)
=0 =0
t t
Z Rch(i) + Sreq - ZRi,wk < Bhigh Vit e {13 21 ...,T} (3)
=0 1=0

The left hand side of (2) is the total amount of data transmitted to decoder buffer (including
initial segment) by time ¢, minus the total amount of data consumed by time ¢ (i.e., the data
corresponding to the first ¢ frames), the result should be greater than zero to prevent buffer
underflow. Similarly, the amount of data in the buffer should be smaller than the buffer upper
bound Bj;g, to prevent buffer overflow.

A simple case of deterministic channel rate is when R, () is constant (i.e.,a CBR channel)
which is a reasonable assumption for off-line compression, because we can not know a prior
what the channel conditions will be when transmitting. However, the actual channel rate during
transmission is not assumed to be deterministic or constant, due to network congestion, delay,
etc.. This leads to the potential for frame losses, if frames arrive “too late” at the decoder.

If we force the decode buffer to hold always at least a few frames, then it may be possible to



ensure playback during short network congestion periods. This can be achieved by introducing
a further constraint in the rate control at the compression stage. For example, we can set a
buffer lower bound, B,,, as an additional constraint, so that the new constraint set is C =

{Rch, Tini> Bhighs Biow }, and we rewrite (2) as,

t t
> Ren(i) + Sreq — Y Riz, > Biow  Vt€{1,2,...,T} (4)
1=0 1=0

Thus after compression with rate control, the decoder buffer will never drop below By,
under a pre-defined channel rate R.,. If network congestion occurs, the decoder will have at
least B, data for playback while waiting for the delayed frame. The larger B, the more time
the decoder will have to survive the congestion without losing a frame. For example, if k& frames
are still in the buffer when congestion occurs, the decoder will have k£ more frame intervals (e.g.,
k/24 seconds) before running out of data to playback. Therefore a video stream generated this
way is more robust against network congestion as By, grows.* This is illustrated by Fig. 1. We

will discuss and define robustness in more detail in Section 3.1.

B(t) | Number of frames B(t) | Number of frames
in user buffer in user buffer
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occurs at that time Time Time
(8): Compressed under rate control with B, =0 (b): Compressed under rate control with increased Biow

Figure 1: Trace of number of frames in buffer during playback. (a): Trace is sketched with
By = 0, which means buffer will be drained to zero at sometime ¢. (b): Trace with increased
Biow- Usually the PSNR in left figure is better than that of in right figure, because of the more
variation allowed in compression stage. But the trace in (b) is more robust against network

congestion.

More details of rate control algorithms and method to find optimal solution = can be found

in [18, 19, 20]. We only point out the impact of the parameters in C to the quality of compressed

4 Actually, the actual size of buffer should be expressed in number of bits, which may not be proportional to

the number of frames, the detail explanation for this can be found in Fig. 4 in Section 3.1.
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video (corresponding to the optimal quantization step size %)

From (3), (2) we can see,

1. A large required initial segment size Syeq, (Or Tin; in the constraint set C') in (2, 3) allows
more bits for the frames (3 R;;,), thus it can improve the overall quality (PSNR) of

compressed video.

2. A large buffer size By, allows more variation in VBR compressed video data, as in (3).
For example, a long series of “simple” frames (resulting in fewer bits after compression)
might be accumulated in user buffer, since the playback rate of frames is much less the
arrival rate of frames in this case, so that the user buffer will be fill up during this period.
Thus, a large B, will allow more significant changes in video data rate, and improving

the video quality.

3. If we set By, in (4) to be larger, the variation of the video data rate is limited. This would
be equivalent to having a smaller user buffer (By;gp,) in (2, 3). Thus a larger By, results in
worse quality. The difference is that we increase the robustness of the video stream against
network congestion. So there is trade-off between robustness and output quality ( as well

as between initial latency and quality).

In Fig. 2 we show experimental results of rate control with different parameters in constraint
set C' for compression to illustrate the trade-offs described above. In this experiment we use
Multiple Lagrange Multipliers algorithm for optimal rate control in the compressing the video
stream. Refer to [18, 20, 21] for more details about this algorithm.

