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Abstract

In this paper, we study construction of structured regular quantizers for overcomplete expansions in RY. Our goal is
to design structured quantizers which allow simple reconstruction algorithms with low complexity and which have good
performance in terms of accuracy. Most related work to date in quantized redundant expansions has assumed that the
same uniform scalar quantizer was used on all the expansion coefficients. Several approaches have been proposed to improve
the reconstruction accuracy, with some of these methods having significant complexity. Instead, we consider the design of
scalar quantizers with different stepsizes for each coefficient of an overcomplete expansion in such a way as to produce an
equivalent vector quantizer with periodic structure. The construction of a periodic quantizer is based on lattices in RY and
the concept of geometrically scaled-similar sublattices. The periodicity makes it possible to achieve good accuracy using

simple reconstruction algorithms (e.g., linear reconstruction or a small look-up table).
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I. INTRODUCTION AND MOTIVATION

Quantized redundant expansions are useful in different applications such as oversampled A /D conversion
of band-limited signals [1, 2, 3, 4, 5] and multiple description quantization [6, 7, 36, 37]. In the first case, the
purpose of using redundant expansions is to attain accurate digital signal representations under scenarios
where the cost of using high rate quantization is much higher than that of having a high oversampling or
redundancy. The most important case is the analog-to-digital conversion of band-limited signals, where
in order to use high rate quantization to discretize the amplitude it is necessary to use expensive high
precision analog circuitry. Instead, accuracy is attained by performing oversampling and exploiting this
redundancy to reduce the loss of information caused by low resolution quantization. Some other systems
have been proposed in the context of pattern recognition for images, where overcomplete transforms are
used to emulate the human visual system, which has a high degree of oversampling in orientation and scale
[8, 9]. Moreover, an increase in resolution due to angular oversampling in the frequency domain has been
observed experimentally for quantized (two-dimensional) steerable transforms [10], so that increasing the
number of orientations yields a gain in energy compaction [11]. Quantized overcomplete expansions also
arise in the context of joint source-channel coding for erasure channels [6, 7, 36, 37].

There are two major factors that determine the accuracy that can be attained using quantized overcom-
plete expansions: the reconstruction algorithm and the quantization scheme. There has been extensive
research work aiming at finding reconstruction algorithms that are optimal or near optimal in terms of
asymptotic (large redundancy values) accuracy. However, the quantization scheme has been always as-
sumed to be a uniform scalar quantization with the same stepsize for all expansion coefficients. In this
paper, we explore efficient quantization designs for overcomplete expansions.

Reconstruction algorithms have been studied following two main approaches. The first one is based on
modeling the quantization noise as an additive white noise uncorrelated with the signal that is quantized.

These models are sometimes convenient for analysis and lead to useful results in some scenarios [12, 13].
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It can be shown that if a white noise model is assumed for the scalar quantization noise of the coefficients
and the same stepsize is used to quantize all the coefficients, the optimal reconstruction is given by the
usual linear reconstruction [14], where linear reconstruction consists of first projecting the signal into a set
of vectors (with cardinal larger than the dimension) obtaining a set of coefficients, and then reconstructing
by taking a simple weighted average of these coefficients. Thus, in practice, linear reconstruction is always
used when the assumptions leading to this analysis are valid. In the context of tight frames, an important
class of overcomplete expansions, theoretical analysis shows (under this quantization scheme and stochastic
model) that linear reconstruction [14] gives a reduction in the power of each noise component (quantization
noise of each projection or coefficient) that is proportional to the redundancy r of the tight frame. The
same decay of the M SE in the signal domain can be shown theoretically in the cases of tight frames in R,
Weyl-Heisenberg frames in ¢?(Z) and in classical oversampled A /D conversion with uniform sampling and
linear reconstruction (tight sinc frames) where M SE = % [12]. The behavior of the MSE = O(1/r) is
observed experimentally when uniform quantization with the same stepsize is used and the stepsize is small
enough so that the white noise model approximately applies. One of the reasons for linear reconstruction
not to be optimal in some cases is that the reconstructed signal may not be consistent with the original
signal in the sense that the output obtained from requantizing the reconstructed signal is different than
the output obtained when quantizing the original signal, implying a larger reconstruction error on average.
On the other hand, it has not been studied whether using a more intelligent quantization system allowing
in general different stepsizes to quantize the coefficients can lead to improvements in the rate-distortion
performance when reconstructing with a linear reconstruction algorithm. This is one of the issues that is
addressed in this paper.

The second approach is completely based on a deterministic analysis of the quantization noise. This
deterministic approach was introduced by Thao and Vetterli [4] and later extended in [1, 3, 5]. This
deterministic analysis based on hard bounds of the quantization noise led to two non-linear reconstruction
algorithms for frames in RY, one based on projection on convex sets theory (POCS) [15, 4, 17, 1§]
and the other one based on linear programming (LP) [5]. The main result is that these reconstruction
algorithms ensure that the reconstruction vector falls always inside the same cell as the input vector.
These reconstructions are called consistent and in quantization terms this means that the equivalent
quantizer is regular. It was observed experimentally that for high enough redundancies r and for uniform
quantization of all the frame coeflicients consistent reconstruction algorithms have an asymptotic M SE
behavior of O(1/r*). Moreover, Thao and Vetterli proved (under some mild conditions) that consistency
guarantees this asymptotic behavior for high enough redundancies r for the case of oversampled A/D
conversion of T-periodic bandlimited continuous-time signals, which can be viewed as a frame expansion
in RV with respect to a certain DFT-like frame. Later, Cvetkovié¢ [1, 2] proved this fact under some
mild restrictions for overcomplete expansions in RY in general. Cvetkovié proposed a more efficient

reconstruction algorithm called semilinear reconstruction algorithm which also attains asymptotically an
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accuracy of O(1/r?) without satisfying consistency. This algorithm is based on the positions of the
threshold crossings and identifying a good linear system to solve. Moreover, Cvetkovi¢ and Daubechies
extended this idea to be used in the context of single-bit oversampled A /D conversion where a deterministic
dither is used in order to force threshold crossing locations with certain properties which allow exponential
accuracy in the bit-rate [16]. Recently, Rangan and Goyal [19] have proposed a recursive algorithm using
subtractive dithered quantization which also attains asymptotically an accuracy of O(1/r?), again, without
ensuring consistency.

The crucial observation that motivates our work is that in all the previous work a very simple quantiza-
tion scheme has been assumed which requires sophisticated reconstruction algorithms [15, 4,17, 18,19, 1, 2]
in order to improve its accuracy with respect to the classic approach [14] (simple quantization and linear
reconstruction). Instead, in this paper, we pose the following question: are there quantization schemes
where there is no difference in performance between using simple reconstruction algorithms (e.g., linear or
of similar complexity) and more sophisticated reconstruction methods? Although all the improved recon-
struction algorithms that have been proposed so far can achieve very good accuracy, the computational
complexity of these methods (although different in each case), for a given redundancy, is higher than that
of linear reconstruction [5, 4]. Since simple reconstructions (e.g., linear or look-up table) are normally
preferable in practical scenarios, in our work we assume that a simple reconstruction will be used and
the main focus is to explore whether better quantization designs, e.g., using different stepsizes, may have
the advantage of achieving a performance which is superior with respect to simple quantization methods,
e.g., using the same stepsize. In other words, our goal is to provide the tools to design the overcomplete
expansions and the corresponding quantization system so that the overall system behaves like a regular
quantizer and achieves the best possible performance using simple reconstruction algorithms. Designing
the quantization system with a structure that forces consistency, using the usual linear reconstruction,
may result in worse performance, in terms of rate distortion, than a different system whose structure
results in inconsistency. However, we will show that because of the periodic structure of the quantization
system, very simple reconstruction techniques (e.g., those based on a look-up table) can be designed which
significantly outperform linear reconstruction.

The fundamental idea we use in order to achieve this goal is to design jointly the overcomplete expansion
together with the quantization system by choosing carefully the stepsizes of the scalar quantizers so that
the whole system is equivalent to a vector quantizer in RV with a periodic structure. First, we define
an equivalent vector quantizer given a quantization scheme and a reconstruction algorithm. Then, based
on this equivalence, we introduce the concept of periodic quantizers and show how to construct and
design periodic quantizers. This periodic structure can be conveniently characterized and parameterized
in terms of lattices and sublattices. Next, we explain the advantages that are provided by this periodic
structure and show how the periodic structure in the equivalent vector quantizer is a necessary condition

to achieve consistency under the usual linear reconstruction. Once a periodic structure is present, the
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number of different cells of this vector quantizer becomes finite and although a sufficient condition can
not be expressed formally, it is very simple to check whether consistency is satisfied or not. For a given
family of vectors and a set of different stepsizes which yield a periodic vector quantizer in RY, it is
possible to reconstruct by using a small look-up table, where the reconstruction vectors can be chosen to
be the centroids of the cells with respect to a uniform distribution. Moreover, it is also possible to design
systems such that the equivalent vector quantizer has some additional symmetry which allows to use a
very simple improved linear reconstruction. Qur system provides excellent performance while having the
same complexity as linear reconstruction, but is more suitable to be used in RV for low to moderate values
of the dimension N and for low values of redundancy [20, 21]. Although we present examples and results
for small redundancies, it is clearly shown that the basic theoretical idea of periodicity can be extended
to higher redundancies and that the problem of finding good quantizers with higher redundancies consists
of searching for good lattices and sublattices with certain properties. Extensions to higher dimensions
have been analyzed by Sloane and Beferull-Lozano recently and can be found in [22]. On the other hand,
although we believe that multiple description coding is also a potential application of our framework, we
have not explored this application in this paper.

This paper is organized as follows. In section II we define the equivalent vector quantizer and the
property of consistency. Section III describes the construction and design of periodic quantizers in terms
of lattices. In section IV, it is first shown that the periodic structure in the equivalent vector quantizer is a
necessary condition to achieve consistency under the usual linear reconstruction, and then, low complexity
reconstruction schemes in periodic quantizers are analyzed. Finally, numerical results for some specific
designs in R? are shown in section V as well as a simple direct application of our designs in R? to

oversampled A /D conversion of sinusoid signals.

