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Abstract—The problem of given a query vector finding its
nearest neighbor within a large set of vectors in high dimensional
space arises in many applications. It often poses serious compu-
tational challenges due to the size of data point set (database),
dimensionality of the search space, and the metric complexity.
There exists a wealth of results in the literature that reduce
complexity primarily based on altering the data set while still
computing the chosen distance metric to full precision. However
further significant simplification is attainable with our proposed
approach which reduces the search metric computation resolution
by applying non-uniform quantization within the metric compu-
tation process, in such a way that the minimum distance ranking
is most likely to be preserved. This paper provides analytical
and experimental studies of our proposed approach. We present
an analytical formulation of the search performance measure
that gives insight into understanding this approach. Based on
this formulation we present a quantizer optimized to minimize
the impact of quantization on identifying the nearest neighbor.
The main advantages of this approach are that: i) it can reduce
the number and complexity of required arithmetic operations
significantly, ii) complexity does not increase with the order
of lp norm or input bit size, and increases only slowly with
dimensionality, and most importantly iii) the penalty to be paid in
performance for the complexity reduction is very small if designed
optimally. Motion estimation and compensation for video coding is
chosen as an example application. Without requiring any filtering,
transform, or sorting process, using a simple hardware oriented
mapping, our experimental results show on average 0.05dB loss
using only 1 bit per pixel distance (0.01 dB when 2 bits are used)
instead of typical 8 or 16 bits metrics.

I. INTRODUCTION

Searching for the closest point in high dimensional spaces is
among the most fundamental problems in the study of searching
algorithms and it is central to a wide range of applications.
However, many real world search problems present serious
computational challenges as they involve high dimensional
search spaces with often largely varying non-deterministic
data sets. Many algorithms have been proposed to reduce the
computation complexity of these problems.

Most existing studies and algorithms focus on altering a data
set/database S so that only parts of the database are searched,
or only part of the query data is used for matching, using for
example data-restructuring [1] [2], filtering [3], sorting, sam-
pling [4] [5], transforming, bit-truncating [6] [7], quantizing [8]

etc. Many among these algorithms provide good reductions in
search complexity while maintaining acceptable performance.
Our work is based on the observation that further significant re-
duction in complexity is attainable by i) focusing on preserving
the fidelity of the minimum distance ranking instead of that of
source data S, and ii) reducing the search metric computation
resolution/precision instead of blindly computing the metric to
full precision. This is because the metric is computed only in
order to compare different candidate points; thus the metric
value itself is not important, as long as it still allows identifying
the candidate closest to the query vector.

In this paper, we introduce a novel approach based on
these observations by applying non-uniform scalar quantization
within the metric computation process. This approach leads to
significant complexity savings by reducing the number (e.g.,
total number of additions) and complexity (e.g., bit depth of
adders) of required arithmetic operations. More importantly,
these computational savings can have minimal impact on
performance since quantization is designed to preserve the
minimum distance ranking fidelity, rather than based on a
source data fidelity criterion. Finally, because the focus of our
proposed approach is not on modification of S but only on the
metric computation, it can be used in combination with other
existing approaches which efficiently exploits redundancies in
a data set S to further improve complexity reduction.

This paper provides analytical and experimental studies of
our proposed approach. We present an analytical formulation
of the search performance measure that provides insight into
understanding the impact of this approach on performance.
Based on this formulation we present a quantizer optimized to
minimize the impact of quantization on identifying the nearest
neighbor. As an example application, we apply our techniques
to the motion estimation process in video compression systems.

The rest of the paper is organized as follows. In Section II,
our proposed approach and its implementation are described in
detail. In Section III, we formulate the performance measure
of this approach and provide the optimal quantizer design.
In Section IV, detailed experimental results are provided to
validate our study and to demonstrate the performance of
our proposed approach when applied to motion estimation
process used in video coding system as an example application.
Concluding remarks follow in Section V.
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Fig. 1. Illustration of our proposed approach: (a) applying non-uniform
quantization within the Minkowski type metric computation architecture (b)
its equivalent form to (a).

II. PROPOSED APPROACH

The closest point search problem, or nearest neighbor search
(NN), is that of locating the data point inside a data set S in
metric space M that is closest to the given query point q ∈ M
based on the distance metric d : q × S → �. In many cases of
interest M is the k-dimensional Euclidean space �k.

