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ABSTRACT

In this paper, we present an efficient Multiple Description Coding (MDC) technique to achieve robust communication
over unreliable channels such as a lossy packet network. We first model such unreliable channels as erasure channels
and then we present a MDC system using polyphase transform and selective quantization to recover channel erasures.
Different from previous MDC work, our system explicitly separates description generation and redundancy addition
which greatly reduces the implementation complexity specially for systems with more than two descriptions. Our
system also realizes a Balanced Multiple Description Coding (BMDC) framework which can generate descriptions of
statistically equal rate and importance. This property is well matched to communication systems with no priority
mechanisms for data delivery, such as today’s Internet.

We then study, for a given total coding rate, the problem of optimal bit allocation between source coding and
redundancy coding to achieve the minimum average distortion for different channel failure rates. With high resolution
quantization assumption, we give optimal redundancy bit rate allocations for both scalar i.i.d sources and vector
i.i.d sources for independent channel failures. To evaluate the performance of our system, we provide an image
coding application with two descriptions and our simulation results are better than the best MDC image coding
results reported to date. We also provide image coding examples with 16 descriptions to illustrate the simplicity and
effectiveness of our proposed MDC system.

Keywords  Multiple Description Coding (MDC), Balanced Multiple Description Coding (BMDC), Polyphase
Transform, Selective Quantization

1. INTRODUCTION

In this paper we present an efficient multiple description coding strategy for robust communication over unreliable
channels. An example of such channels are the best-effort packet networks, such as today’s Internet, where congestion,
routing delay, and network heterogeneity can all contribute to packets missing at the destination. Consequently, large
segments of the transmitted data may be lost or useless. This will severely degrade the received signal quality if the
missing data is not recovered.

Existing techniques to recover the lost data or mitigate the loss impact include ARQ retransmission,! FEC using
error-correcting codes? and receiver reconstructions using only the received data by exploiting the residual correlation
in the encoded data.®>* For delay-constrained applications (e.g. real-time audio/video) or multicast applications
(e.g. multiparty teleconference), ARQ would obviously not be an appropriate choice. For large bursts of bit erasures
(packet missing/lost), error-correcting codes, such as block codes and convolutional codes, can not provide sufficient
protection without excessive delay and computation. On the other hand, reconstruction using residual correlation is
limited in performance by the amount of residual correlation and it can not be used for an i.i.d. memoryless source.

Recently, Multiple Description Coding (MDC) techniques have been shown to be effective to combat channel
failures. Two examples are the Multiple Description Scalar Quantizer (MDSQ)®7 and the Multiple Description
Transform Coding.?° However, such robustness to channel errors is achieved at the expense of relatively complicated
system design. For example, MDSQ requires careful index assignments while MDTC necessitates another correlating



transform besides the conventional decorrelating transform. We believe that the increased system complexity can be
partly attributed to the fact that both systems generate descriptions with redundancy implicitly carried over.

In this paper, we propose an efficient multiple description coding system with reduced complexity both of system
design and implementation. In our proposed system, we explicitly separate the description generation and redundancy
addition, an idea inspired by a recent technique used within Robust-Audio Tool (RAT),'%!! and formalized as
Signal processing-based FEC (SFEC).!? Unlike these approaches, in our proposed system, description generation
is accomplished using a polyphase transform and each of these polyphase components is coded independently at
a source coding rate. Redundancy is then explicitly added to each description by coding other descriptions at a
lower redundancy coding rate using selective quantization. In case of channel failures, the redundancy is used to
reconstruct the lost descriptions. We will show that our proposed MDC system, although simple, can yield better
coding results compared to previously reported systems. The main contributions of our work are (i) to propose a
multiple description coding system based on polyphase transform and selective quantization, and (i) to study optimal
bit allocations for i.i.d scalar sources and i.i.d vector sources under independent channel failure probabilities.

The remainder of this paper is organized as follows. In the next section, we give an outline of our proposed MDC
system together with definitions of some MDC terminologies. Section 3 presents the rate-distortion analysis of our
MDC system for i.i.d scalar and vector random sources. MDC image coding results are shown in Section 4 together
with system extensions and possible future work. Finally, we conclude our work in Section 5.

2. PRELIMINARIES

In this section, we first characterize the erasure channels we are going to study and give definitions of MDC termi-
nologies. Then we present our proposed MDC system.

