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ABSTRACT

While H.264 has been known for its superior coding performance over its predecessors, its encoding complexity
can be high, especially if an exhaustive search is performed for the rate-distortion optimal mode among many
available coding modes for each macroblock. In this paper, we show that in the context of coding 3D graphically
rendered frames, depth information—the distance between rendered pixels of objects and the virtual camera
popularly used to determine object occlusion during graphics rendering—can be exploited to expedite the mode
selection process at a negligible cost of decrease in coding performance. Our proposed techniques take into
consideration that regions of similar depth are likely to correspond to regions of uniform motion, an observation
that can be exploited to speed-up the selection of block sizes for motion compensation. In our experiments, we
show that complexity of the full motion vector search can be reduced by 40% at the expense of small increase
of less than 0.7% in bitrate and small decrease of less than 0.07dB in PSNR. Moreover, because our proposed
schemes operate in the depth domain, we show that they can be easily combined with an existing pixel-domain
mode selection algorithm in the literature leading to similar complexity reductions.

1. INTRODUCTION

In recent years we have witnessed phenomenal growth of networked games like Counter-Strike1 and Sauerbraten2

on the Internet, particularly in South Korea and Japan. Along the way, exceptionally skilled and charismatic
game players have developed cult followings, and game watching has become a popular pastime for many. One
example is Half-Life Television,3 which allows passive viewing of a few selected real-time games for a large
audience. Capitalizing on this trend, we have developed a networked video system called ECHO4 (Enabling
Community of Hecklers and Observers) that “transcodes” game graphics to standard compliant video like H.26x
and streams the encoded bitstream to ECHO clients for game viewing and heckling. See Figure 1 for a system
overview of ECHO. Unlike Half-Life Television,3 which requires each client to possess a potentially computation-
ally expensive graphics rendering engine to render thousands of triangles per second, ECHO viewers only need
relatively low-complexity video decoders to view game content, while the burden of rendering graphics is pushed
back upstream to the Observer View Generator (OVG) in the ECHO system. In so doing, an ECHO client can
change game views of the same game or “channel-surf” among live games simply by requesting different encoded
streams from OVG. A key determinant of performance for ECHO, therefore, is how well OVG can encode videos
from graphically rendered game views in real-time. This is the focus of the paper.

It is well known that the recent video coding standard H.2645 has significantly better coding performance as
compared to previous standards like H.263, and hence enabling H.264 encoding in OVG is preferred for better
video quality. However, complexity of real-time H.264 encoding is high, and a major source of complexity comes
from the existence of many coding modes. As an example, motion compensation based on 16 × 16 blocks only
in H.263 is replaced by compensation based on various possible block sizes (4 × 4, 4 × 8, 8 × 4, 8 × 8, 8 × 16,
16 × 8, in addition to 16 × 16), with the block size chosen for a specific part of a video frame typically based
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on rate-distortion (RD) criteria. While today’s more powerful workstations can now handle real-time H.264
encoding for smaller screen sizes like CIF (352 × 288) and QCIF (176 × 144), OVG needs to simultaneously
generate multiple game views for each of multiple games, so a low-complexity real-time H.264 encoder is highly
desirable.

Numerous techniques for efficient mode selection for H.264 have been proposed in the literature.6–10 Most of
these works construct heuristic decision trees that prune subsets of candidate modes based on metrics evaluated
using information derived from the pixel domain. Unique to 3D graphically rendered frames, however, is the
availability of depth information:11 the distances from rendered pixels of objects to the virtual camera. Depth
information is commonly used for 3D graphics rendering: when objects are drawn onto the frame buffer sequen-
tially, the graphics renderer determines which pixels of objects are closer to the camera, and hence are occluding
others, by the depth values of pixels of objects. Given the availability of depth maps for the frames to be coded,
in this paper we propose to exploit such information—a unique source of side information beyond plain raw
pixels—to speed up the H.264 encoding process. In particular, we show that by sequentially evaluating subsets
of depth values within a 16×16 macroblock (MB) in a decision tree, we can quickly eliminate unlikely block sizes
from the candidate list. In so doing, we can eliminate 40% of the full search complexity at the modest cost of less
than 0.7% increase in bitrate and less than 0.07dB decrease in PSNR. The key intuition behind our work lies in
the observation that regions of similar depth are more likely to correspond to regions of uniform motion; thus,
if readily available depth information is indicative of uniform motion in a spatial region, it becomes possible to
avoid considering smaller block-sizes for motion estimation, leading to complexity reductions in mode selection
with small coding performance penalty.

