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ABSTRACT

In this paper we proposea new rotation-irvariantimageretrieval

systembasedon steerablepyramids and the conceptof angular
alignmentacrossscalesFirst, we defineenegy-basedexturefea-

tureswhich are steerableunderrotation, i.e., suchthat features
correspondingdo therotatedversionof animagecanbe easilyob-

tainedfrom the featuresof the original (non-rotatedjmage. We

also proposean approachto measuresimilarity betweenimages
thatis robustto rotation;imagesarecomparedfterbeingaligned
in angle. Theretrieval processs performedby meansof a Deci-

sion Tree Classifierwherethe angularalignmentis performedat

eachnodein thetree. To demonstrat¢he effectivenesof our sys-
temwe considera distributedimageclassificationsystem,where
thefeatureencoderandthe classifierarephysicallyapartandthus
featuresare compressetbeforebeingtransmitted. Our resultsof

retrieval performanceversusrateshav a cleargainwith respecto

awavelettransform(asanexample,for the samerate,theretrieval

precisionis increasedrom 40%to 65%).

1. INTRODUCTION AND MOTIVATION

Featureextraction and matchingare very importantcomponents
in searchingnultimediadatabasesTexture informationis useful
for this purposeandseveralapproacheblave beenproposedo ex-
tract texture-relatedfeaturesbasedon variouslinear transforms,
suchasthe wavelettransform.Basically mostof the well-knovn
texturefeatureextractionmethodsneasureéheenegiesof thesub-
bandsobtainedfrom awavelettransformastexturediscriminating
features Onedravbackof usingcritically sampledransformdor
thispurposas thatthefeaturesarenotrotationor shiftinvariant.In
this paperwe addresghe problemof designingefficient rotation-
invarianttexture featuresand demonstrateheir usein the context
of decisiontreeclassifier Our goalhereis to enablelocatingsim-
ilar imagesin the databaseevenif the imagecaptureds rotated
with respecto thosemostsimilarto it in thedatabase.

Two main previous approachesiave beenproposedfor ro-
tation invariant texture matching. In the first one (i.e. [1]), an
stochastianodel(i.e. HiddenMarkov model)is assumedor fea-
turesderivedfrom wavelettransformsandthetrainingis performed
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usingsampleswith differentorientationsandidentifiedasbelong-
ing to the sameclass. In the secondone (i.e. [2]), giventhe out-

putsof atransform,somespecificrotation-irvariantquantitiesare
defined.In our work, instead,we achieve rotation-irvarianceby

usingthe conceptof angularalignment,i.e., the featuresobtained
from two imagesarealignedbeforebeingcomparedthetwo im-

agesheingcompared.To achieve this, we definea setof features
which aresteerable in the sensethat given the featuresof anim-

agesample,it is possibleto obtainthe featurescorrespondingo

ary rotatedversionof it. Thesefeaturesareobtainedrom thesub-
bandsf asteerablgyramid[3, 4]. We alsoproposeanew similar-

ity measuremernwhich measurethedistancebetweertwo feature
vectorsonly afterthey have beenaligned.This angularalignment
canbeperformedefficiently usingsimpleconstrainedgteepestle-
scentalgorithms Althoughseveralfeaturesobtainedfrom a steer

ablepyramid have beenproposedn previouswork [5], the prop-
erty of achiving angularalignmentby using steerabilityin the
featurespacehasnotbeenconsideredOntheotherhand,approx-
imate rotation invariancehas beentried to be achieved through
featureshasedon orientedGaborfilters [6], but real rotationin-

varianceis not achieved becausésaborfilters do not provide the
steerabilityproperty

Onedravbackof steerabldransformsin mary imagerepre-
sentationapplicationscomesfrom the factthatthey areoversam-
pled andthusresultin a significantstoragepenaltywith respect
to critically sampledransforms.For this reasonjn this paperwe
choosea distributedimageclassificationapplication,wherefea-
tureshave to be compressedbeforetransmissionto demonstrate
thatnoratepenaltyexistsandfeaturedasedn steerableepresen-
tationsoutperformwavelet-basedeaturesevenwhenoperatingat
the samerate. In our comparisionave usethreedifferentquanti-
zationalgorithms:a) simpleuniform quantizationp) quantization
with optimal bit allocationandc) a classifiedvectorquantization
schemeoptimizedfrom arate-distortion-compldty pointof view
proposedby Xie and Ortega [7]. In orderto decreasehe com-
plexity of theretrieval, a DecisionTreeStructureClassifie(DTC)
is oftenusedin practicalapplicationsjmageshaving similar fea-
turesare clusteredtogetherin the nodesof the classifier In this
paperwe shav how therotation-irvariancecanbeincorporatedn
the DTC basedretrieval by performingangularalignmentat each
nodein thetreeanddefininganappropiatalistancebetweeranim-
ageandatreenode,which ensureghata best-first-searcmethod
works correctly Our experimentalresultsshav a substantiabain
in retrieval performanceversusrateof our methodwith respecto



aretrieval systembasecdn awavelettransform.