NN(q) = {x̄ ∈ S|∀x ∈ S ⊂ M, q ∈ M : d(x̄, q) ≤ d(x, q)} .

The most commonly used proximity index is the Minkowski
metric. The Minkowski metric of order p (p-norm distance) for
measuring the dissimilarity between two k-dimensional data
points q and x, is defined as:

d(q, x) = (
k∑

j=1

|qj − xj |p)1/p

This metric computation comprises two basic processes, i) the
distance computation in each dimension (which we will refer to
as “dimension-distance”): distj(q, x) = |qj − xj |p and ii) the
summation of all such distances:

∑d
j=1 distj(q, x) followed by

1/p-th power computation at the final output.
Most approaches focus on the data set S in order to

achieve search complexity reduction. Popular techniques in-
clude searching a smaller number of candidates, computing the
distance metrics based on a subset of dimensions, or reducing
the accuracy of the representation of data in each dimension.
However further simplification is attainable when focusing on
preserving the fidelity of the minimum distance ranking. We
propose a novel metric computation method which achieves
this by applying non-uniform scalar quantization (where integer
values are assigned as reconstruction to each interval) on the
partial distance terms in each dimension, |xqj − xrj |p, prior
to the summation process (Fig. 1(a)), where the quantizer
is chosen with the goal to preserve as well as possible the
minimum distance ranking. We next evaluate the complexity
of this approach, while in Section III we develop the optimal
quantizer design to maximize performance.

A. Complexity

The proposed approach leads to complexity reductions in i)
the summation process after quantization (upper part of the
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Fig. 2. Diagrams of arithmetic circuits for (a) N-bit ripple carry adder and (c) 4
bit array multiplier. Tables (b),(d) provide the average number of transitions (a
measure of dynamic power consumption) and the number of gates (a measure
of circuit size, static power consumption) for various types of adders and
multipliers for different input bit sizes. [9]

dashed quantization line in Fig. 1(a)) and ii) the dimension-
distance computation process prior to quantization (lower part
of the line in Fig. 1(a)).

Fig. 2 provides useful insight to understand the computa-
tional complexity of the search at the circuit level [9]. Fig. 2
illustrates the structure of arithmetic circuits for a representative
adder (a) and multiplier (c), the size of which increases with
the input bit size. Figs. 2 (b), (d) essentially demonstrate that
the computational complexity, circuit size, static and dynamic
power consumption, computation delays of most basic arith-
metic elements including adder or multiplier are all directly
influenced by, and increase polynomially with, the input bit
size. Therefore quantization applied to partial distance terms
in each dimension, as shown in Fig. 1 (a), leads to significant
simplification of the summation process. Moreover, as will be
shown in Section IV for motion estimation in video coding,
very coarse quantization is possible (e.g., to 1 bit) leading
to much reduced complexity in the summation process while
leaving video coding performance nearly unchanged (average
0.05dB loss).

Moreover, quantizers can be designed in such a way that the
per dimension distance computation |qj − xj |p is not required
(Fig. 1 (b)). This is because both the quantizer thresholds {θ i}
and the query vector q are fixed for a given search query,
so that only the x ∈ S being tested for their proximity to
q vary. Therefore, candidate data x can be quantized directly
with a quantizer Q′ :

{
q ± θ

1/p
i

}
, which would lead to the

same result as computing |qj − xj |p followed by quantization
by Q : {θi}, but at a fraction of the complexity. Our proposed
metric computation d̄ can be represented as:

d̄(q, x) = (
k∑

j=1

Q(|qj − xj |p))1/p = (
k∑

j=1

Q′(xj))1/p

Fig. 1 (b) shows the metric computation architecture of pro-
posed method, which is considerably simplified but equivalent
to Fig. 1 (a). Fig. 3 illustrates the complexity increase as a func-
tion of the input bit size, dimensionality, and order p of metric
(p-norm distance) for both conventional and proposed metric
computations. We measure complexity in units of number of
full-adder operations (basic building blocks of arithmetic logic
circuits), under the assumption that n-bit addition, subtraction,
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metric computation vs. proposed distance quantization based lp norm metric
computation with relationship to the input bit size and dimensionality.

and absolute value operations have the same complexity and
that a square operation has equivalent complexity to that
of an n2-bit addition. For motion estimation example, the
dimensionality represents the number of pixels per matching
block while input bit size represents pixel bit-depth. Note that
the complexity of the proposed method remains constant over
different input bit sizes and lp norms, while it slowly increases
with dimensionality as compared to the conventional metric
computation.