II. LINEAR RECONSTRUCTION, EQUIVALENT V(Q AND CONSISTENCY

In this section, we first review the basic concept of a tight frame in RV, and express a linear recon-
struction in terms of an equivalent vector quantizer (EV @), which can be parameterized in terms of

lattices.

A. Linear reconstruction in tight frames without quantization

For the sake of clarity, we review briefly the definitions and main properties of tight frames.
Definition 1: Let ® = {p,}M, C RY where ||p;]| =1, Vi=1,---,M. ® is called a frame if there
exist A >0 and A < B < oo such that

M
Allz|* <> K@, @) < Bllzl’, Ve eRY. (1)

i=1
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A and B are called lower and upper frame bounds. Given a frame ®, the associated frame operator

F:RYN — RM is given by an M x N matrix defined as:

F=(p105-- )"

(2)
y, = (Fz); = (x,0;) =pjx VzeRY
Definition 2: The minimal dual frame of ® is defined as & = {@;} M, where:

Definition 3: A frame ® is called a tight frame if A = B, that is, if the lower and upper bounds are
equal.
The following properties are satisfied for a tight frame:

1. The minimal dual frame & of a tight frame & is given by:

. 1 . . M

@i = Vi=1,---,M w1thr=W (4)
and the redundancy r of the tight frame is equal to the frame bounds, that is, r = A = B.
2. V z € RV, the expansion with respect to the frame ® = {¢,}, whose coefficients have the minimum
possible norm (most economical expansion), is given by:

M M

2= (@, E)ei = - D (@ 0)e: (5)

i=1 i=1

In this section we restrict the discussion to the case of tight frames that are composed by a set of

r > 1 different orthogonal bases. This is done without loss of generality for purposes of clarity because
the geometric analysis is much simpler. Extensions to generic frames are simple and can be obtained
by using in the reconstruction the corresponding dual frames, which will be different in each case. With
this restriction, we can group the vectors {¢,;}M, that compose the tight frame as {{?}XY, }i—1, where
{@I}N | is the j-th basis.
Remark on Notation: In this paper, we make an extensive use of superscripts and subscripts. For
instance, in a tight frame composed of r orthogonal bases, the superscript j € Z indicates the j-th basis
and the subscript ¢ indicates the i-th vector of the j-th basis. Also, in order to avoid confusion with the
superscripts, to represent a number b raised to the power of e (e being any real number), we will use (b)¢,
and we will use b° for indexation (e-th element), with e € Z ..

For the sake of simplicity, we restrict most of the equations and expressions of this section, without
any loss of generality, to the case of R2. For N = 2, the frame contains M = 2r unitary vectors that
form r orthogonal bases and the frame operator can be written as F = [plplp2ps--- Tt If we
define each orthogonal matrix F? as F? = [pl3]7, then we call 3/ = [y?, 53] the 2-dimensional vector
of coefficients associated with the j-th basis, which is given by y? = F/z. The M-dimensional vector of

coefficients y = Fz will be expressed as y = [y}, y3,v%,y2,---, 47, y5]7.
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Fig. 1. Definition of the EVQ in R? for a tight frame based on the linear reconstruction given by the minimal dual frame.

A similar definition for the EV @ can be given for any general linear reconstruction algorithm.

B. Equivalent Vector Quantizer (EV Q) for linear reconstruction

Assume that scalar quantization is applied to the frame coefficients. Let SQ{ be a uniform scalar
quantizer with stepsize Af and decision points {mAg}meZ. This is a particular choice without any loss
of generality, that is, what follows is also valid for scalar quantizers with decision points {(m + %)AZ Ymez
where 0 is a reconstruction point.

Then, we define SQ} x SQI x --- x SQ7 x SQ% as an M-dimensional product scalar quantizer (PSQ)
applied to the M-dimensional vector of coefficients y, i.e., each of the components of the vector y are
quantized by a corresponding scalar quantizer (see Fig. 1).

Given a tight frame ® and a PS(@Q, we define the following quantizer:

Definition 4: A quantizer Q7, 1 < j < r consists of:

1. A set C7 of rectangular quantization cells induced by the scalar uniform quantizers {SQ{, SQ%} which
are applied to the frame coefficients associated with the j-th basis.
2. A mapping Z> — R? from the set of cells C? to a set of reconstructions (outputs) O’ such that Vx
satisfying miA{ < SQ{((w,cpf) < (m; + I)Ag, 1 = 1,2 the reconstruction vector is given by

2 2

¥ = Q@) =) SQi((w,eD)el,  SQIB) = QAEJ + %) Al =al=3 (mi + %) Alpl.

i=1 i i=1 ©)

The stepsize associated with the scalar quantizer SQ{ is denoted by Af . The vertices of the cells C7
form what is called a real 2-dimensional lattice.

Definition 5: A N-dimensional lattice A is a discrete subgroup of RN which is defined as the set of

points obtained by taking integral linear combinations of N linearly independent vectors:
A={z:z=wa +waz+---+uyay, u;€Z, i=1,...,N} (7
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Fig. 2. a) Example of the convex polytopes CFV@ in R?, b) (Zoom) Example of outputs for the quantizers Q', Q% and
the EVQ when linear reconstruction is used. The partial reconstructions &/, j = 1,2 are represented by ’+' and the final
reconstruction & is represented by 'o’. The final reconstructions are obtained by taking the halfway point between &' and
&2, that is, & = %(:ﬁl + :ﬁ2). Two reconstructions are shown, each reconstruction corresponding to the case where the
original vector & is in each of the two EVQ cells indicated with the bold line. & is a consistent reconstruction and &' is an

inconsistent reconstruction.

The set of vectors {a;}Y, are the generator (basis) vectors of the lattice and the matrix M, =
(ai|as]---|an)? is called the generator matrix of the lattice. Thus, the vertices of the cells C7 form a
lattice A7 having generator matrix M ; = (A7 7 |A%@3)T. Because of the orthogonality, the basis vectors
of the lattice point in the same directions as the unitary vectors that compose F7, but in general, it is
clear that this is not the case when the tight frame is not composed by a set of orthogonal bases, as we
will see in section III. There are an infinite number of possible (minimal) bases that can be used for this
lattice. We will always use, as a basis for the lattice A7, the j-th orthogonal basis {cp{, <p%} In this way,
the outputs of quantizer ()7 can be expressed directly in terms of the generator matrix M ,;. Notice that
the cells associated with the quantizer Q7 are convex polytopes whose vertices are all in the lattice AJ.

Given a set of quantizers 7, j = 1,-- -, r, defined as above, we now introduce the concept of Equivalent
Vector Quantizer (EV Q) as follows:

Definition 6: An EVQ consists of:

1. A set of quantization cells formed by the intersection of the rectangular cells {C? “—1 of the quantizers
{Q7 )1

2. A mapping R2 — R? from the set of cells to a set of reconstructions given by:

1<~ . ) )
E=- t?  wh &' = Q' (x). 8
&= J:le where & = Q7 (x) (8)
Thus, the linear reconstruction, as represented in Fig.1 and shown in Fig. 2(b), consists of taking the

geometrical average point among the different reconstructions &, j = 1,---,r.
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The PSQ in RM leads to an EV(Q in R? and the output of the EVQ can be written as a linear
combination of the outputs from each 2D quantizer ()7 where it can be seen that the set of outputs
(reconstructions) of quantizer Q7 forms a coset of the lattice AJ. Fig. 2(a) illustrates the partition

generated by the EV (@ for an example where r = 2, and the tight frame and associated stepsizes are:

1 0
0 1
F- Ab=ZAL A= oAl A3 = Al o)
cos(%)  sin(%) 5 10 8
—sin(%) cos(%)

Fig. 2(b) illustrates how the final reconstruction vector & is obtained. Notice that since the cells C7
generated by the quantizer Q7 are convex polytopes, the cells CEVQ = CA' 0 ... N CA" corresponding
to the EV(Q are intersections of convex polytopes, and therefore are also convex polytopes in R?. Tt
is important to notice that in general the EV (@ is not necessarily a Voronoi or nearest neighbour vector
quantizer, and although its cells are convex polytopes, they are not in general (minimum distance) Voronoi
cells. For a cell to be a Voronoi cell, it would be required that any point contained in that cell be closer to
the centroid of that cell than to the centroid of any other cell. This is not satisfied in general because these
cells are obtained as the intersection of cells of the (nearest neighbour) quantizers {Q7}}_; used in each of
the basis, rather than as the nearest neighbor regions for each reconstruction vector. In other words, the
intersection of nearest neighbour quantizers does not result in general in a nearest neighbour quantizer.
Therefore, we will refer to EV Q) cells instead of Voronoi cells. In general, for a given redundancy r, &
is obtained by averaging over the r linear reconstructions & j = 1,---,r given by the corresponding
quantizers Q7 j =1,---,7.
Remark: The concept of EV (@ can be actually defined for any reconstruction algorithm, not necessarily
only for the linear reconstruction algorithm using the minimal dual frame as described above. However,
for clarity, we have restricted in this section the definition and concepts to this particular case. For any
other reconstruction algorithm, the definitions 4 and 6 should be modified so that the set of reconstruction
vectors are the ones given by the particular reconstruction algorithm that is used.

Another concept that will be used in some of the next sections is the concept of fundamental polytope.

The fundamental polytope CJ associated with the lattice A7 is defined by:
Cl={x:z=oAlpl + ALl 0<a;<1, i=1,2} (10)

which is the parallelopiped formed by the basis vectors of the lattice A7. The area of this fundamental
polytope is equal to |det(M ;).

C. Property of Consistency for a generic reconstruction algorithm

Although the concept of consistency was introduced in [4], for the sake of clarity and because it is a

central concept for this paper, we review it here. Given a tight frame ®, constructed by using r > 1
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orthogonal bases, it is desirable to design an EV @, such that if x is the original vector and & is the
reconstructed vector, both  and & fall in the same EV(Q cell. The reconstruction vectors & satisfying
this property are called consistent reconstructions of x.