2.1. Erasure Channel Characterization

The erasure channel model which we are going to study in this work is a simplified one. The transmitted data
is assumed either to be completely lost or received correctly. In essence, we do not consider errors introduced in
the physical layer whose protection will be largely dependent on applications of error-correcting codes. Rather we
are looking for an alternative data recovery technique for the data link layer. Naturally, to achieve overall better
protection capabilities, our scheme can be used jointly with error-correcting codes such as these unequal protection
schemes proposed by Davis, Danskin and Sherwood.!?142 Specifically, the erasure channel has two properties: (1)
the receiver knows where erasures occur in the data and (2) erasures occur independently.

To satisfy the first requirement, we can insert synchronization points in the bitstream or tag packets with sequence
numbers. Whether the second assumption is appropriate depends on the actual channel itself. For a lossy packet
network, if packets are routed through different routes from the source to the destination, then we can safely assume
it is. If, however, all the packets are routed through the same route, it seems that a bursty loss model is more
appropriate.!! However, as observed by Bolot et al.,!! packet losses do not show strong bursty effect unless the
network is heavily loaded. The reason is that, although packets in a congested node will experience bursty loss,
this is an aggregated loss process. Packets from many different sources are multiplexed together. If the network is
reasonably loaded and routers adopt random drops, rather than priority schemes, the loss will not show a strong
bursty property for a single source. We briefly mention here that, our proposed MDC system can be easily extended
for bursty channel erasure models thus will be a part of our future work.

We study techniques to recover from these erasures. Erasure channel models have been studied for a long time,
yet our specific model here has two differences. First, we are considering erasures of large bit segments rather than
single bit erasures. Second, we are not considering exact recovery of the erasures. Rather we only want to reconstruct
an approximate version of the signal lost due to erasures. We would like to build a system which degrades gracefully
in a predictable way in the presence of channel erasures.

2.2. Multiple Description Coding Terminologies

Let us first introduce MDC definitions and then contrast MDC with two other coding techniques: Simulcast Coding
(SC) and Layered Coding (LC) or scalable coding.'®!® Given an information source X and distortion measure
d(X, ).



Two Description Coding!” involves finding two rate distortion codes {C;,i = 1,2} such that C; achieves the rate
distortion pair (R1, D1), C2 achieves the rate distortion pair (Ra, D2) and (C1,C>) achieves rate distortion pair
(Rl + RQ,D()) with Dy < Dy and Dy < Ds.

Multiple Description Coding (MDC) involves finding multiple rate distortion codes {C;,i =1,2,---, M} such
that C; achieves the rate distortion pair (R;, D;), any combinations of more than one codes (total num-

ber Ziv[:z ( ]Z[ )) achieve smaller distortion (smaller than min{D;},i = 1,2,---, M), and (Cy,Ca,---,Cuy)

achieves the global minimum distortion Dy (rate distortion code (Ekle Ry, Dy)).
Whereas the the notation is somewhat cumbersome here, two important observations can be made:

e Each code C; is independently decodable since it has its own pair of encoding-decoding functions (f;, g;)-

e Fach code C; carries new information about the original source which indicates that the more codes used for
reconstruction, the smaller the overall distortion one can achieve.

These are two features of MDC which make it clear distinct from SC and LC. In a LC system, the source is encoded
into multiple bitstream layers {Lg, L1, - - -, Lpr }, which correspond to the multiple descriptions {Cy, C1,---,Ca} in a
MDC system. However, layers are usually not independent to each other. Higher layers can only be encoded/decoded
after lower layers have been encoded/decoded. For example, L is encoded and decoded with the help of Ly and L;.
Obviously, for perfect channels, LC systems can achieve higher rate-distortion gain compared to MDC systems and
are thus more appropriate for communication networks which provide delivery with different priority levels. However,
LC systems are more susceptible to channel errors due to this inter-layer dependency on non-priority networks, such
as today’s Internet.

In a SC system, the source is actually encoded into multiple bitstreams Cy, Cy, - - - , Cps which can be independently
decoded to yield different reconstruction qualities. Normally, each code is specifically designed for a specific class of
users. For example, Cy is for users with the smallest bandwidth while C'5s is for users with the largest bandwidth.
However, codes do not usually complement each other in the sense that C; only carries new information compared
to codes upstreams Cy, Cy,---,C;—1. However for MDC systems each C; carries new information about the original
source. This shows that, for example, (Co, C;) will only give reconstruction quality equal to that can be achieved by
C1 in a SC system, yet better reconstruction than that using only Cy or Cy in a MDC system. Clearly, this shows
that MDC has a better rate-distortion gain compared to that of SC techniques.