This approach obviously imposes extra complexity for quan-
tization process. However, this quantization implementation can
be integrated with the following adder block such that its
overhead cost is kept negligible as compared to the complexity
reduction achieved elsewhere.

The complexity reduction comes at the expense of some
performance loss due to the quantization process. As expected,
there is a trade-off between complexity and performance such
that coarser quantization will lead to further complexity reduc-
tions, while increasing degradation in search performance. To
maximize the performance for a fixed number of quantization
levels or steps, it is critical to determine the optimal quantizer.

III. OPTIMAL QUANTIZER DESIGN

A. Performance Measure for General Search Algorithm
We first propose a cost function to quantify the difference

in performance between an arbitrary search algorithm and a
chosen benchmark search algorithm. This metric is based on
computing the average difference in distance between query
point and the (possibly different) nearest neighbors identified by
each algorithm. We denote the search dataset, a query, a metric,
and a resulting nearest neighbor data point of the benchmark
algorithm as S, q, d, and NN(q), respectively. We denote S̄, q̄,
d̄, and NN(q) similar quantities obtained for a different target
algorithm.

NN(q) = {x̄ ∈ S|∀x ∈ S ⊂ M, q ∈ M : d(x̄, q) ≤ d(x, q)}
NN(q) =

{
x̄ ∈ S̄|∀x ∈ S̄ ⊂ S, q ∈ M : d̄(x̄, q̄) ≤ d̄(x, q̄)

}
We define the search performance cost measure as1:

ENN = E
{
d(NN(q), q) − d(NN(q), q)

}
(1)

where the expectation is with respect to the query data when
S and S̄ are fixed, or with respect to the set

{
(q, S, S̄)i

}
i

otherwise. This equation can be further written as:

1Note that the benchmark algorithm is assumed to identify the nearest
neighbor for the given search, so that ENN is non-negative.

ENN =
∫

R+
µ̄(a) f̄(a)da −

∫
R+

a f(a)da (2)

where µ̄(a) = E
{
d(x, q)|d̄(x, q) = a, x ∈ S̄

}
, and minimum

distance distribution functions f̄(a) = Pr(d̄(NN(q), q) = a),
f(a) = Pr(d(NN(q), q) = a).

If the goal is to find a target search algorithm minimizing this
cost ENN , we only consider the first term of above equation
(which we denote as Ē), since the target algorithm affects only
this term.

Ē = E
{
d(NN(q), q)

}
=

∫
R+

µ̄(a) f̄(a)da (3)

B. Performance Cost Function for the Proposed Method

Our focus is not on modifying S or q but only on simplifying
the metric computation d by embedding a quantizer within
the Minkowski metric computation architecture. Thus, the
Minkowski metric (p-norm distance) becomes our benchmark
and we assume S̄ = S. Our goal to find the quantizer that, for
a given number of quantization levels N , can minimize ENN .
Instead of considering statistical information of x ∈ S and q
separately, our cost function is based on the statistical char-
acteristics of Y , a k-dimensional multivariate random variable
representing the input data on which a quantizer is applied:

Yi = (yi1, yi2, ..., yik) = (|q1 − xi1|p, |q2 − xi2|p, ..., |qk − xik|p)
We further denote quantized input as:

Zi = (zi1, zi2, ..., zik) = Q(Y ) = (Q(yi1), Q(yi2), ..., Q(yik))
Its corresponding benchmark and proposed target metrics are:

d(Yi) = (
k∑

j=1

yij)1/p d̄(Yi) = d(Q(Yi)) = (
k∑

j=1

zij)1/p

The number of candidates M and their dimensions k
are assumed to be fixed over the search process. We de-
fine a quantizer operating on y as a set of N non-
overlapping intervals that cover all possible values of y: S =
{sn; sn = [θn, θn+1) , n ∈ Φ}, where Φ is a set of consecu-
tive integers from 0 to N − 1, and {θn} is an increasing
sequence of thresholds. Therefore for all y ij ∈ sn, we assign
zij = Q(yij) = n, and the probability mass function (pmf)
pij and centroid µij of zij can be computed using fyij , the
probability density function (pdf) of y ij as:

zij = Q(yij) =
∑

n

n 1sn(yij) (4)

pij(n) =
∫

sn

fyij(y)dy, µij(n) =

∫
sn

y fyij(y)dy∫
sn

fyij (y)dy

We further denote the cumulative mass and centroid func-
tions of zij as Pij(n) =

∑sn

s0
pij(n) and Uij(n) =∑sn

s0
pij(n)µij(n).