Given a frame operator F' and a generic PSQ, the concepts of consistency and linear consistency for
an EVQ cell CZE VQ, are defined as follows:

Definition 7: Consistent cell: Let CiEvQ be a cell in an EVQ, and & its reproduction vector. CiEVQ
1s said to be consistent if & € CZ-EVQ.

For the particular case of using a linear reconstruction, the definition of linearly consistent cell is:

Definition 8: Linearly Consistent cell : Let C’iEVQ be a cell of an EV Q. Cz.EVQ is said to be linearly
consistent if it is consistent under linear reconstruction, where the linear reproduction vector is given by
& = % 22:1 @

Remark: As before, the definition of linear consistency can be extended to any general linear recon-
struction algorithm, not just the linear reconstruction given by the minimal dual frame.

An EVQ is said to be consistent if and only if all its cells CEV? are consistent. Similarly, a general
reconstruction algorithm that gives rise to a consistent quantizer is called a consistent reconstruction
algorithm. In particular, a quantizer which satisfies consistency under linear reconstruction is said to be
linearly consistent.

Given an EV @, the optimal reconstruction for any cell is obviously inside that cell, that is, the optimal
reconstruction is always a consistent reconstruction®. Since an inconsistent reconstruction & is outside
the cell corresponding to the original signal @, as opposed to a consistent reconstruction, consistent
reconstructions will yield smaller squared distortion (M SE) than inconsistent reconstructions on average
for a given EV Q. In our work, the goal is to find a set of EV @Q’s for which it is possible to have consistent
reconstructions with simple reconstruction algorithms.

Fig. 2(b) shows examples of both consistent and inconsistent cells assuming linear reconstruction. One of
our goals in this paper is to design quantization techniques such that all EV @ cells are linearly consistent.
Fig. 3(a) and Fig. 3(b) provide a simple and intuitive example that illustrates how linearly consistent
EVQ cells can be achieved by choosing scalar quantizers with different stepsizes for each of the r = 2
bases. It can be seen in Fig. 3(b) how the intersection between cells of Q! and cells of )? is the same across
all the partition of the EV Q). As will be explained later, the crucial idea on how to achieve consistency
with low complexity reconstruction algorithms is to enforce a periodic structure on the partition defined
by the EV(@Q, as in the example of Fig. 3. Intuitively, the stepsizes selected will depend on the angle
between each of the bases. Fig. 4 shows a second example where consistency is achieved by creating a

periodic structure.

1This statement holds because the EVQ cells are convex.
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Fig. 3. Example for r = 2 showing how the consistency problem can be solved by choosing carefully a certain frame and a
set of different stepsizes: a) using the same stepsizes gives rise to inconsistent cells, one of them is indicated with a circle;

b) choosing different stepsizes in each basis yields a consistent EV Q.

ITI. CONSTRUCTION AND DESIGN OF QUANTIZERS WITH PERIODIC STRUCTURE

We call the type of quantizers shown in Fig. 3 “periodic quantizers” because the partition they generate
has a periodic structure. We derive in detail how to design such quantizers in this section. The construction
that we give in order to achieve periodicity is completely general. However, we provide designs only for
redundant families (frames) of vectors with a certain constrained structure. More specifically, we give
designs mostly for the case of having r orthogonal bases in R2. Some designs extensions for R? are given
in section III-E where several examples are given, and extensions to higher dimensions are analyzed in

section ITI-D.

A. Definition and Construction of periodic EV Q’s for R?

In order to facilitate the understanding, we first provide a detailed derivation of how to impose a
periodic structure in EVQ’s in R? for the case of redundancy 7 = 2. Then, we extend the idea to higher
redundancies also in R?, and, finally, we explain how to obtain periodic structures in higher dimensions.

In designing an EV @ with a periodic structure, we will use the concept of sublattice.

Definition 9: (/23]) A sublattice A; € A of a given lattice A is a subset of the elements of A that is
itself a lattice. A sublattice As is completely specified by an invertible integer matriz Ba, that maps a
basis of A into a basis of As, that is, M n, = By, M, where M, and M are the generator matrices
of Ag and A respectively.

Given a real full rank lattice? A with generator matrix M, we consider only full rank sublattices A,
that is, rank(M ) = rank(M,,). Another important concept is that of the index of a sublattice A

2A is said to be a full rank lattice if its generator matrix M, is full rank.
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(a) (b)

Fig. 4. a)Example of a linearly consistent quantizer EVQ, b)(Zoom) 4 cells of @'. The reconstructions &/, j = 1,2 are

represented by '+’ and the final reconstruction & is represented by ’o’.

contained in a lattice A which is given by:

det(My,) _ Vol(Ch+)

A/l = det(My) — Vol(Ch)

= |d€t(BAs)

(11)

The index of a sublattice is the ratio of the volumes of the fundamental polytope associated with the
sublattice A; and the one associated with A. This is also equal to the number of lattice points of A
contained in each cell defined by As;. Notice that in the particular case of having an integer matrix B,
such that |det(By,)| = 1, A and A, are the same lattice. This particular type of integer matrices satisfying
this property are called unimodular matrices and by taking different unimodular matrices one can obtain
different generator matrices for the same lattice.

We introduce the concept of geometrically scaled-similar sublattices from which we build periodic tes-
selations.

Definition 10: Given a real lattice A in R2 with generator matriz My, a lattice A’ is geometrically

scaled-similar to A iff:

C1 0
My = UM,\R, (12)
0 C2

where R is a 2 X 2 orthogonal matriz, that is, a rotation and/or a reflection in R?, U is a 2 x 2 unimodular
integer matriz, and c1,c2 € R, .

If A’ is geometrically scaled-similar to A and is also a sublattice of A, then we denote it by SA. Note that
this can only be true for specific values of ¢;, ¢co and R. Thus, a geometrically scaled-similar sublattice SA
of a lattice A is obtained by simply rotating and/or reflecting the lattice A and then scaling each of the

new axes. The matrix U allows us to choose different basis vectors for the sublattice SA. If det(R) = +1,
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(a) (b)

Fig. 5. Example 1: a) Sublattice structure b) EVQ cells CFV <.

then R is a pure rotation, and the scaling parameters ¢; and c2 allow to control the magnitudes in each
of the 2 vectors that define its basis. If det(R) = —1, then R contains or is a reflection. The possible
orientations and values for ¢; and c2 that determine a geometrically scaled-similar sublattice will be given
in section ITI-B. Notice that in the particular case of having ¢; = ¢2, SA would be a geometrically similar
(or equivalent) sublattice of A, as defined by Conway et al. [24, 23]. We restrict R to be a pure rotation
so that we can associate each rotation with a basis of a frame, as we explain next. Fig. 5(a) shows an
example for a redundancy r = 2 of a geometrically scaled-similar sublattice of a rectangular lattice.

Without loss of generality, in the following we will construct geometrically scaled-similar sublattices of
a canonical lattice A, where A! has generator matrix:

My = Ar 0 (13)
0 Al

that is, the generator vectors of Al are scaled versions of the canonical basis vectors ¢} = [1,0]T, @3 =
[0,1)F (F1 = I1,2). We define the quantizer Q! as the quantizer with rectangular cells CA' whose vertices
are given by the lattice A'.
Notational Remark: In order to distinguish between the cells associated with a lattice A7 or a quantizer
Q7 and the cells associated with a sublattice SAY C A7, we will use the following notation: a) C' will
denote the set of cells associated with A7 and @7, where we use now C’ instead of C in order to emphasize
that these cells are associated with the lattice A7; b) CSN will denote the set of cells associated with
SAJ. The subscript will indicate in both cases a particular cell.

Definition 11: Periodicity Property: An EV Q is said to be periodic if the partition of the space given
by its quantizing cells satisfies the following two properties:

1. There ezists a minimal periodic unit CEVQ which is the union of a finite set of cells {P1,...,Pm}.
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2. There exists a lattice A which determines this periodicity such that all the cells of the EV Q are given
by {P1,...,Pr} + A, that is, copies of the minimal unit CEV? translated by the points of A.

Fig. 5(b) shows the unit cell C¥V? with bold lines for a particular EVQ with redundancy r = 2.

The periodicity structure is achieved by finding lattices whose intersection is not empty, which involves
the concept of sublattice.

Fact 1: If A, is a sublattice of A', the partition defined by the intersection of the cells CM' with the cells
determined by A has a periodic structure (tesselation) with the minimal periodic unit given by cA HCQS,
where C2s is the fundamental polytope associated with the sublattice Ay and the whole tesselation is
obtained by translating the cells cAn C2s with the points of A,.

Proof: See Appendix 1.

This fact can be observed in Fig. 5(a) where in this case, the sublattice is a geometrically scaled-similar
sublattice. In this work, we use Fact 1 for the particular case where the sublattices are geometrically-scaled
similar.

Definition 12: Given a set of lattices A7, j = 1,---,r, the coincidence site lattice (CSL) AT is the
intersection lattice:

ACSE = A'NAZN---NAT, (14)

which is the finest common sublattice of all the lattices A, j =1,---,r.

In order to achieve periodicity, our goal is to construct a set of lattices A', A2,..., A" whose intersection
is not empty. For this, it is sufficient to find a set of geometrically scaled-similar sublattices SA', SA2,...,
SA™ of the first lattice A'. For notational convenience, we take SA! = A! and we will always take U = I
in (12) so that the basis vectors of the j-th geometrically scaled-similar sublattice are orthogonal (because
of the rotation matrix) and can be associated with the j-th orthogonal basis of a tight frame. Each
rectangular cell CfAj defined by each sublattice SA7 has sides with lengths ¢ Al and ¢JAl. Since we
have that ¢, ¢} > 1 Vj, Vol(SAT) = Vol (A') > Vol(A'). Moreover, since the index of a sublattice is
always an integer, we have that ¢} x ¢} € Z Vj.

Suppose we design jointly a lattice A = SA! with generator matrix M1 = diag[A}, A}] (choosing
certain values for A}, Al), and r — 1 different geometrically scaled-similar sublattices of A denoted by
SAZ, SA3,..., SAT. Given a sublattice SA7, we define a finer lattice A7 D SAJ with generator matrix given
by:

) . .
L0 Al 0 K, K
]
My =| 4 L | Msai, Mgpi = Bgyi ! E Bgspi = 1;- ;-2 (15)
0 = 0 A) k3 kpy

where d{, dg, k{l, k{Q, kgl, k§'2 € Z4, that is, are any positive integers.

