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ABSTRACT

In this paper, we proposea new rotation-invariantimageretrieval
systembasedon steerablepyramidsand the conceptof angular
alignmentacrossscales.First,wedefineenergy-basedtexturefea-
tureswhich are steerableunderrotation, i.e., suchthat features
correspondingto therotatedversionof animagecanbeeasilyob-
tainedfrom the featuresof the original (non-rotated)image. We
alsoproposean approachto measuresimilarity betweenimages
thatis robustto rotation;imagesarecomparedafterbeingaligned
in angle. The retrieval processis performedby meansof a Deci-
sion TreeClassifierwherethe angularalignmentis performedat
eachnodein thetree.To demonstratetheeffectivenessof oursys-
tem we considera distributedimageclassificationsystem,where
thefeatureencoderandtheclassifierarephysicallyapartandthus
featuresarecompressedbeforebeingtransmitted.Our resultsof
retrieval performanceversusrateshow acleargainwith respectto
awavelettransform(asanexample,for thesamerate,theretrieval
precisionis increasedfrom 40%to 65%).

1. INTRODUCTION AND MOTIVATION

Featureextraction andmatchingare very importantcomponents
in searchingmultimediadatabases.Texture informationis useful
for this purposeandseveralapproacheshavebeenproposedto ex-
tract texture-relatedfeaturesbasedon variouslinear transforms,
suchasthewavelet transform.Basically, mostof thewell-known
texturefeatureextractionmethodsmeasuretheenergiesof thesub-
bandsobtainedfrom awavelettransformastexturediscriminating
features.Onedrawbackof usingcritically sampledtransformsfor
thispurposeis thatthefeaturesarenotrotationor shift invariant.In
this paperwe addresstheproblemof designingefficient rotation-
invarianttexture featuresanddemonstratetheir usein thecontext
of decisiontreeclassifier. Our goalhereis to enablelocatingsim-
ilar imagesin the database,even if the imagecapturedis rotated
with respectto thosemostsimilar to it in thedatabase.

Two main previous approacheshave beenproposedfor ro-
tation invariant texture matching. In the first one (i.e. [1]), an
stochasticmodel(i.e. HiddenMarkov model)is assumedfor fea-
turesderivedfromwavelettransformsandthetrainingisperformed
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usingsampleswith differentorientationsandidentifiedasbelong-
ing to thesameclass. In thesecondone(i.e. [2]), given theout-
putsof a transform,somespecificrotation-invariantquantitiesare
defined.In our work, instead,we achieve rotation-invarianceby
usingtheconceptof angularalignment,i.e., thefeaturesobtained
from two imagesarealignedbeforebeingcompared.thetwo im-
agesbeingcompared.To achieve this, we definea setof features
which aresteerable in thesensethatgiven the featuresof an im-
agesample,it is possibleto obtainthe featurescorrespondingto
any rotatedversionof it. Thesefeaturesareobtainedfrom thesub-
bandsof asteerablepyramid[3, 4]. Wealsoproposeanew similar-
ity measurementwhichmeasuresthedistancebetweentwo feature
vectorsonly after they have beenaligned.This angularalignment
canbeperformedefficiently usingsimpleconstrainedsteepestde-
scentalgorithms.Althoughseveral featuresobtainedfrom a steer-
ablepyramidhave beenproposedin previouswork [5], theprop-
erty of achieving angularalignmentby using steerabilityin the
featurespace,hasnotbeenconsidered.Ontheotherhand,approx-
imate rotation invariancehasbeentried to be achieved through
featuresbasedon orientedGaborfilters [6], but real rotation in-
varianceis not achieved becauseGaborfilters do not provide the
steerabilityproperty.