We set the channel rate R, in C' to be constant for compression. The number of pre-fetched
frames (required initial segment, S,eq) ranges from 0 to 100. A large number of pre-fetched
frames indicates large required initial buffering size Sy¢4, or large initial latency 7;,;. We show
results for two different buffer lower bounds ( By, = 0 and Byy, = 100Kbits). We can see the
quality goes up as the initial buffering (latency) increases, and a large low buffer bound results

in lower quality (with higher robustness against network congestion).
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Figure 2: Quality vs Initial Latency. Top curve: as the latency increases so does the quality.
Bottom curve: we restrict the range of variation in rates so as to ensure a large lower buffer bound.
This results in lower PSNR, performance but increased robustness against network congestion.
The horizontal axis is the number of prefetched frames, and vertical axis is the overall quality (in
PSNR) of video stream. The video source is part of the movie “Mission Impossible”, compressed

with MPEG-2 intra frame mode. We use the same sequence in our other experimental results.

3 Proxy caching for video sequences

3.1 Trace of decoder buffer contents

Our goal is now to analyze what frames should be cached. We first introduce the concept of
the trace of decoder buffer contents during playback, and discuss its properties with/without
caching.

Denote B/ (t) and B®(t) as the number of frames and bits, respectively, in the decoder buffer
at playback time t. We call Bf(t) and B®(t) the trace of buffer contents. These can be easily
obtained by simulating the video transmission under specific channel model. We assume that
compared to the channel rate R, from server to client, the rate R, from proxy to client is very
fast, that is R, >> R.. Thus the transmission time from proxy to client is very small and is

neglected in this paper for simplicity.

We now examine the buffer contents traces before and after caching, see Fig. 3. Denote
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Figure 3: Buffer traces with/without caching

Bg (t), By(t) as the traces without any caching, and B{ (t), Bb(t) as the traces after caching a
frame. In what follows, we use the sub-index 7 to indicate the number of frames that has been
cached. Assume the frame be transmitted at time ¢, is cached at the proxy, it will be transmitted
to client from proxy instantly at time ., and the proxy will request the server to skip this frame
and transmit the next one, so the trace B§(t) after ¢, will be “lifted” by Ry, the size of frame
F;,, or

Bj(t) ift <t

Bi(t) =
Bi(t+dt) + Ry, ift>t,

(5)

Where 6t = [R;,/Rcp] is the transmission time of frame F;, from server to client. Equation (5)
holds when trace Bll’(t) does not exceed the maximum size of the decoder buffer By;gy after i,

or

B%(t) = Bg(t + (St) + R, < th’gh for t > 1. (6)

Note that Bg(t) will never exceed Bjgn since it has been generated with a rate control that
enforces the constraint of no buffer overflow.
If, after “lifting”, equation (6) does not hold for some time #,q0 > t, i.e., B(t) would exceed

Bhigh, then the user has to stop receiving data, and equation (5) becomes:

Bj(t) ift <t

B (1) Bi(t+6t) + Ry, ift. <t <tmas ™
Bhigh if trpag <t <thon
Bj(t) ift> 10,

Where (tmaz, th

TTLGI)

is the interval during which the buffer is full. See Fig. 3(c).



The traces are obtained from the simulation under a given deterministic channel rate, e.g.,
a CBR channel. However, when transmitting over a real network, congestion may occur in a
non-deterministic fashion, resulting in delay of the video packets. If a packet arrived later than
the time it is scheduled to be displayed (i.e. the frame “time out”), it will be considered as a lost
packet. When the decoder buffer has many frames already received, the next frame (packet) being
transmitted can have a longer delay before time out, since the decoder can playback the frames
already in the buffer while waiting for next frame. Thus at a time when there are many frames
in the decoder buffer, the system will be more robust against network congestion. Conversely, at
times with very few frames are in the buffer it is very likely for decoder to survive from buffer

underflow. Thus we define a measure of robustness of a video stream U, as
Un = min{B (1)}, (8)

that is, the minimum value of the trace in terms of number of frames, and we call this minimum

value a trough, with the corresponding time being referred to as a “risky time” t,, i.e.,
t, = argmin{ B/ (1)}, 9)

Similarly, “risky frames” are the frames scheduled to be displayed around risky time. There
might be many risky times/frames in one trace. The larger B/(t) is, the more robust this video
stream gets.