This paperis organizedasfollows: Section2 concentratesn
the featureextraction processand Section3 describesthe basic
similarity measurementhich is the main novelty of ourwork. In
Section4, we describebriefly the quantizationschemesghat are
considerecindalsothe DTC basedretrieval systemincorporating
the angularalignment. Finally, Section5 shavs the experimental
resultsof our method.

2. FEATURE EXTRACTION

Sincewe areinterestedn achiezing rotationinvariancethefeature
extractionwe consideris basedon the subbandobtainedfrom a

steerablepyramid [3]. We then should choosefeaturesthat are

as“steerable’aspossible thatis, given the featuresof animage
orientedat anangleq, it shouldbe possibleto obtainthefeatures
correspondindo the sameimagebut orientedat an angle¢’, by

directmanipulatiorof thefeaturesatangleg, i.e.,withoutactually
having to recalculatehe featuresafter rotatingthe image. In our

work, we try to achieve goodretrieval performanceisingenepgy-

basedeaturesvhich aresimpleto manipulate.

Letc(z,, ¢) representhevalueof atransformcoeficient cor-
respondingo the outputof a rotatedsteerabldilter with orienta-
tion ¢ for a certainspatiallocation z,. In a steerablepyramid
with J basicorientationsand L levels, at eachlevel [, given the
J basiccoeficients{c! (., ¢1), ¢ (€0, $2), ..., ¢ (€0, ¢5)}, the
transformeoeficientc' (., ¢) for ary angle(orientation)p of that
samespatiallocationwill begivenby:

J

(@0, 0) = Y ail@) (@) Vo, L=1,...,L (1)

=1

where{ai(¢), a2(¢),...,as(¢)} is the setof J steeringfunc-
tionswhich allow to performthe (exact)interpolationatary level

Let B! (¢) representhe averageenegy of a subbandriented
at an arbitrary angle ¢ in a level [, thatis, E'(¢) is given by

B'¢) = (% N (e (zx, 0))?, where N; is the numberof

pixels of eachof the subbandsn level [ andthe subscriptk goes
throughall the spatiallocationsof the subband. It is very sim-
ple to shav that E'(¢) canbe calculatedrom the enegies (sam-
pledautocorrelationsyf the basic.J subbandsndall thesampled
cross-correlationbetweeneachpair of basicsubbands:

E'(¢) = a” (4)C'a(9), al¢) = (ar(d) -as()" (2)

whereC! is the (symmetric)sampledcorrelationmatrix with el-

ementsCl; = (w%) kNil H@w, ¢i)ct(zr, 4;) = Ok 1 =

1,..., L. Eachdiagonalelementof C'! corresponddo C!, =
E'(¢;), thatis, theaverageeneny at the basicangle¢;, while the
off-diagonalelementgorrespondo samplecross-correlationlse-
tweenthe subbandgorrespondingo eachpair of basicangles.
Noticethatsincec(x,, ¢ + 7) = —c(xo, ¢), clearly E' (¢ +
7) = E'(¢), thatis, E'(¢) is aperiodicfunctionwith periodequal
to . Givena perfectlyhomogeneousnagel with enegy profile
ElY(¢) atlevel I, if thisimageis rotatedcounterclockwiseby an
angled, obtaininganimageIy, then,we will have thatElIQ (¢) =

EY(¢ — ), thatis, arotationof animagecorrespondso a shifted
versionof theenepy profile.

Basedon this we choosethe correlationmatrices{C'}_, as
the enegy-basedexture featuresn our system.Notice thatsince
eachmatrix C! is symmetricthetotal numberof featureswill be
J(J 4+ 1)L /2. Thereforetheinterdependencidsetweerdifferent
orientationdgn termsof cross-correlationarenecessarin orderto
characterizehe enegy profile of an arbitraryrotationof a given
image. We do not considerthe useof the enepgy of the low-pass
residualsubbandasa featurein our proposedsystem.Obviously,
asthe numberJ of basicorientationsincreasesthe resolutionin
angle(angulabandwidthof basicfilters) increasesndtheenegy
profile E'(¢) will be thereforemore accurate but on the other
hand,the numberof raw featuresnay becomesubstantiallylarger
thanin the caseof awavelet-basedexturerepresentation.

3. SSIMILARITY MEASUREMENT

In the similarity measurementye areinterestedn makinguseof

the steerabilitypropertypresenin thefeaturesn orderto identify

equialentfeatureswhereequivaleny will correspondo having

differentrotatedversionsof a uniqueimage.The next proposition
shaws that the sampledcorrelationmatrix C, for animageat a
givenlevel [ andthe sampleccorrelationmatrix Cﬁg for thesame
imagebut rotatedcounterclockwiseby anangled, arerelatedin a
simpleway.