Onedrawbackof steerabletransformsin many imagerepre-
sentationapplicationscomesfrom the fact that they areoversam-
pled and thus result in a significantstoragepenaltywith respect
to critically sampledtransforms.For this reason,in this paperwe
choosea distributed imageclassificationapplication,wherefea-
tureshave to be compressedbeforetransmission,to demonstrate
thatnoratepenaltyexistsandfeaturesbasedonsteerablerepresen-
tationsoutperformwavelet-basedfeaturesevenwhenoperatingat
thesamerate. In our comparisionswe usethreedifferentquanti-
zationalgorithms:a) simpleuniformquantization,b) quantization
with optimalbit allocationandc) a classifiedvectorquantization
schemeoptimizedfrom arate-distortion-complexity pointof view
proposedby Xie and Ortega [7]. In order to decreasethe com-
plexity of theretrieval, aDecisionTreeStructureClassifier(DTC)
is oftenusedin practicalapplications;imageshaving similar fea-
turesareclusteredtogetherin the nodesof the classifier. In this
paper, weshow how therotation-invariancecanbeincorporatedin
theDTC basedretrieval by performingangularalignmentat each
nodein thetreeanddefininganappropiatedistancebetweenanim-
ageanda treenode,which ensuresthata best-first-searchmethod
workscorrectly. Our experimentalresultsshow a substantialgain
in retrieval performanceversusrateof our methodwith respectto



a retrieval systembasedona wavelettransform.
This paperis organizedasfollows: Section2 concentrateson

the featureextraction processand Section3 describesthe basic
similarity measurementwhich is themainnovelty of our work. In
Section4, we describebriefly the quantizationschemesthat are
consideredandalsotheDTC basedretrieval systemincorporating
theangularalignment.Finally, Section5 shows theexperimental
resultsof ourmethod.

2. FEATURE EXTRACTION

Sinceweareinterestedin achieving rotationinvariance,thefeature
extractionwe consideris basedon the subbandsobtainedfrom a
steerablepyramid [3]. We then shouldchoosefeaturesthat are
as“steerable”aspossible,that is, given the featuresof an image
orientedat anangle � , it shouldbepossibleto obtainthefeatures
correspondingto the sameimagebut orientedat an angle ��� , by
directmanipulationof thefeaturesatangle� , i.e.,withoutactually
having to recalculatethe featuresafter rotatingthe image. In our
work, we try to achieve goodretrieval performanceusingenergy-
basedfeatureswhicharesimpleto manipulate.

Let ���	��
����� representthevalueof atransformcoefficientcor-
respondingto theoutputof a rotatedsteerablefilter with orienta-
tion � for a certainspatial location � 
 . In a steerablepyramid
with � basicorientationsand � levels, at eachlevel � , given the� basiccoefficients �����	�	��
�������������	�	��
�������������������� �	�!
���#"$��% , the
transformcoefficient � � �	� 
 ���&� for any angle(orientation)� of that
samespatiallocationwill begivenby:

� � �	� 
 ���&�('
"

)+* ��,
) ���&� � � �	� 
 ��� ) �.-/���0�1'32����������� (1)

where � , �4���&��� , �4��������������� , "$���&��% is the setof � steeringfunc-
tionswhich allow to performthe(exact) interpolationat any level�('52����������6� .

Let 78�+����� representtheaverageenergy of a subbandoriented
at an arbitrary angle � in a level � , that is, 79� ���&� is given by

7 � ���&�:' �;�< ;�<= * � � � � �	� = �����>� � , where ? � is the numberof

pixels of eachof thesubbandsin level � andthesubscript@ goes
throughall the spatial locationsof the subband. It is very sim-
ple to show that 79� ���&� canbecalculatedfrom theenergies(sam-
pledautocorrelations)of thebasic � subbandsandall thesampled
cross-correlationsbetweeneachpair of basicsubbands:

7 � ���&�('BADC/���&�	E � AF���&���GAD�����('3� , � ���&�IH�H�H , " ���&�>�JC (2)

where EK� is the (symmetric)sampledcorrelationmatrix with el-

ements L �)NM ' �;�< ;#<= * � � � �	� = ��� ) � � � �	� = �� M �O'PL �M>) , �Q'
2����������� . Eachdiagonalelementof E � correspondsto L �)R) '79� ��� ) � , thatis, theaverageenergy at thebasicangle � ) , while the
off-diagonalelementscorrespondtosampledcross-correlationsbe-
tweenthesubbandscorrespondingto eachpair of basicangles.