In summary, MDC is better than SC in the rate-distortion sense while it outperforms over LC in the channel
robustness sense at least in the case when no priorities exist. Of interest in this work is one special type of MDC
systems which we define as the BMDC system.

Balanced Multiple Description Coding (BMDC) A multiple description coding which can (1) generate de-
scriptions with equal rates and (2) generate descriptions with equal importance.

We emphasize here that the equality is defined only in a statistical sense. For example, if the polyphase components
of a random source are two Gaussian sources with equal variances, they will be treated as having same rate-distortion
functions. They will have equal average rates if quantized by the same quantizer. The importance of a description
(code C;) is defined as its corresponding distortion D; achieved at the rate R;.

The significance of BMDC systems is that their characteristics match well those of a best-effort lossy packet
network such as today’s Internet. Equal rate means that packets can all have same size and thus make it simple
for buffer management during packetization and depacketization. Equal importance indicates that any single packet
loss will incur the same average amount of loss of total information to be conveyed. Consequently, random drop
when congestion occurs will not lead to drastic changes in the quality of the received data. Similar work on such a
balanced system has also been reported in the MDSQ design®® and in the equal energy distribution algorithm for
raw image transmission over lossy packet network.'®



3. THE PROPOSED MDC SYSTEM

In this section, we first outline our proposed MDC system. Then we present performance analysis based on optimal
bit allocation for i.i.d random sources.

3.1. System Outline

We propose a multiple description coding system framework shown in Fig.1. The input X is first decomposed into
two subsources Y1,Ys via a polyphase transform. Each of these two components is quantized independently by
(1 and constitutes the primary part of information for its corresponding channel. For reconstruction of the other
channel in case of loss, each channel also carries information about the other channel, a coarsely quantized version
by 2. Then quantized output from @; and @2 are multiplexed together for transmission. At the receiver, if data
from both channels arrives, fine quantized data of both polyphase components is then used for reconstruction. If
one channel data is lost, one fine quantized polyphase and one coarsely quantized polyphase component are used for
reconstruction.

Figure 1. The proposed MDC system.

As one can see, the encoded bit stream explicitly separates the redundant information (coarsely quantized
polyphase components) from the primary information (finely quantized polyphase components). It simplifies both
the encoding and decoding processes compared to the MDTC system proposed by Wang et. al® where a correlating
transform has to be used. It reduces the design complexity compared to the MDSQ system proposed by Vaisham-
payan® since both the polyphase transform and selective quantization can be implemented easily. Our system is
similar to Jayant’s Subsample-Interpolation (SI) approach.? However, SI implicitly assumes natural redundancy
exists in the original data which does not hold for an i.i.d random source. The difference between our system and the
RAT scheme proposed by Hardman et al.l9 is that descriptions in our system corresponds directly to the polyphase
components rather than the original signal itself. The polyphase transform is equivalent to interleaving the data
for transmission. It turns out that not only can we interleave the data in the spatial/time domain but also we can
interleave the data in the frequency domain. This gives our system more flexibility to combat channel errors.

In Fig.2 we show one possible framework of our proposed MDC system operated on correlated input data. In
the encoder, the input data, for example an image, is first transformed by a decorrelating transform (e.g. KLT). A
polyphase transform is applied to the transform coefficients and each polyphase component forms the primary part
of a single description. We call this the description generation stage. Next the redundancy addition block introduces
redundancy among descriptions which identifies for each description what other descriptions it will protect. After
this stage, each description is quantized and entropy-coded independently at a source coding rate and the redun-
dant descriptions are coded at a lower redundancy coding bit rate. Quantized descriptions are then independently
packetized and sent through the network.