Proposition 1 Given a steerable representation with .J basic an-
gles, the correlation matrices C’, and C', both evaluated with
respect to the same set of basic angles {¢1, ..., ¢}, are related

as follows:
C}, = R())CR"(0),
ar(pr —0)  ax(p —6) aj(p1 —0)
a1(p2 —0)  aa(p2 —0) ay(p2—0)
R(@) = : : .
ar(6s—0) as(ps—6) as(¢s—6)
3

In the particular case where the .J basic angles are taken to be
equiespaced, then R(6) becomes an orthogonal matrix for any 6,
and therefore, C', and C'; become orthogonally equivalent.

Proof: Theproofis givenin [8].

This propertyholdsfor every level independently However,
noticethatwhena imageis rotated,all the decompositiorievels
will be equallyrotated. This meansthat givenanimagel anda
rotatedversionIy of it, the Frobeniusnorms:

|C] — R(-0)Ct, R (—=0)||r, 1=1,...,L
(samerotationanglefor all thelevels),will tendto besmall.

Taking all this into account, the similarity measurement
D(I4, I) betweer differentimagesl; andI- thatwe proposds
thefollowing:

D(I1. I2) = Min, (Z Ict, - R(—@)CgRT(—e)nF)

=1
4
Clearly, thoselevels containingmore enegy will influence
morein the minimization of (4) andthoselevels with small en-
ergy will have little influencein it.
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Fig. 1. (a) “bark” physicallyrotatedat 60 and 120 degrees;(b)
D(#) for J = 2,4, 6. Noticehow in all threecasesthe minimum
is achieved for 6 = 60 degrees,which is the exactrelative angle
betweerthetwo textureimagesamples.
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Notice that when I; and I aretwo rotatedversionsof the
sameimage,the angled™ for which the minimumis achieved in
(4) shouldbe closeto the relative anglebetweenl; and I», that
is, theangleoneneedsgo rotate(clock-wise)l; in orderto get I5.
Thus,oneway to seethe goodnes®f our similarity measurement
(4) is to checkwhetherthe estimatedangled™ is actuallycloseto
therealrelative anglebetweer? physicallyrotatedversionsof the
sameimage. Moreover, it might alsobe usefulin somepractical
applicationsto find out approximatelythis relative angle. Fig. 1
illustratesthis by shaving the function D(6) = Zf:l |Ch, —
R(-0)C%, R (—0)||F, for the casewherel; andI, arerotated
versionsof “bark” texturefrom the Brodatzset[11].

As explainedin Section4, this angularalignmenthasto be
performedmary timesin the retrieval processandthusit is im-
portantto devise fastalgorithmsto find the minimizing angle6*
in (4). In [8], it is shawvn thatfor J = 2, " canbe found ana-
lytically, andfor J > 2, it is possibleto designlow compleity
constrainedsteepestiescenalgorithms. This is becausét canbe
proved thatthe numberof stationarypointsof the function being
minimizedin (4) is upperboundedandatthe sametime, theangu-
lar distancebetweerary two contiguousstationarypointsis lower
bounded8] makingit simpleto searchfor thesepointsin a few
non-overlappingangularintenals.

4. QUANTIZATION AND RETRIEVAL PROCESS

In thiswork, we have testedour proposedchemeavhenthefeature
vectorsare quantizedusing a setof scalarquantizerswith three
differentquantizatioralgorithms:(i) Simpleuniform quantization
(samestepsize)(ii) Non-uniformquantizatiorwith optimalbit al-

locationin arate-distortiorsensg?9]; (iii) Classifiedquantization
optimizedin a rate-distortion-compldty senseproposedoy Xie

and Ortega [7]. The block diagramof this systemis illustrated
in Fig. 2. First, a completeK-meansbinary DTC tree 7 is de-
signedandthenthis treeis prunedin orderto getanoptimal sub-
tree S* < 7 which senes as a pre-classifierand whoseleaves
correspondo different classes. Eachclassis associatedvith a
differentencodercontaininga setof stepsizeselectedrom apre-
viously predefinedset. The optimal subtreeS* andencodersare

S

Encoder O

Classifier S

Fig. 2. Block diagramof a classifiedvectorquantizationsystem.
Separatencoderg«w; } aredesignedor theclasses =1, - -, M.
TheinputfeaturevectorX is first classifiedandthenencodedvith
anencodespecificallydesignedor the correspondinglass.

optimizedusingthe G-BFOSalgorithm[10] sothatthe M SE is
minimized underboth rateandcompl«ity constraints.For more
details,se€[7].