As we show in Lemma 1 below, if we associate r quantizers {Q7 }5:1 respectively with the lattices
{A7}%_,, this construction given above is sufficient in order to ensure that the intersection of all the
lattices A7, j = 1,---,r is not empty, and therefore, by group theory, the intersection is a lattice. Notice
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that if consider only one lattice A7 together with the canonical lattice A', both constructed as described
in (15), and we define corresponding quantizers @' and @7, respectively associated with them, it follows
from Fact 1 and because {d{, dg} are positive integers, that the cells given by CM N CN have a periodic
structure, which is still determined by C’fAj (see Fig. 5(b)). Therefore, for r = 2, it is clear that periodicity
holds.

Next, we show that the construction of A!,---, A" given above ensures that these lattices have a non-
empty intersection, which actually implies a periodic structure® in the resulting EV Q.

Lemma 1: Given a set of lattices {AJ jzg, such that A7 O SAJ and SAJ is a sublattice of A' j =
2,---,r, then the coincidence site lattice contains as a sublattice, a lattice A° that is an integer scaling of
Al, that is, M yo = DM 1, where D € 7.

Proof: See Appendix II. The importance of calculating the coincidence site lattice A5 comes from
the fact that its fundamental cell C¢5L is the unit cell that is repeated in the periodic structure of the
resulting EV @, as shown in the following Lemma.

Lemma 2: Given r quantizers Q, j = 1,---,r, associated with the lattices A7, j = 1,---,r, the
partition of EVQ cells has a periodic structure, with the unit cell that is repeated periodically being CSST,
the fundamental polytope of the coincidence site lattice A€SL.

Proof: See Appendix III.

Notice that any other lattice that is also a sublattice (although coarser than the CSL) of all the lattices
A, j =1,---,r determines also a unit cell that is repeated periodically but this unit cell will be larger
than C¢SL. For instance, the fundamental polytope of the rectangular lattice A° described in Lemma 1,
will be also repeated periodically but Vol(A°) > Vol(A“SL).

Next, we show how simple it is to calculate the generator matrix of the coincidence site lattice A“SL for
any dimension N. For this, it is necessary to first review the following concept for N-dimensional lattices.

Definition 13: Given r N-dimensional lattices A7, j = 1,---,r in RN satisfying the property that 3

an N-dimensional lattice AT for which A7 C A¥, j =1,--- r, we define the (N-dimensional) sum lattice

A = A + A2 + .. A" as follows [26]:

M 1
s _ N .. _ rN _ | M
AN ={yeRY:y=zA,x € Z™} where A= ] . (16)

M-
Remark: The lattice A* is the lattice generated by all the basis vectors of all the lattices A7, j =1,---,r
in RN (not simply the union of the lattice points). The matrix A defined above can be reduced to obtain

the actual (N x N) generator matrix M s using the so-called Hermite normal form (HNF) reduction

3Notice that a periodic tesselation may be obtained also using other methods which are not based on intersecting lattices,
that is, forcing the intersection of the lattices Al,---, A" is just one (purely geometrical) way to obtain a periodic tesselation,

but one could also build a periodic tesselation in other ways.
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algorithm [26].
Definition 14: The dual lattice A* of a lattice A in RY is defined as follows [23]:

AN ={veR":(v,w)€Z VYweA}. (17)

The generator matrix of A* is given by M- = ((M)~1)T, and we have also that (A*)* = A [23].

It is important to note that the sum of 2 lattices A and A2 is not necessarily a lattice; for instance
taking Al = Z and A? = v/2Z, then their sum is not a lattice because the sum is not a discrete subgroup
of R. It can be shown [30, 31] that if A’ and A? are contained in a certain full rank lattice AT, then
A! + A2 is a full rank lattice.

Based on the previous definitions, the following important theorem from lattice theory allows us to
calculate the intersection lattice A®ST of a set of lattices A!,---, A" [27, 28]:

Theorem 1: Given r lattices A7, j = 1,---,r, the following holds:

ADY* +--+ A = (A" N NA) = (A)* +--+A)) =A'n---NA"=A%SE . (18)
Notice that using Lemma 1 the construction of the lattices Al,---, A” we have presented here ensures
that AST always exist and is a full rank lattice, implying a periodic structure in the EV' (). The necessary
and sufficient condition for A! N A2 to exist and be a full rank lattice is that the matrix (My1) 1 M,2 be
a matrix of rational numbers. This condition is implicitly used in order to prove Lemma 1. In the same
way, our construction also ensures that (A1)* + (A%)* always exists and is a full rank lattice. The lattice
Al N A2 is the finest lattice which is a sublattice of A and A2, while the sum A! + A? is the coarsest

lattice which contains both A' and A? as sublattices.

B. Design and Parameterization for R?

Let A! be a rectangular lattice in R? with generator matrix M1 = diag[Al, Al], which defines a
quantizer Q. In R2, it is easy to parameterize all the geometrically scaled-similar sublattices of Al in
terms of the possible scaling factors and rotation matrices as in (12). This parameterization can be used
in order to build a periodic EVQ in R? for any redundancy r.

Fact 2: All geometrically scaled-similar sublattices SA of A1 with M y1 = diag[Al, AL], have generator

matrices that can be characterized geometrically in the following way:

c1Al 0 cos(@)  sin(9)
0 cBAL —sin(f) cos(f)

_ A _ [ k11ka1 — kiokoa1r _ k1o — _kn — _koo
U)he're ’8 - A_% - k12k227 tan(a) - k11k22 - E’B7 Cl - 008(9)7 CQ - Cos(a)

and ki1, k12, ko1, koo are any possitive integers and 0 < 0 < 5

Proof: See Appendix IV.

Mgy =
(19)

The angle § is restricted to the interval ]0, 7[ to avoid duplicity. That is, given a valid angle 6 €]0, [,

the angles 6 +i7, i = 1,2,3 generate the same sublattice SA because the basis vectors will be inverted
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versions of the ones corresponding to 6 €]0, 7.
The generator matrix of lattice A7, as given in (15), and stepsizes {A7, A} associated with the scalar

quantizers {SQ{, SQ%} can be parameterized by:

K,k J_ AL [k i g i 1d
# ﬁ | A1 = gjl” ;;:(knkzz + k12k21)
JR— 1 1
MAJ = 2 J Ala ; (20)
—k3; k3 i AL [R5 g J 3.
7T Aj = F E(knkm + kisk31)

A few comments are in order:
1. Only those angles 6 such that tan(f) = \/mi/ma, m;,ms € Z, lead to geometrically scaled-similar
sublattices.
2. For a given fixed angle 8 there is more than one solution for g8, ¢1 and cs.

3. The product ¢ica = |A/SA| € Z, as it should be, because:
cic2 = ki1kao (wslw) = kukzz(l + (tan(0))2) = k11koa + ki12ko1 = det(BSA) € Z+ (21)

4. If we consider the particular case of having ¢; = ¢; = ¢ and § = 1, that is, geometrically similar

sublattices of the cubic real lattice ZzAl, then, the possible solutions are?:
1

tan(6) = g, c=Va2+12, cos(f) = J%W’ sin(f) = a%—%b?’ a,beZy (22)
which agrees with [24].

Although periodicity in the structure holds for any two positive integers d{ and d%, in practice, each
pair (d{,dg) is constrained to some values to provide good quantization performance. Therefore, it is
desirable not to have a cell of a quantizer 7t completely contained within a cell of another quantizer Q72.
Ideally, adding succesive quantizers @7 will lead to reductions in the size of the EVQ cells (and therefore
in distortion). Appendix V describes in detail a simple geometric criterion that can be used to address

this issue. There is not a unique way in the order in which one can choose the different parameters. One

possible way is by fixing the angle 0 first, that is, choosing a value for \/ (k12k21)/(k11k22), then searching
within all the 4-tuples of integers resulting in that value, and for each of these 4-tuples, we obtain certain

values for the stepsizes using (20).

C. Ezamples of Periodic EVQ’s in R?

We present in this section several design examples for the two-dimensional case.
Ezample 1: Let us choose an angle 6 such that tan(f) = +/2 x 3. A possible choice for the constant

integers is k2, = k2, = 1, k2, = 2 and k2, = 3. If we choose d? = 2 and d3 = 3, the resulting quantizer
g 11 22 12 21 1 2 g

3 3 1 1 3
=4/2, AZ= \/jAl A2=_—— Al AZ= —\/jAl 2
ﬂ \/gv 1 9 1> 1 COS(G) 1 2 COS(G) 2 1 ( 3)

The corresponding EV @ cells are shown in Fig. 5(b).

Q? is given by:
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(a) (b)

Fig. 6. a) Example for r = 3: Structure of the EVQ and unit cell of the structure; b) Example for r = 4: Structure of the
EVQ and unit cell. Notice that in b) due to the symmetry that exists within COC SL the effective number of different EV Q

cells is basically 1/8 of the total number of cells within this unit cell.

Example 2: A good example for » = 3 is obtained by using the following tight frame and stepsizes:

1 0
0 1
R 5= 5l = Al
_ Cos(g sin{g 2 _1( 1 1 2_1(_3 1 1
F= S st=i(wr) o M=4 (k) (5)ar e
—sin(g) cos(%) ATt R Al AT 1 R L\ A
- . 1= 2 (cos(%) 1> 27 2 (cos(%) <_3) 1
cos(g)  sin(%)
—sin(%) cos(%)

Notice that in this example, d? = d% = d} = d3 = 2. Fig. 6(a) shows the unit cell that is repeated
periodically and the resulting EV @) cells. In this example, we have that:

1 1 1 1 1 0 1 L
M pcsr = My = ( . Al = \{5 A%
-1 1 -1 1 0 L -1 L
3 V3 (25)
0 1 0
Mo = My =2 ) Al
0 2 0 I

4Notice that we are restricting the angle § to be 0 < 8 < 3
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Example 8: An example for r = 4 can be obtained by using the following tight frame and stepsizes:

1 0
0 1 B=1, Al = BAl = Al
> 5 A2 = 2A!, AZ=.2A!
| 7 v Af = AL Af=FA 26)
% %) At=pAl A= PA]
A % Af=PAL AF=PA]
5 Af = PAL Af=PA

Fig. 6(b) shows the unit cell that is repeated periodically and the resulting EV @ cells. In this example,

we have that:

-5 5 -5 5
M jcsr = My = Al
5 b 5 b
(27)
10 O 10 O
Mpo = My = A{
0 10 0 10

Notice in these two examples how we have chosen the stepsizes of the different quantizers {Q’ =1 trying
to satisfy as much as possible the constraints mentioned in section III-B (refinement between different

quantizers).