Upon receiving data at the destination, the decoder checks the packet sequence numbers and identifies which
descriptions are available and which descriptions are lost. It then decodes the available descriptions and recovers
the lost descriptions with the help of the redundancy information. Description merging is used to reorganize the
reconstructed descriptions back to the original signal representation. Finally an inverse transform is applied to obtain
the reconstructed data.
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Figure 2. A complete MDC system for correlated input

3.2. Optimal Bit Allocation

We now give performance analysis of our proposed MDC system for i.i.d random sources. We answer the following
question: for a given total bit rate, what is the optimal bit allocation between the source coding (primary information)
and the channel coding (redundant information) to minimize both the central distortion (Dg) and side distortions
(D;,i=1,2,---,M)? For the problem of two descriptions coding, this is equivalent to finding the operational optimal
regions for the 5-tuple (Ry, Ra, Do, D1, D>). We only study equal rate MDC systems with R; = Rg,i = 1,2,---, M
in this work.

3.2.1. Scalar Sources

Assume X is an i.i.d zero mean random source with pdf f(x) and variance 0. Under the high resolution quantization
assumption, its rate-distortion function can be approximated Dy = ho?272Fo with h an integral constant defined as

3
h=2% { I [f (@) 3dm} 19 For Gaussian sources, h = v/37/2. Obviously, applying the polyphase transform on a

memoryless source does not change the distortion-rate function since uniform subsampling basically does not change
the characteristics of a random source. Therefore, the polyphase components Y7, Y, will have same distortion-rate
function as z with D; = ho227281 gnd Dy = ho22 282,

Let the bit rate for primary information be Ry and the redundant bit rate be p, the side distortion (one description
is lost) and effective bit rates are then

8,1

1 1
§h0'2272p + 5]10'2272}20

1
R,; = i(RO + p)
i = 0,1
The corresponding central distortion achieved is
D, = ho?27%F0

at a total bit rate R = Ry + p.

With this simple formulation, the optimal bit allocation between Ry (primary information) and p (redundant
information) then becomes a constrained optimization problem. Using a Lagrange multiplier, define the cost function

J as

D.+ AD,

= ho?2 2B L \(Zho?27% + %h022_2(R_p))

1
2

The optimal redundancy bit rate p* can be analytically solved by having g—[ﬂ p=p+ = 0 which leads to

1 1
= )|
p 2R+4082(

A
24 A

This optimal redundancy p* has very intuitive explanations. Since 2+L/\ <1, p* is in the range of [0, %R] for a
given total bit rate R. If only side distortion counts (i.e. one description will be lost with very high probability), then



the optimal redundancy rate is %R. This shows that both the primary information and the redundant information
part are coded at the same rate and that two channels equally split the total bit rate, each of which is coded at half
the total rate available. This is in fact the minimum possible achievable side distortion D for our system, however,
at the expense of maximum possible central distortion D.. If only central distortion count (i.e. both descriptions
will arrive at the destination with very high probability), the redundancy p should always be set to zero. This means
that each channel will carry half of the total information. Upon receiving data from both channels, one can get the
minimum possible central distortion for the given bit rate R. However, the side distortion achieves its maximum.
In-between these two extreme cases, one has the freedom to fine tune the side distortion with respect to the central
distortion by choosing different redundancy bit allocations.

As a comparison, we consider MDC for a unit-variance zero mean memoryless Gaussian source. In our simulation,
we first generate a sequence of Gaussian i.i.d samples. Then the even samples are quantized by a Lloyd-Max quantizer
at a source coding rate Ry and the odd samples are quantized by the same Lloyd-Max quantizer at a redundancy
coding rate p. This is our description 1. The description 2 is formed in the same way except that odd samples are
quantized at rate Ry and even samples are quantized at rate p. The central distortion D, is the MSE achieved at
rate Ry of the original source and the side distortion D; is the average of the MSEs achieved using only description
1 or description 2. We use fixed-length codes for the index coding so the bit allocation is very simple with the only
constraint of fixed total coding rate R = R+ p = constant. For example, if the total coding rate is 5bps, the possible
bit allocations are (Rp, p) = (5,0), (4,1), (3,2) at which we measure central distortions and side distortions.
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Figure 3. Rate-distortion performances comparison for a Gaussian source N(0,1): (1) Ozarow: optimal bound.?°

(2) MDSQ: optimal level-constrained results.®
(4) Optimal: results using the rate-distortion function of the Gaussian source.

The optimal lower bound of the achievable set of 5-tuple (R1, Rz, D 1,Ds 2, D.) has been given by Ozarow?