We first consider a simple case with M random samples from
a k-variate distribution fY with iid dimensions, i.e., all yj fol-
lowing the same pdf fy and are independent of each other. The
k-dimensional space can be partitioned into hypercubes through
quantization, so that each input sample Y = (y1, y2, ..., yk) falls
into one of the hypercubes. Each hypercube can be represented
by a vector Z = (z1, z2, ..., zk) = (Q(y1), Q(y2), ..., Q(yk))
and all zj have the same pmf p and the same centroid function
µ. Each hypercube Z can be described by i) a probability mass
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MZ , ii) a centroid CZ , and iii) its corresponding total metric
SZ :

MZ =
∏
j

p(zj), CZ =
∑

j

µ(zj), SZ = ‖Z‖1 =
∑

j

zj

The pmf P‖Z‖1
represents the probability of a sample Y falling

in one of the hypercubes having a given SZ :

p‖Z‖1
(x) =

∑
‖Z‖1=x

MZ =
∑

‖Z‖1=x

∏
p(zj) = p∗k(x)

where p∗k is the k-fold power convolution of p. Note that our
ultimate goal is to minimize the cost function Ē in Eq.(3):

Ē =
∑

a

µ̄(a)p̄(a), (5)

where p̄ is the pmf of the minimum SZ value among M samples
of Y :

p̄(a) = (
∞∑

x=a

p‖Z‖1
(x))M − (

∞∑
x=a+1

p‖Z‖1
(x))M

p̄ = ∇(P̂‖Z‖1
(a))M

and where ∇ is a backward difference operator and we define
a reverse cmf P̂ (x) = 1 − P (x) = Pr[X ≥ x].

µ̄(a) is the centroid of all hypercubes with the same SZ = a.

µ̄(a) =

∑
‖Z‖1=a MZCZ∑
‖Z‖1=a MZ

µ̄ =
k p∗(k−1) ∗ (pµ)

p∗k

The above formulation assumes p=1. Alternatively it would
be valid for cases when the benchmark metric does not include
1/p-th power computation, as is the case in most real search
applications. Otherwise, redefining CZ as CZ = (

∑
j µ(zj))

1
p

allows us to use the same procedure.
Extending this to the more general case, we can consider

candidates Yi to be drawn each from different fYi ; similarly
we can consider that the of each vector dimensions have non-
identical distributions. However we assume that vector data is
independent across dimensions and that candidates with similar
distance in terms of the benchmark metric d also share a similar
distribution. We denote fλ(λ) = Pr(d(x, q) = λ, x ∈ S),
a distribution of M candidates Yi in terms of benchmark
distance (λ). Representing candidates having same λ as Yλ =
(yλ1, yλ2, ..., yλk) with yλj following a pdf fyλj

, we have
Zλ = (zλ1, zλ2, ..., zλk) with zλj following a pmf pλj and

its centroid function µλj . Thus, for each hypercube Zλ,

MZλ
=

∏
j

pλj(zλj) CZλ
=

∑
j

µλj(zλj) SZλ
= ‖Zλ‖1

We define a new operator
∏m

i=n p∗i ≡ pn ∗ pn+1 ∗ · · · ∗ pm

with which we represent p‖Zλ‖1
as,

p‖Zλ‖1
(x) =

∑
‖Zλ‖1=x

MZλ
p‖Zλ‖1

=
k∏

j=1

p∗λj

Consequently, p̄ and µ̄ of Ē =
∑

a µ̄(a)p̄(a) becomes

p̄ = ∇(Eλ[P̂‖Zλ‖1
(x)])M

µ̄ = Eλ[
k∑

i=1

(
1..k∏
j �=i

p∗λj) ∗ (pλiµλi)/p‖Zλ‖1
]