Noticethatsince���	� 
 ��:SUT1�V'5WX���	� 
 ���&� , clearly, 7 � ���YST1�('B79� ���&� , thatis, 79� ���&� is aperiodicfunctionwith periodequal
to T . Givena perfectlyhomogeneousimageZ with energy profile7 �[ ���&� at level � , if this imageis rotatedcounter-clockwiseby an
angle\ , obtaininganimageZ�] , then,we will have that 79�[_^ ���&�1'79�[ ���FW`\a� , thatis, a rotationof animagecorrespondsto a shifted
versionof theenergy profile.

Basedon this we choosethecorrelationmatrices�4E � %�b� * � as
theenergy-basedtexturefeaturesin our system.Noticethatsince
eachmatrix Ec� is symmetric,thetotal numberof featureswill be�����:SK2�� �edgf . Therefore,theinterdependenciesbetweendifferent
orientationsin termsof cross-correlationsarenecessaryin orderto
characterizethe energy profile of an arbitraryrotationof a given
image. We do not considertheuseof theenergy of the low-pass
residualsubbandasa featurein our proposedsystem.Obviously,
asthenumber � of basicorientationsincreases,the resolutionin
angle(angularbandwidthof basicfilters) increasesandtheenergy
profile 79� ���&� will be thereforemore accurate,but on the other
hand,thenumberof raw featuresmaybecomesubstantiallylarger
thanin thecaseof a wavelet-basedtexturerepresentation.

3. SIMILARITY MEASUREMENT

In thesimilarity measurement,we areinterestedin makinguseof
thesteerabilitypropertypresentin thefeaturesin orderto identify
equivalent features,whereequivalency will correspondto having
differentrotatedversionsof a uniqueimage.Thenext proposition
shows that the sampledcorrelationmatrix E � [ for an imageat a
givenlevel � andthesampledcorrelationmatrix EK�[_^ for thesame
imagebut rotatedcounter-clockwiseby anangle\ , arerelatedin a
simpleway.

Proposition 1 Given a steerable representation with � basic an-
gles, the correlation matrices E � [_^ and E � [ , both evaluated with
respect to the same set of basic angles ���#�������������#"h% , are related
as follows:

E � [ ^ 'BiK� \j�	E � [ i C � \j���

ic� \j�V' , � ��� � W`\a� , � ��� � W`\a�kHH�H , " ��� � WU\a�
, �������1W`\a� , �������VW`\a�kHH�H , "$�����VWU\a�

...
...

...
...

, �4����"eW`\j� , �����#"eWU\a�lHH�H , "$����"eW`\j�
(3)

In the particular case where the � basic angles are taken to be
equiespaced, then iK� \a� becomes an orthogonal matrix for any \ ,
and therefore, EK�[_^ and Ec�[ become orthogonally equivalent.

Proof: Theproof is givenin [8].
This propertyholdsfor every level independently. However,

notice that whena imageis rotated,all the decompositionlevels
will be equallyrotated. This meansthat given an image Z anda
rotatedversionZ ] of it, theFrobeniusnorms:

m E � [ WOic��WX\j�	E � [_^ iOCn��WX\j� m�o �P�V'32����������6�
(samerotationanglefor all thelevels),will tendto besmall.

Taking all this into account, the similarity measurementp � ZI����Z$��� betweenf differentimagesZh� andZ�� thatweproposeis
thefollowing:

p � Zh�4��Z����(' Min ] b
� * �

m E � [6q WOic��WX\j�	E � [Rr iQC/��WX\j� m o
(4)

Clearly, thoselevels containingmore energy will influence
more in the minimizationof (4) and thoselevels with small en-
ergy will have little influencein it.
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Fig. 1. (a) “bark” physically rotatedat s�t and 2�f�t degrees;(b)p � \j� for �O'5f���u��4s . Noticehow in all threecases,theminimum
is achieved for \v'ws�t degrees,which is theexact relative angle
betweenthetwo textureimagesamples.