(3) Proposed: Lloyd-Max quantizer results with fixed length code.
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9—2(Ra+Ry1)

D1 >27281 Doy >2 282 and D, > Z/ovmz With L= (1 - Ds1)(1 - Ds) and A = Dy 1 Ds > — 2~ 2(HatFa)
The total bit rate is given by R = Ry + Ro. We also compare with the asymptotic results given by Vaishampayan
et al.® The optimal level-constrained MDSQ results are D. ~ 1h27R(1+2) and D, ~ h27F(1~2) with 0 < a < 1 and

h = @ The comparisons are shown in Fig.3 under various bit rates.

As one can see, the results of our proposed system using a Lloyd-Max quantizer on an average is comparable to
that of optimal level-constrained MDSQ. It is even better than MDSQ when total bit rates and redundancy rates are
both very low. A big gap (about 7dB) still exists from Ozarow’s optimal bounds which indicates that improvements
can be made if more efficient quantizer can be designed. As a matter of fact, optimal entropy-constrained MDSQ has
also been studied by Vaishampayan et al.® and significant gain has bees observed. The same is true for our proposed
system.

An interesting question is that how well we can do using the proposed MDC system. In other words, for a Gaussian
source, if we can design a quantizer which operates exactly on the rate distortion function, can we approach the
Ozarow’s MDC bounds? Using the optimal bit allocation derived before, the achievable central and side distortions
are

D, = o?2-Rtiloe(z)

2 2
, = %Q—R—%lo&(ﬁ) + %2—R+%log2(ﬁ)

Now we plot this optimal results in the same figure (see Fig.3). As one can see, the performance gap narrows
drastically and almost approaches the Ozarow’s lower bounds at lower redundancy rates. This indicates that, while
the proposed system can not achieve the lower bounds within the whole operational range, its performance can be
greatly improved if we can design better quantizers. We mention that here the quantizer design is exactly the same as
that for single description coding. Therefore we can make use of the state-of-art results from single description coding
to reach our multiple description coding goals. As a result, the system design and implementation complexity is
expected to be reduced compared to MDSQ systems. Our experimental results on image MDC will further illustrate
this point.

Next we consider the channel model in the analysis. Assume that the two descriptions are sent over two different
channels with independent channel failure probability p. There are four different situations at the receiver?!: (a)
both descriptions are received. This happens with probability (1 — p)? and distortion D, = ho?272F°; (b) one
description is lost. This happens with probability 2p(1 — p) and distortion D, = $ho?27% + Lho?272Ro; and (c)
both descriptions are lost. This happens with probability p? and distortion D = 2. The average distortion at the
receiver for this channel model is

D (1 - p)ch + 2]9(1 _p)Ds +p2Db

1 1
= (1-p)?ho®2 20 L 2p(1 - p)[5h02272" + §h02272R°] + p?o?

Since the reconstruction distortion in last case (¢) will not be affected by the redundancy allocation, the optimal bit
allocation only needs to minimize the first two terms in D. It can be found that, to minimize the average distortion
in the presence of channel failures, the optimal bit allocation is

.11
p = §R+Zlog2p

The basic bit allocation still follows the half-rate splitting strategy. Clearly, the larger the channel failure probability,
the more redundancy needs to be allocated to reduce the reconstruction distortion. If p approches 1 then the
redundancy approaches R/2. This indicates that for very bad channels the maximum protection we can provide is
to code the redundancy at half the total rate. If p approaches to 0, p may take negative values so we constrain
the redundancy rate p to be in the range [0, R/2]. This indicates that, for nearly perfect channels, there is no need
to carry redundancy at all. The threshold failure probability p; can be calculated by setting p to 0 which yields
pr = 272E. For example, if the total coding rate is 5bps, then redundancy can be removed if the channel failure
probability is smaller than 1072. On the other hand, it also indicates that no protection can be provided against
channels with failure probabilities smaller than this threshold p; = 272%.



3.2.2. Vector Sources

We now study MDC techniques for i.i.d random vector sources, specifically random vectors with decorrelated or
approximately decorrelated components, such as the output of a KLT/DCT/DWT transform in a transform coder.