Obviously there are alternative ways to define robustness such as for instance the average
number of frames in the buffer:

U, =Y B/(t). (10)

t

In this case, caching any frames can increase U,. Given these two measures of robustness, U,
and U,, when selecting which frames to be cached we can do so based on these two alternative
optimization criteria. The MazMin criterion will attempt to mazimize Uy, ( and ensure the worst
case is the least “risky”), while the MazAverage criterion will require us to mazimize U, ( and
aim at improving overall or average robustness). For most scenarios in this paper, we use the
MaxMin criterion for robustness, and we will use the MaxAverage criterion only to break the tie
among multiple choices that all improve Uy, in the same way.

We also define the mazimum peak as the points at which trace B®(t) reaches the maximum
buffer size limit, and mazimum peak time, t;qz, as the time when B®(t) reaches the maximum
peak, that is

B"(tmaz) = Bhign (11)

10



As seen in Fig. 4, while the size in bits of each frame is different (due the VBR video data),
the shapes of Bf(t) and B’(t) tend to be similar (due the average over time). Therefore for

simplicity, we could also use the B®(t) to locate the trough time ¢,.
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Figure 4: Trace of buffer size in number of frames and bits. We can see that two traces have

similar shapes. Thus, even though the number of bits per frame is not constant, it is reasonable

to make the approximation that the extrema of both curves will happen at roughly the same

times.

3.2 Approach I: caching initial segment

For a proxy with limited cache size, one approach is to cache the required initial segment first
(Sreq, which has to be buffered before playback). In the case when there exists a fast link from
proxy to the client, the physical delay required is much lower than if the required initial segment
(Sreq) has to be loaded from the server. This idea is also proposed in [11].

The next question is to determine, if more space is left on proxy after caching Sy.,, what
portion of the video segment should be cached next? One simple solution is keep on caching the

frames immediately after Sy until there is no space on proxy. We now analyze the benefits and
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constraints of this approach.

In fact, if the user is willing to endure a long initial delay, it is possible to pre-fetch an ad-
ditional segment (Sgqq) after fetching Syeq. Sgqq (frames immediately follows Sye4) can further
increase the playback robustness against network congestion, as shown in Fig. 5 and Fig. 6(a).
This long initial latency can ensure more robustness (without losing quality as achieved in com-
pression stage with rate control).

If a proxy is caching both Sy.q and Sgqq, the latency can be significantly reduced. Thus the
proxy can continue caching the frames after the S, of the video stream, as the space on proxy

permits. The more additional segments is cached, the more robust the playback will be for the

user.
By(t)
Bo(t) Number of frames
in user buffer Bhigh +Sqq |- S .
Max buffer size With Max buffer limit = By

- - - - + S . - - - - - R i ===

Max buffer size Seq" S :
Bhigh _ ‘
Addtional :

buffering : ‘ .
Required | Sad [T Lj ) The lower buffer bound increases : :

initial : asinitial buffering increases, : ‘ . w .
buffering ‘ : L iU ‘ : L Uz
th t 7 4 3 3 Lkl & 3 3 G G
Very few framesin the buffer, Time Time
easy to underflow if congestion
occurs at that time
(a): Required initial buffering only (b): With additional buffering

Figure 5: (a): Trace where only the required initial segment is cached, the robustness is U, = 0
at this time (because of the trough at ¢2). (b): After caching additional segment S,44, if there is
no buffer limit, robustness can be increased to U;. But if there is a maximum buffer size limit,

robustness will drop to Us at tail of the stream.