Notice that when ZI� and Z$� are two rotatedversionsof the
sameimage,the angle \$x for which the minimum is achieved in
(4) shouldbe closeto the relative anglebetweenZI� and Z�� , that
is, theangleoneneedsto rotate(clock-wise)ZI� in orderto get Z�� .
Thus,oneway to seethegoodnessof our similarity measurement
(4) is to checkwhethertheestimatedangle\ x is actuallycloseto
therealrelativeanglebetweenf physicallyrotatedversionsof the
sameimage. Moreover, it might alsobe useful in somepractical
applicationsto find out approximatelythis relative angle. Fig. 1
illustratesthis by showing the function

p � \a�y' b� * � m EK�[6q WiQ��WX\a�	Ec�[zr i C ��WX\a� m o
, for thecasewhereZI� and Z�� arerotated

versionsof “bark” texturefrom theBrodatzset[11].
As explainedin Section4, this angularalignmenthasto be

performedmany times in the retrieval processand thus it is im-
portantto devise fastalgorithmsto find the minimizing angle \ x
in (4). In [8], it is shown that for �{'|f , \$x canbe found ana-
lytically, andfor �5}|f , it is possibleto designlow complexity
constrainedsteepestdescentalgorithms.This is becauseit canbe
proved that thenumberof stationarypointsof the functionbeing
minimizedin (4) is upperboundedandat thesametime,theangu-
lar distancebetweenany two contiguousstationarypointsis lower
bounded[8] makingit simpleto searchfor thesepoints in a few
non-overlappingangularintervals.

4. QUANTIZATION AND RETRIEVAL PROCESS

In thiswork, wehavetestedourproposedschemewhenthefeature
vectorsarequantizedusinga setof scalarquantizerswith three
differentquantizationalgorithms:(i) Simpleuniformquantization
(samestepsize);(ii) Non-uniformquantizationwith optimalbit al-
locationin a rate-distortionsense[9]; (iii) Classifiedquantization
optimizedin a rate-distortion-complexity sense,proposedby Xie
and Ortega [7]. The block diagramof this systemis illustrated
in Fig. 2. First, a completeK-meansbinary DTC tree ~ is de-
signedandthenthis treeis prunedin orderto getanoptimalsub-
tree � x�� ~ which serves as a pre-classifierandwhoseleaves
correspondto different classes.Eachclassis associatedwith a
differentencodercontainingasetof stepsizesselectedfrom apre-
viously predefinedset. Theoptimal subtree��x andencodersare

α � α � α �

� � � � � � � α

� � � � � � � � � �

� ��

Fig. 2. Block diagramof a classifiedvectorquantizationsystem.
Separateencoders� ,

) % aredesignedfor theclasses�X'52���HH�H��_� .
Theinput featurevector� is first classifiedandthenencodedwith
anencoderspecificallydesignedfor thecorrespondingclass.

optimizedusingtheG-BFOSalgorithm[10] so that the �w�a7 is
minimizedunderboth rateandcomplexity constraints.For more
details,see[7].

Theretrieval processis alwaysperformedwith theDTC ~ us-
ing thebest-first-searchandbranch-and-bound1. Let

p ���Y�_��� de-
notethedistanceof thequery � with node� in thetree.In orderto
ensurethatthissearchalgorithmfindsthecorrectclosestmatches,
we needto definea distance

p ���Y����� satisfyingthe propertythatp ���Y�_��� is a lower boundof the distancesof � to all the images
in node� , andwe needto take into accounttheangularalignment
process.Noticethat:

p ���Y�_Z���' ���¡ ]£¢ ���¤]�6Z�� (5)¥ ���¡ ]£¢ ��� ] �6Z$¦���W ¢ � Z$¦���Z�� (triang. inequality)¥ ���¡ ] ¢ ���¤]�6Z ¦ ��WU§¨� ��� (upperbound)

whereZ ¦ is thecentroidin nodet, §¨� ��� theradiusof node� given
by §¨� ���©'.�Oª�« [4¬� ¢ � Z$¦���Z�� and ¢ ���Y]���Z�� is given by the ex-
pressioninsidethe parenthesisin (4). Thus,defining

p ���Y�_��� asp ���Y�_���1'®���¡ n] ¢ ���¤]��Z ¦ �nWU§¨� ��� , then,it is guaranteedthatthe
best-first-searchmethodwill find thecorrectclosestmatch.Thus,
we seethatacrucialdifferentialpoint in ourwork is thatin there-
trieval processusingtheDTC, ateachnodeof thetree,alignments
betweenthequery(quantized)featurevectorandeachof the two
representingvectors(correspondingto the two branches)have to
beperformedusing(4). After thesetwo alignments,two distance
measurementsareperformedanda branchis chosen.