Let X = [zo #1 --- £m_1] be an M-dimensional vector with zero mean and with component variances Ex? = o2

fori =0,1,---,M — 1. We assume that z;,4 = 0,1,---, M — 1 has the same normalized pdf. With high resolution
quantization assumption, for given bit rate R, the minimum overall average distortion achieved is

D = hp22—25
where p? = (Hf\il a?)ﬁ and b = R/M is the average bit rate. As one can see, the optimal bit allocation for vector
sources can be derived exactly in the same way as that for i.i.d scalar sources derived in the previous section. The
difference is that p? replaces the o2 and bit rates are taken as average bit rates. Due to lack of space, we will skip
the derivation details.

However, vector sources provide more flexibility for the packetization process compared to that for a scalar source.
Two different approaches are shown in Fig.4. A time frequency plot is shown for an input. In (a), all the frequency
components corresponding to one time/spatial location are packed into one packet while in (b) these frequency
components are interleaved into two different packets. We will name this type of packetization technique as Time-
Frequency Packetization which is achieved basically by polyphase transform both in time and frequency domains.
Compared to (a), obviously (b) tells more about the time-frequency distribution of the input signal if one packet is
lost. For example, in a JPEG-type block image coder, if each block goes into one packet, then one can interleave
DCT coefficients from different blocks and pack them into different packets. Compared to a direct mapping between
blocks and packets, this time-frequency packetization will avoid block holes in the received images in case of packet
losses.

Frequency Frequency
o 1 1 o
o a o S
o 1 1 o
o a1 o 1

Time Time
@

Figure 4. Two different approaches of packetization for vector sources. The blocks with 0s are frequency compo-
nents packed into description 0 while blocks with 1s are frequency components packed into description 1. (a)Time
packetization. (b)Time and frequency packetization.

4. EXPERIMENTAL RESULTS AND FUTURE WORK

We first present an image MDC example and then we show some possible future works.

4.1. An Image MDC Example

As shown by our analysis, the more efficient the quantization scheme, the better performance of our MDC system.
Among these state-of-art wavelet coders,?2725 we choose the Said-Pearlman wavelet coder due to its simplicity.

In our experiment, the input image is first wavelet transformed and its polyphase components are extracted. Two
different types of polyphase transforms are tested on the wavelet coefficients. One is the plain polyphase transform
which, for two descriptions coding, is simply group all the even coefficients into one description and all the odd
coefficients into the other description. This is done for each row in each subband. The second is a vector form
polyphase transform in which we group wavelet coefficients in different subbands corresponding to the same spatial
location into a block structure like a block coder such in JPEG. This is simliar to the zerotree structure extensively
exploited for coding efficiency in the image coding community.?%24 All the even blocks then go into one description
and all the odd blocks go into the other description.

Let the two polyphase components be y1,72. Then (y1(Ry), y2(p)) constitutes our first description and (y2 (Ro), y1(p))
the second description. The Said-Pearlman wavelet coder is used to quantize and entropy code the polyphase compo-
nents. For example, y; (Ro) means that y; is coded at a bit rate Ry with the Said-Pearlman coder. If one description



is lost, reconstruct from the received data ((y1(Ro),y2(p)) or (y2(Ro),y1(p))) which gives the side distortion. The
central distortion is derived using (y1(Ro),y2(Ro)). The total coding rate is Ry + p.

Since the Said-Pearlman coder makes use of the zerotree structure among subbands, the second type of polyphase
transform generates slightly better coding results. In Fig.5 we show MDC results for Lena gray-level image (size
512x512) using the Said-Pearlman wavelet coder.2> The results of two descriptions are plotted and the comparison
with a recent MDSQ-based MDC wavelet coder by Servetto et al.” is also given. With a fixed total coding rate, our
MDC coder achieves better rate-distortion performance in the whole redundancy range.
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Figure 5. Experimental results with Lena gray-level image. (a) Two descriptions. Polyphase (1): plain polyphase
transform. Polyphase (2): zerotree polyphase transform. (b) Performances with independent packet losses.

In the second experiment, we measure the average achieved PSNRs when there are independent packet losses. The
input image is first wavelet transformed and then a polyphase transform (the zerotree vector form) is implemented
on the wavelet coefficients. The downsampling factor is 16 so we end up with total 16 polyphase components. To
protect from channel failures, the redundancy is carried in a sequential way like that used in RAT.!? That is, packet
1 carries redundancy to protect packet 2 while packet 2 carries redundancy to protect 3 and so on.