However, arbitrarily increasing the length of the initial segment that is cached has the fol-
lowing problems, i) prefetching all cached frames will require some time, even if the link between
proxy and user is fast, ii) The size of decoder buffer will have to be accordingly large. As in
Fig. 5, the maximum user buffer occupancy is also increased when prefetching additional initial
buffering (this is because the additional amount is not counted in the constraint set C with
rate control). From equation (5) we know that the maximum decoder buffer size will reach to
Bhigh + Sadd, where S,44 is the size of additional segment, (here ¢, = 0).

If the decoder buffer does not meet to Bjign + Sadd, the trace B(t) will not be “lifted” up

12



after the peak of buffer occupancy, as showed in equation (7). Thus a client with small buffer
will not get any benefit when playing back the “tail” of video stream after ¢4, since that will be
fetched directly from server. The trace B(t) is not lifted after the peak time, thus the robustness
for the “tail” of video stream still remains the same as when no caching is involved. See Fig. 5

for more details.

3.3 Approach II: caching intermediate frames (selective caching)

We introduce another caching approach for streaming video, namely, selective caching, or selective
buffering. In this approach, the proxy does not cache the frames immediately following the initial

segment. Instead, it selects “intermediate frames” to be cached, as shown in Fig. 6.

Sreq Sadd Sreq _
Required  Additional Required Intermediated frames
to be cached

Cache Cache Cache
Segment  Segment Segment / ¢ \

First frame Frames First frame Frames
(a) Initial caching: cache required segment and additional segment (b) Selective caching: cache required segment and intermdieate frames

Figure 6: Caching initial segment and selective caching

Selective caching has two potential benefits over caching only the initial segment, namely,
i) it can overcome the problem of decoder buffer limitation encountered with initial caching
(described in previous section), ii) it can support added functionalities, such as fast forward,
backward, which will be described in Section 3.5.

From equations (7) and Fig. 3(c), if a frame or frames are cached at time ., the traces B°(t)
and BY(t) will be lifted in the time interval (tc, tmaz). S0 if t, € (t¢, tmaz), We can easily increase
the robustness U,,, (with MaxMin criterion). If there are multiple troughs in B/(t), and they are
interleaved by maximum peaks, caching frames at only one place will not help to increase Up,.
For example, in Fig. 3(c), caching frames at . (or earlier) does not increase B®(t) (and B/ (t))

after ¢!

mazx*

This is also why initial caching strategy (Approach I) does not benefit the “tail” of
video stream after the maximum peak time.
In this case we can use a selective caching approach to increase the robustness U, under

the constraint of limited decoder buffer size. For example, in Fig.7(a), the trough period was at

13
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Figure 7: (a): Trace where only the required initial segment is cached and a trough occurs
at time (tg,t5), with the next trough occurring at (t5,5). (b): Selective caching. First select
frames around ¢1, but (¢5,t5) still remains the same, due to the maximum peak at (¢3,t5), drawn

in dotted line. Next select frames around ¢4 to increase robustness for (s, tf).

(t2,th), in order to increase BY(t) for robustness in this period, we can choose to cache frames
around time t;. But as B%(¢) grows it may tend to exceed buffer limit Bpign at maximum peak
time (t3,t4), resulting in no “lifting” around time (¢5,t}), which becomes the new trough after
caching on t1. Therefor it will be necessary to cache frames around ¢4 in the next iteration.
Note that for the MaxMin criteria, many choices can be made to select frames to be cached.
For example, to “lift” the first trough at t3, we actually can select any frame to be cached
between zero and %y, in which case we can select (randomly) the frames around #;. Similarly,
for the trough 5, the frames can be chosen between (t5,t5) to increase the robustness at that
trough (where we decided for t4). In Fig. 7(b), t; and ¢4 are randomly selected. We can develop
further constraints for selecting frames be cached, according to different benefit we want. In next
section, we formalize our algorithm to choose frames, and using the MaxAverage criteria as a

new constraint.

3.4 Algorithms to choose frames for selective caching

We assume there is limited space (S, bits) on the proxy which can only hold part of video
streams. Based on the analysis in section 3.3, we outline the approach of selective caching to
increase the robustness under the constraint of decoder buffer size limit.