Given the cost function quantifying the performance loss,
our goal is to find a quantizer that leads to the minimum Ē.
Considering the case when data is assumed to be iid across
dimensions, for a given input distribution fy, a quantizer is
uniquely defined by two vectors µ, p ∈ �N , where p satisfies
the probability axioms (i.e., it is uniquely defined given the set
of centroids and the probability masses of each quantization
bin.) Note that given fy , Ē is a function of p. Note also that
Ē can be represented in terms of P and U , defined previously
as cumulative mass and centroid functions of zj , where P ∈ C
such that Ē(P ) : �N �→ � and C is a convex subset of �N ,
C =

{
x|xi ≤ xi+1, 0 ≤ xi ≤ 1, ∀i, x ∈ �N

}
. It can be shown

that
Ē(P̂ ) ≥ Ē(P ) + (P̂ − P )′∇Ē(P ), ∀P̂ , P ∈ C

where a gradient of Ē: ∇Ē(Fz) = (∂Ē(P )
∂P (0) , · · · , ∂Ē(P )

∂P (N−1) )
′,

proving that Ē is convex over C.
Therefore, finding the optimal quantizer can be formulated

as a constrained convex optimization problem with the goal to
minimize Ē(P ) subject to P ∈ C. The global minimum value
represents the optimal performance attainable given input distri-
bution and can be obtained using standard convex optimization
techniques. From the P vector corresponding to the global
minimum, the optimal quantizer can be uniquely determined.

For more general situation considering different statistical
distribution for candidates as well as dimensions with Ē
function shown above, essentially similar procedure can be
developed and optimal quantizer can be found using standard
optimization techniques.
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IV. MOTION ESTIMATION EXPERIMENTS

In this section, our proposed approach and its analytical
study are applied to motion estimation (ME) process used in
video coding system as an example application. Experimental
results are provided to validate our study and to demonstrate the
performance of our proposed approach. Various sequences were
tested for simulation using a H.264/MPEG-4 AVC baseline
encoder with 16×16 block partitions (256 dimensional vectors),
a single reference, full pel resolution search, 8-bit depth pixel,
and l1 norm (sum of absolute difference) for search metric, and
the search window of ±16 resulting a data set size of 1089.

Statistical characteristics of general ME input data show
input dimension distances (pixel distances) to have approx-
imately independent identical distributions while distribution
varies with different candidates (distant candidates showed
higher variance than nearer ones). Therefore p̄ and µ̄ of the
cost function Ē =

∑
a µ̄(a)p̄(a) in Eq. (5) for the general ME

data becomes:

p̄ = ∇(Eλ[P̂‖Z‖1
(x)])M µ̄ = Eλ[

k p∗(k−1) ∗ (pµ)
p∗k

]

Fig. 4 illustrates the trade-offs between complexity and
performance for proposed and three different representative
scenarios. Other sequences tested showed similar results. The
proposed approach provides a better trade-off and can also be
used together with most of other existing algorithms to further
improve the complexity reduction.
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Fig. 7. Rate distortion performance of full metric computation and proposed
1 bit quantization based method with three different thresholds: each one is
optimal in i) overall coding efficiency (dB), ii) ENN measure, and iii) our
proposed cost model based quantizer. Other sequences showed similar results.

Fig. 5 (Left) compares our cost function Ē with the expected
performance error collected from numerically simulated experi-
ments for different input distribution settings fy . As the number
of experiments increases, expected error converges to our cost
function, confirming the accuracy of our Ē formulation. Fig. 5
(Right) compares our cost function based on the collected ME
data with simulated experiments.

Fig. 6 and Fig. 7 compare the performances of our proposed
method with three different thresholds each of which minimizes
overall coding efficiency, ENN measure, and our proposed
cost model. These results clearly show that quantizers obtained
by optimizing our simplified cost function can achieve near
optimal performance. Fig. 6 also provides some insight about
the sensitivity of optimal threshold to input variation. Despite
large variation of the input source characteristics, dimension-
distances where quantization is applied exhibit more consistent
statistical behavior, leading to overall robustness in our quan-
tization method.

V. CONCLUSION

We introduced a novel approach to the nearest neighbor
search problem achieving significant computational complexity
reduction by applying non-uniform quantization within the
metric computation. We provide an analytical formulation of
the search performance measure, based on which the optimal
quantizer is designed to maximize the fidelity of the minimum
distance ranking.
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