D. Design of Periodic EVQ’s in higher dimensions

We now analyze the extension to higher dimensions for the case where M1 = I'Al, that is, if the
dimension is N, then Al = Al = ... = A},. Since A! is a cubic lattice, a geometrically scaled similar
sublattice SA has to be also cubic and thus its generator matrix has to be Mgy = BgyM 1 = Bgp Al

where the integer matrix Bgy satisfies the orthogonality property:

by O 0

. 0 by --- 0
Bg\Bgsy = ) ) , bi,bo, -+, b €Z4 (28)

0 0 --- by

If SA7 is the j-th sublattice, we construct the j-th lattice A7 as we have done before for N = 2, that is,
dividing by integers {di }N | and the associated orthogonal matrix F¥ and stepsizes {Af Y, will be given

by:

L 0 0
by
. 0 = = 0 /b .
F = v _ _ Bsni, A= dle}’ di € Zy (29)
- - l’
0 0 L
by
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and all the results regarding periodicity in the structure of the final EV @ and the coincidence site lattice
ACSL apply also here.

Since the matrix M s, is proportional to Bgy by Al let us focus on the problem of finding integer matrices
B, satisfying the properties mentioned above, thus, looking at geometrically similar sublattices of Z*.

Clearly, we can construct matrices Bgp in the following way:

a 0 --- 0
0 as 0 T T

Bgpy = . Hgsy, a1,---,an €7, HsAHSA:HSAH:;’A:me m€Z+
0 0 --- o an

(30)

The problem of finding matrices H gp satisfying the above property has been studied extensively [29, 32]

and the algebraic theory of orthogonal designs allows to find general constructions of orthogonal matrices
with indeterminate entries.

Notice that the matrices Hgy actually generate geometrically similar or equivalent sublattices with

index K = m~N/2

, m € Z4. Explicit constructions in higher dimensions have been provided by Sloane
and Beferull-Lozano and can be found in [22]. More specifically, constructions are given for dimensions
N =3,6,12,24,2% k > 2. For illustration purposes, we present here a simple example for N = 4. Details

about the tesselation of the space that is generated are also given in [22].

Ezxample 4:
2 000 +1 +1 41 +1 -1 +1 +1 +1
0 200 +1 -1 41 -1 -1 -1 +1 -1
My = Al, My = Al, Mys= Al
0 0 20 +1 -1 -1 +1 -1 -1 -1 +1
0 0 0 2 +1 +1 -1 -1 -1 +1 -1 -1
(31)
The intersection of these three lattices, that is, the coincidence site lattice can be easily calculated and
is given by:
4 0 0O
2 2 00
M post = , (32)
2 0 20
2 0 0 2

which is a version of the well-known lattice D, (best known lattice quantizer in four dimensions) on the

scale at which its minimal squared norm is 8.
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E. Design of Periodic EV Q’s for other redundant families

It is also possible to construct periodic quantizers using families (frames) of vectors with integer redun-
dancy r but which do not consist of a set of orthogonal bases. In this section, we show examples which
are based on hexagonal lattices A, in R?, and sublattices which are geometrically similar (¢; = co = ¢) to
hexagonal lattices.

Conway and Sloane [24] have parameterized all the possible sublattices which are geometrically similar
to the hexagonal lattice A! = A,, whose generator matrix is given by:

1
My = B A (33)
2

& ©

3
Notice that if we want to associate this lattice with a basis of a frame (F'), the vectors of this basis have
to be orthogonal to the basis vectors of the lattice. Moreover, the stepsizes associated with the vectors
that compose F! have to be calculated so that the lines in R? intersect exactly to generate Mp1. It is

trivial to show by simple trigonometry that F' and the associated stepsizes are:

0 1
Fi=| ] Al=41=%A (34)
22

It is shown in [24] that a sublattice SA, which is geometrically similar to Al, is generated by (using
complex notation) u = a + bw and v = w(a + bw), where w = —1/2 +iV/3/2, a,b € Z, and the index
|SA/AL| of the corresponding sublattice is |[SA/Al| = a® — ab + b%. Translating this to matrix notation,

we have that the possible generator matrices for SA are given by:

SA =
- Fa-y)
Notice also that M1 and Mgy are related as follows:
(a - %) \/Tgb a b
Mgy = M1 = M 1 (36)
~¥3p (a—1?) b a—b

which corresponds to a rotation of an angle 8 such that tan(f) = 2‘?_",) and a scaling of va? — ab + b2.
Using this approach, we can design again frames and PS@’s such that a periodic EV(@Q is generated.
Fig. 7 and 8 show examples of periodic EV Q’s for redundancies r = 2 and r = 3, respectively.

It is also possible to construct periodic EV @Q’s for higher dimensions using redundant families which
are not comprised of orthogonal bases, by means of other types of lattices such as those studied in [24]
and [33], but these designs are not considered in this paper. Several examples of these other different

constructions can also be found in [22].

IV. CONSISTENT RECONSTRUCTION IN PERIODIC QUANTIZERS

In this section, we analyze how to achieve consistency in periodic quantizers under simple reconstruction

algorithms (e.g. linear or look-up table).
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Fig. 8. Example for r = 3: a) Structure of the sublattice SA with a = 1,b = 3; b) Structure of the EVQ and unit cell.

A. Consistency under linear reconstruction using the minimal dual frame

Although the results presented in this section hold for any type of frame and any type of linear recon-
struction algorithm, the proofs of these results are much clearer and much more intuitive for the case of
linear reconstruction using the minimal dual frame and for tight frames composed of a set of r orthogonal
bases. We show in Theorem 2 that, given a frame, a necessary condition to have consistency under linear
reconstruction is that the scalar quantizers acting on the coefficients are such that the resulting EV Q has
a periodic structure. This result follows basically from the fact that when there is no periodicity in the
partition defined by an EV Q, the vertices of any two lattices A/t and A%2 (j; # j) can have arbitrary

relative positions, at least in one of the components, which makes it always possible to find linearly incon-
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sistent cells. On the contrary, when there is periodicity, there is only a finite number of relative positions
(see Fig. 4) and linear consistency is not precluded.

The proof of this result is exactly the same conceptually for any value of the redundancy r and for any
dimension N because the crucial point is just the periodicity in the structure regardless of the underlying
frame that is used. Since for higher dimensions N and higher redundancies r, the proof becomes much
more tedious without adding anything new conceptually, we reduce the proof to the r = 2 and N = 2
case. However, for completeness, examples will be shown where linear consistency is satisfied for r > 2 in
R2.

We need the following Lemma:

Lemma 3: Let A' be a rectangular lattice with M 1 = diag[A}, Al] and A? another (generic) lattice

whose generator matriz is parameterized as:

A2 0 0 in(6
Mo 2 cos(0)  sin(9) where A A3 €R;, 6 €0, E[ (37)
0 A2 —sin(0) cos(8) 2

Then, the following equations:

A2 cos(f) — Alsin(f) = qA] (38)
A2 cos(f) + A3sin(d) = @Al (39)
A?sin(f) + Adcos(d) = qzA} (40)
A?sin(f) — A2cos(f) = qAl (41)

where  q1,q2,q3,94 € Q(Rational numbers)

are all satisfied iff M 5> = diag[1/d?,1/d5]M sx> where SA? is a sublattice of A, that is, M g2 is given
as in (19), and d3,d% € 7.
Proof: See Appendix VI.

The consequence of this Lemma is that, when A? meets the conditions of the Lemma, the vertices

belonging to A%, which can also be written as:
{wi} = {k(Alp] + A303) + ka2 (AT} — A393), ki ke € Z} (42)

have only a finite number of different (relative) positions within the cells CA' of the quantizer Q! (see
for example Fig. 5(b)). In Theorem 2, we use this fact so that if any of the previous 4 equations
(38),(39),(40),(41) is not satisfied, we can always find vertices where at least one component can have
any arbitrary position within a cell of the quantizer @', and this allows us to find (linearly) inconsistent
cells.

Theorem 2: If the EVQ is a non-periodic quantizer in R2, then it is always possible to find a linearly
inconsistent cell.

Proof: See Appendix VII.
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Fig. 9. Examples of Linearly Consistent Quantizers for a) r = 3 and b) for » = 4. Minimal dual frame is used for the linear

reconstruction.

Thus, periodicity in an EV @) is a necessary condition to achieve consistency under linear reconstruction.
Notice that in a periodic EV @ there are only finitely many distinct EV @ cells. Checking whether linear
consistency is satisfied, we only need to check on the distinct EV @ cells, which are actually the EV @
cells inside the fundamental polytope of the coincidence site lattice A“SL. In fact, given a set of lattices
AL, A% ... A", we can always easily enumerate the positions of the vertices of each of them inside C¢F in
terms of the corresponding generator matrices and check computationally whether consistency is satisfied
or not.

We show in Fig. 9 examples of linear consistency in R? for redundancies r = 3,4, where the reconstruc-

tion vectors have been represented by o’

B. Consistent reconstruction algorithms with improved performance

Given a regular EV(Q, it is desirable for having a good rate-distortion performance that the recon-
structions be located near the centroids of the EV @ cells. It can be seen in Fig. 9 how the consistent
linear reconstructions given by the minimal dual frames for » = 3,4 are not located near the centroids
corresponding to a uniform distribution. In order to achieve a better performance, it is necessary to use
more intelligent (although simple and low complexity) reconstruction algorithms which make explicit use

of the periodicity property.