5. EXPERIMENTAL RESULTS

We have evaluatedthe performanceof our proposedmethodap-
plied to theBrodatztexture images[11] andhave alsocompared
with a standardwavelet transform.The featureswe have consid-
eredin thewaveletcasearealsocorrelationmatricesobtainedfrom
thecorrespondingfour waveletsubbands.We use f collectionsof
texture samplesof size 2�f�¯O°±2�f�¯ . The first collection, which
formsthenon-rotated imagedatabase,is obtainedby partitioning
eachof the 2�² Brodatz( ³g2�f�°�³g2�f ) non-rotatedtextureimages[11]
into 2gs non-overlappingtexturesubimagesof size 2gf�¯�°�2�fg¯ with
a total of f�t&¯ texture samples.This set is usedin training of the
DTC for retrieval. Thesecondcollection,which formstherotated

1This algorithmhasa complexity of ´DµN¶N·¸#¹3º (¹ is the numberof
featurevectorsin thedatabase)ascomparedto ´:µR¹3º in a linearsearch.



set,is obtainedby partitioning(for eachof the 2�² textureclasses)u largetextureimagesorientedat ²�t , s�t , »�t and 2�f�t degreesalso
into non-overlappingsubimagesof size 2�fg¯¨°U2�fg¯ andtakingtheu centralsubimages.In this way, in the seconddatabase,there
arealso 2�s texturesfor eachclassandtherefore,alsothesameto-
tal numberof f�t&¯ textures.A querytexturesampleis takenfrom
the rotated set and the featurevector is extractedandquantized
usingthe threequantizationschemesdescribedin Section4. We
assumethateachquantizedcomponentof thefeaturevectoris in-
dependentlyentropy coded. The �¼'½2gs closesttexturesfrom
thenon-rotated setareobtainedandtheaverageretrieval precision
over all therotatedtexturesamplesis measured.

Withoutcompressingthefeatures,theaverageretrieval perfor-
mancefor thesteerablecaseis of s�¾�� ta²�¿ and sgs��N³�³g¿ for �K'Àf
and �`'vu respectively, while in thewaveletcase,theperformance
is of ua2��N¯�³g¿ , an improvementof about fg³�¿ is obtained.Fig. 3
shows the retrieval performanceof compressedsteerablefeature
vectorsfor �`'5f and �U'vu . Wecanclearlyseethattheclassified
quantizerachievesthebestperformanceamongthethreequantiza-
tion schemes.By usingtheclassifiedquantizerwith expectedtree
length�('5f (complexity constraint),theretrieval performancede-
gradesvery gracefully. Evenwith thebit ratereducedto around1
bit/element,we canstill achieve aboutthe sameprecisionasus-
ing uncompressedfeature. Fig. 4 shows the comparisonof the
retrieval performancewith compressedfeaturesbetweensteerable
transformwith �Q'±u anda standardwavelet transform.Therea-
sonwhy we comparethesetwo casesis that thedimensionof the
featurevectorunderbothcasesis thesame(?Á'vu&¯ ), sothatthey
will result in a comparablebit rate. Again, we seethat steerable
achievesmuchbetterretrieval precisionthanwavelet over all bit
rates. With respectto the retrieval complexity reductionby em-
ploying a DTC insteadof a linear search,we have computedthe
numberof distancecomputationsthathaveto beperformedto find
the �Â'Ã2�s closestmatches.Insteadof 208 distancecomputa-
tionsasin thecaseof linearsearch,theDTC requireson average
121.97for �U'3f and39.82for �O'vu .
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Fig. 3. AverageRetrieval Performanceusinga ² level steerable
pyramidfor thethreedifferentquantizationalgorithms:(a) �Q'3f
and(b) �U'vu .
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