For a given pre-encoded video stream, compressed with rate control under constraint set

14



C = {Rch, Sreq> Bhigh» Biow}, consisting of frames {Fy, Fb, ..., Fr}. Define the frame index set
A = [a1,a2,...,an] such that frame F,, (a; € A) is cached onto proxy, where A is a vector.
Denote Bf; (t) as the trace of buffer contents where all frames F,, (with size of R,,) are cached.
We now formalize the problem as follows.

Find A* (with N dimension) such that robustness Uy, = min:{ B j; (t)} is maximized (MaxMin

criterion), or

A® = arg max { mtin{Bg(t)}}, (12)
satisfying
max { BL.(#)} < Buigh,  Bhign € C, (13)
N
Y Ry, <8,  ai€A. (14)
1=

For multiple choices of A*, break the tie by maximizing U, = Y, B‘J;(t), or equivalently, using

an additional criterion (MaxAverage)

T
A* = argmAa.x{gBﬁ(t)}. (15)

A near optimal algorithm for the solution of this problem is summarized in the following
steps, which will find all the frames to be cached, with their index forming A*, the solution for

(12).

Step 1. Cache the required initial segment S;.4, since the user has to prefetch it before playback
to meet the constraints in rate control. Set S, <= Sp — Speq- Then start the first iteration,

i < 0. Here for simplification, we use Bz-f (t) to denote the trace after i** iteration.

Step 2. If more space left (S, > 0, or (14)), examine the current trace of decoder buffer contents,
Bif (t), find the most risky time ¢, that satisfies Bif (tmin) = min{Bif (t)}, see equation
(9). At that time t,,;,, the decoder buffer will be most empty, e.g., time ¢2 in Fig. 7(a). If

there are multiple ¢,,;,, choose the first one. In this step, we use the MaxMin criteria.

Step 3. Find the nearest maximum peak time t,,,,; before t,,;,, which is obtained by Step 2
(e.g., ty for risky time ¢4 in Fig. 7(b)). If no maximum peak exists before ¢, set tymaq to

zero (start time) (e.g., time O for ¢9 in Fig. 7(a)). Note that t,,4; is obtained from trace
B(1).
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Step 4. Select one frame F,, which is right after ¢,,,, obtained in Step 3. Since there are
multiple choices for selecting, e.g. frames between t,,,, and t,,;, are all available for
caching to increase Bif (tmin), we use MaxAverage criteria for robustness, and select the
frame that is furthest away from the trough (but after the nearest previous peak). This

provides the largest increase in average robustness U,.

Step 5. Set F,, to be cached onto proxy. Update the trace Bif (t) after F,; is cached. Note to
obtain Bif (t), we have to simulate B?(t) first, which is the buffer contents in terms of bits,
since there might be buffer overflow of By;g,, which is measured in number of bits. Set

Sp <= Sp — Ry,, where R,; is the size of frame F,;.

Now we find a new element a; for the solution, A*, of (12). If S, < 0, there is not enough
space left on proxy, stop the process. Otherwise, increase iteration index by 1, ¢ <4+ 1,

go to Step 2.

The implementation and experimental results are shown in Section 4.2. Here we must point
out that, with this algorithm, Approach I (caching additional initial segment) actually becomes
a special case of Approach II (selective caching). This is explained as follows. Consider a buffer
trace B(t) with its unique maximum peak t,,4; occurs at the later part of the video stream, and
the tail of B(t) after t,,q; is very high compared to the trace before ¢,,4,, this algorithm will
keep on selecting frames at the beginning of the video stream (of course, after the required initial
segment, which is already cached). This is equivalent to Approach I, which simply continues

caching those frames after required initial segment.

3.5 Added functionalities by selective caching

Another benefit of caching intermediate frames is to allow added functionalities. For example, in
an MPEG encoded stream, one can place as many of the of the I frames as possible in the cache.
Then, since the I frames are encoded in intra-frame mode it will be possible to perform rewind
or fast forward without requiring access to other frames for decoding, and starting playback at
an arbitrary frame position will be more efficient.