B.1 Reconstruction with a small look-up table in Periodic EV Q’s

Given a periodic EV @, it is possible to reconstruct efficiently and accurately by using a small size
look-up table scheme, which also ensures consistency. This can be done for any periodic EV Q. Let us

first consider the case of tight frames composed by a set of orthogonal bases. Assume, for simplicity
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and without loss of generality, that N = 2 and let P, be the smallest rectangular polytope which is a
basic unit polytope for the partition defined by the EV Q. Notice that although the minimal unit cell
CSSL may not be rectangular, from Lemma 1, since A' is rectangular, it is always possible to find a
rectangular polytope P, (with volume larger than the volume of C¢SL) which is also a (non-minimal)
basic unit polytope. The reason of choosing this basic rectangular polytope is that the reconstruction
algorithm becomes even simpler in this case. Since the periodicity of the EV(Q is determined by A®ST,
the smallest rectangular polytope P¢SL covering C¢SL is a valid candidate for P,. It is clear that, due
to the periodicity determined by P¢SF any vertical or horizontal shift of P¢S’ by an integer number
of stepsizes (A} is the horizontal stepsize and Al is the vertical stepsize) gives rise to another polytope

which also keeps periodicity.

LN

NPT/
A

Fig. 10. Reconstruction algorithm based on look-up table: ’o/ represents reconstruction vectors, '+’ the values of the
quantized coefficients which define the equivalent cell in the unit cell P,, ’x’ represents the input vector. All the information
is first translated to the unit cell P,, then the reconstruction vector of the equivalent cell is read, and finally it is translated
back to the proper cell. Notice that in this example, with this look-up table scheme, the EVQ cells are actually (minimum

distance) Voronoi cells.

In Fig. 10, the polytope that has been chosen is indicated using bold line. Consider the polytope P, and
let N} and N1 be the number of stepsizes that determine the length of the sides (vertical and horizontal)
of P,. For the example in Fig. 10, N} = 2 and N] = 2. Let v, be the center of P,. Given any input

signal x, it is straightforward to find the equivalent polytope Pk, which is a translation of P, given by:
Pr =P, +ni N Al +nyNjA}, for some integers nj,nj € Z (43)

The basic idea is that given any EV(Q cell CZE V@ it is possible to find very easily and quickly the
equivalent cell (by equivalent cell, we mean a congruent cell that is exactly equal in shape and size) which
is inside P,. Given an input signal & whose quantized coefficients are y, = PSQ(y), where y = Fz,

it is possible to translate the values of the quantized coefficients to other values y;"’ which define the
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EVQ

o

equivalent cell V; that is inside P,. This translation is illustrated in Fig. 10. Let v be the center of
the polytope Pk. In this particular case, since P, is rectangular (cubic in higher dimensions), it is clear
that vy can be calculated by a simple floor operation because P, is rectangular. If we let d = v, — v,

then if Z, is the reconstruction vector corresponding to vaQ, the reconstruction corresponding to CZ-E ve
is just & = &, —d. The reconstruction &, is obtained by just looking up the corresponding reconstruction
vector stored in a look-up table. Notice that we can perform optimal reconstruction for the case of a
uniform input distribution, because, for each EV @ cell inside P,, we can store a vector obtained by
averaging over all the vertices (extreme points) of the cell (barycenter of the cell), which can be shown to
be exactly equal to the centroid of the corresponding (convex) cell assuming a uniform distribution [25].
In the example shown in Fig. 10 the needed look-up table consists of only 24 reconstruction vectors. The
fundamental advantage provided by the periodicity is that if the periodic EV @ is well designed, the size
of the look-up table can be made small, and does not increase with the rate of the EV(Q. Notice also
that for this example, with the reconstructions given by the look-up table, the EV @ cells are actually
(minimum distance) Voronoi cells. For the case of arbitrary EV @’s, a valid polytope P, is always given by
CYSL and a similar reconstruction procedure can be followed. Now, v, will be calculated by quantizing
with respect to A“SL which will not be in general a rectangular lattice. For instance, for those periodic
EV@Q’s based on hexagonal lattices in R?, a valid polytope P, will be an hexagonal cell. For instance, in
Fig. 8 a valid P, is illustrated.

Because of the periodicity in the structure of any periodic £V (@, the information can be easily encoded
in an embedded (succesive) manner by dividing it into two parts, the entropy associated with the cells
{Pr}, and the conditional entropy associated with the structure of cells that is inside each Py, which is
the same structure as in P,. In Fig. 10, for instance, given a certain polytope Pg, which can be found
by quantizing the coefficients {y},y3} respectively with stepsizes 2Al and 2Al} (this can be viewed as a
coarse prequantization), the only additional information that has to be stored to encode a vector is an
index between 1 and 24.

The vectors of the look-up table can be easily calculated in any dimension N by using linear program-
ming. In order to do so, for each EV @ cell in the polytope P,, we run a large enough number of linear
programs with different cost vectors pointing in different directions in RN and where the constraints are
such that they define the specific EV @ cell in terms of inequality constraints. This allows us to calculate
all the vertices of the corresponding EV () cell and by taking the average we obtain a good approximation
of its centroid. Moreover, it is not necessary to calculate the vectors of the look-up table for each rate of
the EV (@ because by linearity, all the vertices scale their coordinates linearly and simmultaneously with

Al. Therefore, we only need to calculate these vectors once for the rate corresponding to A} = 1. This

procedure is explained in greater detail in [22].
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B.2 Improved linear reconstruction in Periodic EV Q’s with spherical symmetry

It is also possible to design periodic EV Q’s with additonal symmetry properties so that a very simple
improved linear reconstruction algorithm can be used to obtain reconstructions that are located near the
centroids of the EVQ cells (assuming a uniform distribution).

Let us consider a periodic EV () that satisfies the following 2 properties:

1. Tt is consistent under the usual linear reconstruction using the minimal dual frame.
2. These linear reconstruction vectors are located with circular symmetry (spherical symmetry for N > 2)

AC’SL

with respect to the lattice points of either the coincidence site lattice or a coset (translation) of it.

FTY N T
N

N
EZANE

D | Q
&
R
)
0]
o
&
0]

[0)]
)

Py
Ty
T

FTy N
R

A4S

Ty
NP
1S

RN
FZANE
Ty N Ty
RFEAZ NP

i

| Q
A
o
0]
&
)
[N
)

(a) (b)

Fig. 11. Examples of circular symmetry in R?: a) r = 2. Squares represent the lattice points of a coset of ACSL; b) r = 3.

Squares represent the lattice points of ACSL,

Several examples have been found where this circular symmetry is satisfied, as for instance, the two
examples shown in Fig. 11 for redundancies r = 2 and r = 3, and the example 4 for dimension N = 4 and
r = 3. The circular symmetry makes it simple to design a perturbation so that the reconstruction vectors
that are obtained are close to the centroids with respect to a uniform distribution.

Let £1.¢ be the reconstruction given by a usual lattice quantizer with reproduction vectors given by the
points of the coincidence site lattice or a translation of it. For the examples shown in Fig. 11, the points
of these lattices are represented by squares and one of the Voronoi cells is also highlighted with bold lines.
It is very simple to improve the linear reconstruction given by the minimal dual frame by performing a
perturbation:

.’iZZ%MD-l-(SAi(.’%MD—.’i}LQ) (44)

where & y/p is the reconstruction given by the minimal dual frame and the direction of the perturbation
is determined by the difference vector d = £y p — £1g. Thus, the magnitude of the perturbation is

|d||6A} and the value of § has to be chosen appropiately so that the final reconstruction & is as close as
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possible to the centroid of the cell. Note that once the best value for § has been chosen, this is fixed and
independent of the input vector & and the scaling of the lattices changes only A}. The main advantage of
this method with respect to the look-up table scheme is that we do not need a look-up table to store the
reproduction vectors of the cells contained inside the minimal periodic unit of the tesselation. However,
further research is necessary in order to understand what are the necessary and sufficient conditions which

ensure that the property of circular symmetry is satisfied.

V. NUMERICAL RESULTS FOR SOME PERIODIC EV () DESIGNS AND APPLICATIONS

0 T T T T 1 : T T T T T T T T 1
N . —— LOOK-UP TABLE OR OPTIMIZED LINEAR REC. (PERIODIC QUANTIZER) . —— LOOK-UP TABLE OR OPTIMIZED LINEAR REC. (PERIODIC QUANTIZER)

N T — USUAL LINEAR REC. (NON-PERIODIC QUANTIZER, SAME STEPSIZES) c — USUAL LINEAR REC. (NON-PERIODIC QUANTIZER, SAME STEPSIZES)
o - USUAL LINEAR REC. (PERIODIC QUANTIZER) -21F . - USUAL LINEAR REC. (PERIODIC QUANTIZER)
N N
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-20F N 1
S . -23 7
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o N o
S-ar NG . =
g W f
] N ]
2221 " 1 2
2 N 225 ]
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BITS/VECTOR BITS/VECTOR

(a) (b)

Fig. 12. Comparison, for a 2-dimensional uncorrelated Gaussian source, of (1) usual linear reconstruction with a non-periodic
quantizer with equal quantization stepsizes (classic system); (2) reconstruction in a periodic EV Q with different quantization
stepsizes using either the look-up table scheme or the improved linear reconstruction (the difference in performance for these
two systems is negligible for these examples); (3) usual linear reconstruction in a periodic quantizer with different quantization
stepsizes. The values of M SE are given per vector in dB and the bit rate is given in bits/vector; (a) corresponds to the

example shown in Fig. 11(a) with » = 2 and (b) corresponds to the example shown in Fig. 6(a) with r = 3

Our designs are more suitable to be used for small redundancies and low to moderate dimensions, and
have a complexity similar to the usual linear reconstruction. At high redundancies, it is always possible
to find designs but they may not be very efficient in terms of coding due to the number of constraints in
the quantization stepsizes that have to be met and also the number of reproductions which have to be
stored in the look-up table may be large. However, note that for some important applications such as
those involving very high-frequency analog signals (e.g. optical signals), it is usually not feasible to use
redundancies higher than r = 3 or r = 4. Moreover, there exist also other systems called Polyphase A /D
converters [38, 39] which divide the bandwidth of the input signal into different narrow subbands (low
dimension), and use a different low-rate A/D converter for each of the subband signals, that is, where each
of these A/D converters works at a low oversampling ratio. Our system can also be designed theoretically

for many different dimensions as shown by Sloane and Beferull-Lozano in [22] but the generated tesselations
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can become very complicated for dimensions N > 8 and the number of elements in the look-up table is
also large. For N < 8, it is possible to find constructions such that the number of different cells (number
of elements in the look-up table) is sufficiently small.