Each polyphase component constitutes the primary part in each packet while it also carries redundancy to protect
the next polyphase component in sequence. For example, packet 0 carries two parts of information:(1) polyphase
component O coded at rate Ry and polyphase component 1 coded at rate p. In this experiment, we fix the coding
rates with Ry = 0.4bps and p = 0.1bps thus a total coding rate R = 0.5bps. Since the total number of wavelet
coefficients in each packet is the same, all 16 packets have the same size. We then measure the reconstruction error
assuming independent packet losses. For example, assume there are 4 packets lost during the transmission, we first
generate the loss pattern independently with 4 erasures. Let one loss patternbe1110011101011111 with 1s
represent received packets while 0s lost packets. In this case, packet 4 can be reconstructed by using the redundancy
carried by packet 3. The same is true for packet 9 and 11 while packet 5 will be lost without reconstruction. We
tested 1000 loss patterns for each case when there are 1/2/3/4 packets lost.

In Fig.5 we show the image MDC results at total rate 0.5bps (0.1bps redundancy rate). With different number
of independent packets losses, the average PSNRs are plotted using star symbols with the standard deviations in
vertical bars. As one can see, reconstructed PSNRs deviates from the mean values with an average standard deviation
about 3dB. The quality changes are due to changes in the different loss patterns with consecutive losses lead to the
worst reconstructions. However, as we explained before, our polyphase transform based MDC system should be also
a BMDC system which means, at least, the reconstruction should be approximately the same for cases with one
packet loss. However, the plot shows that, for one packet loss, the average PSNR is 34.5dB with standard deviation
about 2dB. This is due to the fact that we assume that the first packet loss is not recovered in the experiment.
If the first packet can also be recovered using the redundancy carried by the last packet, then the average PSNR
becomes 34.99dB with standard deviation 0.12dB which becomes consistent to the basic concept of BMDC system.
Obviously, our system can be easily modified to implement the equal energy packetization scheme as that by Ng et
al.28 for raw image transmission over lossy packet network.



4.2. Future Work

In Fig.6 we show one extended MDC system using context based coding technique. Since Y; and Y5 are polyphase
components of the original input, strong correlation or structural similarities existing among polyphase components,
which can be used to further improve the quantization efficiency.?222>  Thus the MDC system performance is expected
to be improved.

One interesting problem is to study our system for bursty-error channel models. An example of this will be the
mobile wireless channel where fast fading due to the movement of the object will cause rather long time bursty error
over the link. We would like to know how well our system can do in this hostile communication environment.

Another interesting question is that whether MDC techniques are applicable to multicast applications. Tradition-
ally MDC techniques have been used toward error-protection applications. However, we believe that MDC techniques,
specifically the BMDC system proposed in this work, may also be applicable to multicast applications. The difficulty
with multicast applications is that the coding technique has to meet a wide range of bandwidth requirements due
to the network heterogeneity.!® A typical coding technique for a multiparty teleconference is Layered Coding (or
Scalable Coding). Although LC has better rate-distortion performance compared to BMDC, BMDC wins over LC
in two aspects. First, BMDC is more robust compared to LC since each BMDC code can be independently decoded
while LC maintains a strictly ordered sequence of layers. Second, for each coding layer, a separate multicast group
has to be set up. This obviously increases the management expenses for both the intermediate routers and end
nodes. On the other hand, if BMDC is used for a multicast session, only one multicast group needs to be set up
and intermediate router can randomly drop incoming packets if it can not handle the traffic. The end node can also
randomly drop the incoming packets when it can not handle. When it has available resources, it can take in as many
packets as it can to improve the receiving signal quality.

Y1

2y Q.

Figure 6. Context-based Quantization System

5. CONCLUSIONS AND ACKNOWLEDGMENTS

In this paper, a MDC system using polyphase transform and selective quantization has been proposed. We give
detailed analysis of optimal bit allocation to achieve minimum average central distortion and side distortion for a
fixed total coding rate. This is done both for i.i.d scalar random sources and vector random sources under independent
channel failure models. Our experimental results have shown that our system implementation, compared to previous
proposed systems, is simple yet the achieved MDC results for image coding is better specially at lower redundancy
rates. It is also straightforward to generate multiple descriptions using our proposed system. We also give some
possible system extensions and future work. The authors would like to thank Vinay Vaishampayan for bringing to
attention the reference® and Sergio Servetto for providing the image MDC coding results.”
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