This can also be achieved by setting up additional criteria instead of the robustness metric
we have used so far, especially for the MaxAverage criterion. This criterion will tend to select

frames that are evenly spread over the entire stream.
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4 Experimental results

4.1 Frame delay simulation with channel congestion

In order to verify that the risky time (frames) detected in step 3 of section 3.4 under CBR channel
is also risky for channel with loss probability (packet lost or delay by congestion), we performed
the following simulation, see Fig. 8. First we run the simulation with CBR channel (no loss), to
get BY(t). It is used as the horizontal axis in Fig. 8, and each frame can be “tagged” with a
number specifying the current buffer contents when transmitting this frame.

Then we run the simulation with some channel loss probability P,,ss. The loss probability
of each frame is calculated after performing 1000 runs. Note that we assume that when buffer
underflow occurs, due to channel losses, the decoder delays playback of the following frame, so
that losses do not propagate.

We can see that frame loss/delay probability in a probabilistic channel is higher when the
buffer contents B/ (t) are lower, where B/ () is calculated based on a deterministic (CBR) channel

model. The result supports our assumption in step 3 of section 3.4.

The probability of frame to be lost/delay v.s. buffer contents

025 T T T T T T
o} Number of frames = 2000, Avg. data rate = 2.498 Mbps,
02 ?OOO Q OOO Prefeteched frames = 2, Lower client buf. bound = 0 Kbitg,
’ $o Q Constant channel rate = 2.500 Mbps
Nlote 9 00 Channel Error Probability = 0.20
> o}{e}
Soasf o 1
< (0]
Qo
<] (0]
o
8 0.1t 7 -
-
0.05 i
0 WT?% S W
0 10 20 30 40 50 60 70

Number of previous frames in decoder buffer when transmitting the current frame

Figure 8: Lost/Delay probability v.s. buffer contents. The video sequence has 2000 frames. The
real channel rate at any time is under modeled as a Binomial distribution, which drops to zero

with Pjyss (channel error probability), and keeps constant with probability 1 — Pjyss.
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4.2 Frame selection

We implement our algorithm for selective caching described in Section 3.4. The results is shown

in Fig. 9. Both

while B°(t) is used to find #,,4; in Step 3. The dotted curves are for the first iteration, without
any caching (except the required initial segment). The solid curves are for the last iteration,

when the proxy gets full. The selected frames for caching is indicated by a “*”. For both B’(t)

traces are calculated during each iteration. Bf (t) is used to select t,,;,, in Step 2,

and BY(t), we can see the robustness, (both equation (8, 10)), is improved.

Total Number of frames = 2000; Avg. video data rate = 2.498 Mbps, 13.02 Kbits/frame;
Prefeteched frames = 2; Channel rate = 2.500 Mbps;, Cache Space on proxy = 3000Kbits
T T
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Figure 9: Experiment of selective caching
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5 Conclusion

In this paper we address the issues on a proxy to cache only part of video stream object, due to
large video data and limited cache space.

We first explain the role of the initial latency and initial buffering in video stream transmission
and compression. The analysis and experimental results show that video stream quality can be
improved with increased initial latency before playback. We denote this part of the initial
segment as required initial segment, related to the compression techniques. We proposed that
the required initial segment be cached first, since it is most important for a non jitter playback.

Then we continue choosing other parts of the video stream to be cached, if more space left.
Two approaches are presented, additional initial caching and selective caching. Although the
first approach is simple, it has the disadvantage of large decoder buffer requirement, and will
not increase the robustness of the “tail” of a video stream if only with a small buffer size. The
second approach, selective caching, selects the frames to be cached base on the knowledge of
user buffer size and video stream properties. It tries to give the maximum benefit to the user, in
terms of increasing the robustness of entire video stream against network congestion, while not
violating the user buffer size limit. We also point out the Approach I can be seen as a special
case of Approach II.

Finally we present the implementation and experimental results for selective caching and
other issues. The results verified that our algorithm to choose frames for selective caching is

correct for the criteria (equations (8, 10)) of robustness.
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