We have compared the rate-distortion performance of a) usual linear reconstruction (minimal dual
frame) with a non periodic EV@Q with equal quantization stepsizes, that is, the quantization system
used in all the previous work; b) reconstruction based on a periodic EV @ with different quantization
stepsizes using either the look-up table scheme or the improved linear reconstruction (their difference in
performance is negligible in these examples) and c) usual linear reconstruction (minimal dual frame) used
with a periodic EV @ with different quantization stepsizes. The bit rate associated with the quantized
tight frame coeflicients is obtained by measuring the joint entropy of all these quantized coefficients,
and the distortion is measured in terms of the MSE. The input source that has been used is a 2-
dimensional Gaussian distribution N(0,02I) with o = 0.3. The periodic EV @Q’s that have been used are
the ones shown in Fig. 11(a) and Fig. 6(a), respectively for r = 2 and » = 3. For these 2 examples, the
rate-distortion performances of the look-up table scheme and the improved linear reconstruction using a
periodic EV @ are approximately the same because the reconstructions can be taken to be practically the
same and obviously, the associated rate is also the same.

It can be seen in Fig. 12 that the best performance is clearly achieved by the look-up table and the
improved linear reconstruction systems, with a gain of around 0.2 dBs for » = 2 and a gain of around 0.7
dBs for r = 3 over the classic system that uses linear reconstruction and the same quantization stepsizes.

At the same time, Fig. 12 also shows clearly the fact that, a linearly consistent EV @ does not nec-
essarily yield a better rate-distortion performance than a different linearly non-consistent EV Q' at the
same rate, that is, by enforcing a periodic structure we may get a quantizer with worse performance than
another quantizer whose structure results in linear inconsistency; however, when we use a periodic EV @
and enforce the consistent reconstructions to be sufficiently close to the real centroids by using our recon-
struction methods, the periodic EV () achieves, in all cases, a superior performance over the non-periodic

EVQ.

A. Implications for Oversampled A/D conversion

It can be shown that the oversampling of a periodic bandlimited signal can be expressed as a frame
operator in RY whose input are the Fourier coefficients (finite discrete Fourier expansion) of the signal
that is sampled [4]. As a particular illustrative case, if we consider the space of sinusoids of period T
spanned by {cos(2nt/T),sin(27t/T)}, the sampling and uniform scalar quantization in amplitude of these
signals is equivalent to the quantization of an overcomplete expansion (frame) in R?. Each sampling time
t; is directly associated with the vector ¢; = [cos(2nt;/T),sin(2wt;/T)] and all these vectors define the
equivalent frame in R*. Moreover, by Parseval’s Theorem, we have that M SE = ||§(t) —y(t)||3 = |2 —z||?,

where §(t) is the reconstructed sinusoid, that is, the M SE of the reconstructed sinusoidal signal in the
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Fig. 13. Scalar quantizers (time domain) corresponding to the EVQ in Fig. 6(a)

converter is the same as the M SE that occurs on the frame domain. Thus, given a tight frame in R2
together with a set of different stepsizes such that a periodic EV () is obtained, if we translate the values
of angles to sampling times, we can obtain the scalar quantizers that are applied at the corresponding
sampling times. For instance, the quantizer in Fig. 6(a) gives rise to a converter with uniform sampling in

time and with two different scalar quantizers, one with a stepsize larger than the other one (see Fig. 13).

VI. CONCLUSIONS

The basic results presented in this paper are as follows. We study the problem of achieving consistency
in quantized overcomplete expansions with low complexity algorithms. Consistency leads to equivalent
vector quantizers which are regular. In order to achieve this goal, we allow the use of different stepsizes
in the scalar quantization of the expansion coefficients and construct equivalent vector quantizers (EV Q)
having cells with a periodic structure. Periodic quantizers are defined in terms of lattices and sublattices
with certain properties and we give various design examples based on different tight frames. On the
one hand, we show that periodicity is a necessary condition to have consistency under simple linear
reconstruction. On the other hand, a periodic structure makes it possible to reconstruct efficiently and
accurately using either a small look-up table whose size does not increase with the rate of the quantizer
or using a simple improved linear reconstruction for periodic EV @Q’s with certain convenient structural
properties. Regarding future work, it should be noticed that further research is needed in order to make

it possible to apply our approach to A/D conversion of arbitrary band-limited signals.
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APPENDIX
I. PrOOF OF Fact 1

Since SA is a sublattice of A, SA is a subgroup of the additive group A!, and the result follows directly
by group theory. The periodicity is determined by the subgroup and therefore the minimal periodic unit
is given by the tiling contained in C5%, the fundamental polytope associated with the sublattice SA.
Since the subgroup structure is true for any dimension N, the periodicity property is also true for any

dimension N .

II. PrROOF OF LEMMA 1

Let Mp; = Ap; M1 and consider the matrix Ap; given by:

1 . .
YT I Fi o K (45)
0 &)\ -k H
whose inverse is equal to:
(Ap)~" = 1 kppdi  kipdy _ 1 th t (46)
ki1kdy + kisk3y \ —kbdl Kl d) DI\ 4, 4,

where t{m € Z and D7 € Z, is the denominator that is left after all the common factors have been

canceled out. For each j we define the lattice A7 with generator matrix given by:
MAJ" — Dj(AAj)ilMAj = Dj(AAj)ilAAJ'MAl = DjMAl (47)

Notice that A7 C A7 is a sublattice of A7 because the matrix D7(A,;)~! has integer entries. Let
l.c.m.(a1,az,...,a,) be the least common multiple of a1, a2, ...,a,, that is, the smallest positive integer
that all ay, as, . .., a, divide. After calculating M ,;» Vj = 1,---,r, we define D as D = l.c.m(D',D?,---,D")
and the lattice A° with generator matrix M yo = DM 1, which means that A° is an integer scaling of A®.
Thus, we have that A° ¢ A¥ € A9 C A,V j =1,---,r. This implies clearly that A° C (AL'NA2N---NAT)

and therefore, A° is a sublattice of the coincidence site lattice ACST m.

ITII. PROOF OF LEMMA 2

Since A“ST is the finest sublattice of all the lattices AJ, j = 1,---,r, if we consider any cell CZ'ST the
relative positions of the lattice points {v?} (vertices of the cells associated with A7) for each lattice A7,
which are inside the cell CST these positions are always the same independently of which cell CZST is
chosen. This immediately implies that the structure of the resulting EV (@ is a periodic repetition of the

structure of cells that is inside the fundamental polytope CS5L of the CSL a.
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IV. Proor or FacT 2

The proof follows in a straightforward manner by direct calculation from the definition of sublattice,

which implies that

alAl 0 cos(0)  sin(6) _ k1Al kp Al (48)
0 A} —sin(0) cos(f) —ka1 Al koAl
Hence, a set of sufficient conditions is given by:
c1Al[cos(8),sin(8)] = [k11 A}, k12 Al] (49)
c2 AS[—sin(f), cos(0)] = [—k21 AL, k2o Ad], ki1, k12, ko1, k20 € Z
If we use the variable g = %%r and simplify the previous equations, we get that:
crcos(d) = ki (50)
csin(@) = Pkio (51)
—coffsin(f) = —kxn (52)
cacos(0) = koo (53)

Without loss of generality, we consider the case 0 < 6 < 7. This constrains the signs of all the integers

k11, k12, ko1 and koa to be positive. Solving the previous equations for 8 and @ results in:

8= %, tan(@) = \/% (54)
The values for ¢; and ¢, follow from (50) and (51).

V. GEOMETRIC CONSTRAINTS ON THE STEPSIZES

Let us consider for simplicity the case of » = 2. The approach we have followed is to constrain the
possible stepsizes A2, A2 to have values between the 2 limiting cases that happen when the Voronoi region
of one quantizer is totally inside of a Voronoi cell of the other quantizer, as shown in Figure 14. These
2 limiting cases establish upper and lower bounds for the pair (d?,d32) such that all pairs in between will
satisfy the property. By using elemental trigonometry, we can calculate upper and lower bounds for the
pair (d?,d3).

From Fig. 14(a), we get that:

Alsin(6) + Al cos(6) > A2 — @@ > Kubpathok, 59
21 22
2 2 2 2
Alsin(6) + Al cos(d) > A2 = @2 > %
which gives lower bounds for d? and d3.
In the same way, from Fig. 14(b), we get that:
A?sin(8) + A cos(6) > A = b2+ 4 > 1 56

24 2 1 k?1 kgl
A3sin(f) + Afcos(f) > Al = W + 2 > 1
1 2
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Fig. 14. 2 Limiting cases for the stepsizes A2 and A2 of the quantizer Q2.

which gives upper bounds for d? and d3.

For instance, in Example 1, the pairs (d?,d3) are constrained by:

di > 7, 3>
2d3 + d3 > d3dZ, 3d2 + d3 > did>

wl

which limits the possible values of (d%,d3) to {(2,3),(2,4),(2,5),(2,6),(2,7),(3,3)}.