Theretrieval processs alwaysperformedwith theDTC 7 us-
ing the best-first-searchndbranch-and-bourdd Let D(Q, t) de-
notethedistanceof thequery@ with nodet in thetree.In orderto
ensurehatthis searchalgorithmfindsthe correctclosestmatches,
we needto definea distanceD(Q, t) satisfyingthe propertythat
D(Q, 1) is alower boundof the distancef @ to all theimages
in nodet, andwe needto take into accountthe angularalignment
processNoticethat:

DQ.1) = mind(Qo.1) (5)
> moin d(Qe, I.) — d(I., I) (triang.inequality)
> main d(Qe, I.) — R(t)  (upperbound)

wherel. is the centroidin nodet, R(t) theradiusof nodet given

by R(t) = maxset d(Ic,I) and d(Qo, I) is given by the ex-

pressioninside the parenthesisn (4). Thus,defining D(Q,t) as
D(Q,t) = ming d(Qo, I.) — R(t), then,it is guaranteedhatthe
best-first-searcmethodwill find the correctclosestmatch. Thus,
we seethata crucialdifferentialpointin ourwork is thatin there-

trieval processisingthe DTC, ateachnodeof thetree,alignments
betweenrthe query(quantizedyeaturevectorandeachof the two

representingectors(correspondingo the two brancheshave to

be performedusing(4). After thesetwo alignmentsfwo distance
measurementareperformedanda branchis chosen.

5. EXPERIMENTAL RESULTS

We have evaluatedthe performanceof our proposedmethodap-
plied to the Brodatztexture images[11] andhave alsocompared
with a standardvavelettransform. The featureswe have consid-
eredin thewaveletcasearealsocorrelatiormatriceobtainedrom
the correspondindour waveletsubbandsWe use2 collectionsof
texture samplesof size 128 x 128. The first collection, which
formsthe non-rotated imagedatabaseis obtainedby partitioning
eachof the13 Brodatz(512 x 512) non-rotatedextureimageq11]
into 16 non-overlappingtexturesubimage®f size128 x 128 with
atotal of 208 texture samples.This setis usedin training of the
DTC for retrieval. Theseconccollection,which formstherotated

1This algorithmhasa compleity of O(log M) (M is the numberof
featurevectorsin the databasegscomparedo O (M) in alinearsearch.



set,is obtainedby partitioning(for eachof the 13 texture classes)
4 largetextureimagesorientedat 30, 60, 90 and120 degreesalso
into non-overlappingsubimage®f size128 x 128 andtakingthe
4 centralsubimages.In this way, in the seconddatabasethere
arealso16 texturesfor eachclassandtherefore alsothe sameto-
tal numberof 208 textures. A querytexture sampleis takenfrom
the rotated setand the featurevectoris extractedand quantized
usingthe threequantizationschemeslescribedn Section4. We
assumehateachquantizedcomponenof the featurevectoris in-
dependentlyentrofy coded. The M = 16 closesttexturesfrom
thenon-rotated setareobtainedandtheaverageretrieval precision
over all therotatedtexture sampless measured.

Withoutcompressinghefeaturestheaverageretrieval perfor
mancefor the steerableaseis of 67.03% and66.55% for J = 2
andJ = 4 respectiely, while in thewaveletcasetheperformance
is of 41.85%, animprovementof about25% is obtained.Fig. 3
shaws the retrieval performanceof compressedteerableeature
vectorsfor J = 2 andJ = 4. We canclearlyseethattheclassified
quantizermchiezesthebestperformancamongthethreequantiza-
tion schemesBY usingthe classifiedquantizemwith expectedree
length! = 2 (compleity constraint)theretrieval performancele-
gradesvery gracefully Evenwith the bit ratereducedo aroundl
bit/element,we canstill achieve aboutthe sameprecisionasus-
ing uncompressedeature. Fig. 4 shavs the comparisonof the
retrieval performancevith compressefkaturesdbetweersteerable
transformwith J = 4 anda standardvavelettransform.Therea-
sonwhy we comparethesetwo casesds thatthe dimensionof the
featurevectorunderbothcasess thesame(lNV = 48), sothatthey
will resultin a comparablebit rate. Again, we seethat steerable
achieves muchbetterretrieval precisionthanwavelet over all bit
rates. With respecto the retrieval compleity reductionby em-
ploying a DTC insteadof a linear searchwe have computedhe
numberof distancecomputationshathave to be performedo find
the M = 16 closestmatches.Insteadof 208 distancecomputa-
tionsasin the caseof linear searchthe DTC requireson average
121.97for J = 2 and39.82for .J = 4.
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Fig. 3. AverageRetrieval Performanceusinga 3 level steerable
pyramidfor thethreedifferentquantizatioralgorithms:(a) J = 2
and(b) J = 4.
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