VI. PROOF OF LEMMA 3

33

By adding and subtracting (38) and (39), and doing the same for (40) and (41), we get the following

equivalent set of equations:

A2 cos(d) = L& ; LAl = Al
AZsin() = e ; @ Al = ¢A]
A?sin(f) = K -; o A} = gA}
Ajcos(d) = LAY = giA)

with ¢i,4¢3,495,¢; € Q

Assume that (58), (59), (60) and (61) are satisfied. Manipulating these equations, we get:

Dividing (58) and (59), tan(d) = ﬁ_q_
2%

2 7

Dividing (60) and (61), tan(f) = %%Z_Z
T A2 Al ’
Dividing (58) and (61), A_é — A_ig_i
Dividing (59) and (60 A _ Abqy
ividing (59) and (60), A=Aty
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Solving these equations and expressing all the stepsizes in terms of Al we obtain:

!
tan(f) = ng? (66)
144
!0
Al = BAl= q}ZfA} (67)
344
2 il 1
A2 = A
! cos(f) * (68)
Az = [UBpz_ G GG G g (69)

aday " cos()\ dhgi ' cos(h)

If we compare (66), (67), (68) and (69) with (19) and (20), we have obtained exactly the same equations
2 2 2 2

with ¢ = kd%, g = kd%l, g = %2 and ¢j = '%22. Since the final set of equations is equivalent to the first 4
1 2 1 2

equations (38), (39), (40) and (41), it is clear that this Lemma is also true in the other direction m.

VII. PROOF OF THEOREM 2

Without loss of generality, we can assume a quantizer Q' associated with a lattice A! where F' = I,
and M1 = diag[A}, A}]. A general quantizer Q? can be associated with a lattice A2. We denote by
x|; the components of & expressed in the basis {pi, 93}, i = 1,2, where i = 1 indicates, without loss of
generality, the natural basis. In order to find an inconsistent cell, we consider the vertices of A%2. Any

vertex can be written as:
w =k (Ao} + AJ@3) + ko (AlpT — A@3) ki k2 €Z (70)
The components of these lattice points are:

wly = k1(A% cos(8) — AZsin(9)) + ka(A? cos(9) + A3 sin(h)) 7 bk € 7 (1)
k1(A%sin(0) + AZ cos()) + ko(A? sin(0) — A3 cos(h))

Notice that the 2 terms in the first component coincide with the left-hand-sides of (38) and (39) and the 2

terms in the second component coincide with the left-hand-sides of (40) and (41). Applying Lemma 3, if

@? is not constructed so that the EVQ is a periodic quantizer, that is, if M2 # diag[1/d2,1/d3]| M gz,

with SA? being a geometrically scaled-similar sublattice of A!, at least one of the following equations is

not satisfied:

(first component in w) A? cos(f) — A2sin(d) = qA] (72)
(first component in w) A? cos(d) + A2sin(d) = A7 (73)
(second component in w) AZsin(f) + AZcos(d) = ¢zAl (74)
(second component in w) AZsin(f) — Acos(d) = qA} (75)

where q1,¢2,93,q4 € Q
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Fig. 15. Case 1 (Case 2 is Case 1 rotated 90 degrees) in the proof of the Theorem. It is not possible (if the EVQ is not

periodic) to keep linear consistency simmultaneously in the 2 (small) EVQ cells shown.

that is, at least one ¢; ¢ Q. We now recall one of the properties of the mod function, which is that if
z = pv where u € Q and v € R, then {kz mod v, k € Z} =]0,v[. In the case of having z = qu with ¢ € Q,
then, the set {kz mod v, k € Z} is composed only of a finite number of distinct values. This gives 2 cases:
Case 1: if at least one of the equations (38),(39) is not satisfied, then the first (horizontal) component in
(71) of the lattice points of A2 can have an arbitrary value (modulo A}l) (see Fig. 15) and Case 2: if at
least one of the equations (40),(41) is not satisfied, then the second (vertical) component in (71) can have
an arbitrary value (modulo Al). Notice that Case 1 and Case 2 are equivalent because the only difference
between them is which coordinate fails to have a finite number of different values. Case 1 is the one that
is actually represented graphically in Fig. 15, and Case 2 corresponds to the Fig. 15 rotated 90 degrees.
Thus, the proof of Case 1 and Case 2 is exactly the same, and we can consider only Case 1 without loss
of generality.

Thus, consider that at least one of the equations (38),(39) is not satisfied and also let first both (40),(41)
be satisfied, thus allowing a finite number of values (modulo A}) in the second component.

Then, if we apply the previous property of the mod function, we can find a vertex v of A2 of the form:

IwA% + v 1 1 1
v = , Vv€]0,A;[, where LA, <y<(Iy+1)A; and I, I, €Z (76)

Y

Consider now the following 2 input vectors ;1 and x, defined as follows:

) leA% +e€ —06
2131|1 =’U1|1 - =

0 Y1

1) (Ipy + DAl —€e2+ 6
Lol = v2|1 + =

0 Y2

where v =v(,—q}, Va=V(al ) A De,e>0, A >6>0, §<min(a,e),

IylA% <y < (Iy1 + l)Aéa IyzA% Sy < (Iyz + 1)A%7 I$1JI$2’IU1’IU2 €L
(77)

If we apply the quantizers Q' and Q? to the input vectors z; and x> and then take the average, the final
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reconstructions &; and &, given by the EV(Q are:

1 A} AZcos(0) AZsin() |, e
I, A + 4 - - =27 + &

~ 4

x = 78
1|1 I, A3 A + _ A2 s;n(o) + A2 c;)s(&) + y?l ( )

N | B IMAI 3A 1 + A3 cos(G) + A2 sin(a) _ %2 (79)
2 = I, Ay A + + A2 sm(o) _ A c;)s(ﬂ) + y?Q

In order to be able to express the constraints to satisfy consistency along the 2 directions determined
by the second basis {¢?, 92}, we also express &1 and &2 with their components given with respect to this

second basis (this is actually equivalent to a clockwise rotation of the plane by an angle of 6):

IzlA% cos(9) + I, A2 sin(f) A} c;)s(o) + Alsin(f) AT% + sin(29)y1 + cos(29)61

1|2 = L I, A2 cos(9) Al sin(9) Alios(a) A2 | cos(f)ys  sin(f)er (80)
_leAlsln(e)—}_ 14 + 24 +T2+T—T
in 1 1sin 2 in
m2|2 3 IJ;ZAi COS(G) + Iy2A2S (0) 3A1 (‘:108(9) + AZ S4 (9) + % + S (29)y2 _ 003(20)62 (81)
- 1 .: 1 2 .
—I,,Alsin(6) + Iy Az 005(9) _ 344 im(9) + A c;s(a) _ % + % + 51n(26)ez

For notational convenience, assume that the symbols <, < are component-wise relation symbols. Then, all

the constraints that have to be satisfied to achieve consistency are given by the following component-wise

inequalities:
I, Al I, Al + Al
11 S :2:1|1 < 11 1 (82)
Iyl A% Iy1 A% + A%
I, A} I, Al + Al
2=1 S i2|1 < 2=1 1 (83)
IyzA% IyzA% + A%
A2 . 0
vil2 — < @il <vi2 + (84)
A2
2
0 ) Af
Va2 — < @ala <vala+ (85)
A3
where
| cos(0) I, Al + sin(8)y; + cos(8)e; | cos(0) (I, + 1)A] +sin(#)y2 — cos(F)ex
Vij2 = , Vala =
—sin(#) I, Al + cos(8)y; — sin(6)e; —sin(0) (I, + 1)Al + cos(8)ya + sin(#)es

From the first component inequality in either (82) or (83), and using the fact that e; > 0 and €3 > 0

can be taken as small as we want, we get the following lower bound for A}:
A7 > Afcos(f) + AZsin(6) (86)
Similarly, from (84) and (85), we can obtain, after operating, lower bounds for AZ and A2. Let u; = y;

mod A}, i = 1,2, that is, p1 = y1 — I, A} and po = y» — I, A}. The actual lower bounds for A? and A3
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depend on the parameters p; and po:

A2 > Al cos() + Al sin(f) — 2sin(Q)puy  (tightest if py; < %%) (87)
A3 > Alsin(f) + Al cos(8) — 2cos(f)pa  (tightest if puy < %%) (88)
A} > Ajcos(f) — A}sin(f) + 2sin(@)us  (tightest if pa > %%) (89)
A3 > Afsin(f) — A} cos(8) +2cos(f)ur  (tightest if py > %%) (90)

We show next that it is always possible to find points &1 and @y such that u; = pe. Since (74) and (75)
are satisfied, let g3 = 7’;—11 and q4 = ;;—22, such that ged(ni,m1) = 1 and ged(na, me) = 1. Then, we have

that:

{k1(AZsin(f) + A2 cos(6)) + k2 (A2 sin(f) — A2cos(d)) mod AL, ki ky € Z}=

7 7 ) ) (91)
mims mMmimso mims

This directly implies that we can always (by varying k; and k2 in (91)) find 2 vertices v, and v» (satisfying
that py = p2 = p) of the following form:
I, Al + ¢ I, + 1A —¢
’U1|1 _ 121 1 ’U2|1 _ ( T2 ) 1 2 (92)
I?/IA% tup IyzA% +p
Consider now the case that at least one of the equations (74), (75) were not satisfied. Then, it is also
clear that we could find cells with values of y; and uy as close to each other as wanted because we have a
continuum of values (modulo Al) in this component, and the same conclusions in the proof would follow.
Consider first the case of p; = pg = p < AT%. In this case, if we multiply (87) and (88) by cos(f) and
sin(f) respectively and then we sum them, making use of the equality cos?(#) + sin*(#) = 1, we obtain an

upper bound for Al given by:

AT < A? cos(6) + A2 cos(8) + sin(26) (2 — Ad) (93)

1
In order for the upper (93) and lower (86) bounds of A} to be consistent®, it is necessary to have p > %,

which implies that the only valid value for p is p = AT;. Consider now the case of u; = 2 = p > ATé. In
the same way, if we multiply (89) and (90) by cos(#) and sin(#) respectively and we sum them, we obtain

an upper bound for A}l given by:

Al < A? cos(8) + A2 sin() + sin(26)(AS — 2p) (94)

As before, for the upper (94) and lower (87) bounds to be consistent, we need py < AT;, which implies
again that u = AT%.

®Notice that 6 €]0, 5 [, which means that sin(26) > 0.
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Thus, in order to achieve consistency simultaneously for the input vectors x; and s, as defined in

Ay

(92), it is necessary to have always p = =2. But this is clearly impossible because, for instance, by taking

vertices with k1,ka given by ki = lymy and ke = lama, l1,1l2 € Z in (91), we have always p = 0. Therefore,

we conclude that it is impossible to achieve consistency for the 2 input vectors ¢; and x5 simultaneously
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