The outline of the paper is as follows. We first discuss related work in Section 2. We then give an overview
of the ECHO system in Section 3. Next we discuss how depth similarity can be quantified in Section 4. Our
proposed techniques to optimize mode selection based on depth information are discussed in Section 5. We next
discuss how to combine our approach with an existing fast mode decision algorithm in Section 6. Experimental
results that quantify different tradeoffs and conclusions are provided in Sections 7 and 8, respectively.

2. RELATED WORK

In this paper we focus on video coding techniques to support online game viewing. Video coding for this
application has been considered by other authors.12 A key difference with respect to prior work is that we
assume that the encoder has access to the frame buffer (including both the color buffer and the Z-buffer) but
not the graphics rendering engine. That means that the encoder takes as input only rendered video frames and
pixel-wise depth maps, both of which can be accessed independently from the frame buffer via 3D graphics APIs
such as OpenGL.13 In contrast, Bharambe et al.12 assume that the encoder has complete knowledge of the
rendering engine, including shapes and locations of various objects that appear on a scene. In practical terms,
our game-independent system can be easily implemented with any game client, while previous game-dependent
systems12 need to be co-developed with every single implementation of a game client. Besides the obvious high
development cost, it also raises copyright concerns as game software developers may be reluctant to provide
source code of game clients to third parties.

In our previous system implementation,4 we had used a simple H.263 video encoder in OVG for complexity
reasons. Depth information was used to determine the relative importance of different regions in the scene, so
that visual overlays would not obscure important objects. We also previously investigated how depth information
can be used for bit allocation,14 so that areas closer to the virtual camera are deemed more important and are
allocated more encoding bits.

Due to its complexity and direct effect on coding performance, optimizing mode selection has been a popular
topic for H.26315–17 and now H.264.6–10 As mentioned in the Introduction, unlike existing works that are based
on pixel domain information, our proposed mode selection technique is based on depth information. We will
discuss a hybrid approach that takes advantages of both pixel domain and depth information in Section 6.
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Figure 1. The ECHO system consists of an Observer View Generator (OVG) to render live game content into streaming
video, and Heckling Coordinators (HC) to support customized visual overlays or heckling. A user can be a passive game
“Observer” or an active “Heckler”.

3. ARCHITECTURE OVERVIEW

A system overview of ECHO is shown in Figure 1. A networked game is hosted by a game server, and typically
involves two or more game players who control the game clients. To support game viewing for non-players over
a wide range of devices, it is desirable to convert the game content into standard-compliant video streams. This
is achieved by the Observer View Generator (OVG). Inside OVG is a ghost client that receives real-time gaming
data from the game server and draws frames of the game sequence from a chosen perspective. The generated
frames are then encoded in real-time by a video encoder and are then passed to a video streaming server that
supports RTP streaming.18 An ECHO client interested in observing the game can then send an RTSP request
to OVG, which upon request will setup an RTSP session and send two RTP streams, one each for video and
audio, to the requesting observer.

Alternatively, an ECHO client can interact with other fellow observers in real-time via live-captured speech
and visual overlays of avatars19 or talking heads that are controllable by users’ inputs, while observing the same
game. This is called a heckling session, and the participants are called hecklers. In such case, the hecklers will
request a heckling session from a Heckling Coordinator, who in turn will request a live stream from OVG on
their behalf, overlay heckling characters on the encoded stream corresponding to the hecklers’ inputs, and stream
the modified video bitstream to hecklers in the session. This paper focuses only on video encoding at OVG; for
further details about ECHO, see Cheung et al .4

4. DEVELOPING METRICS BASEED ON DEPTH INFORMATION

Our goal is to use depth information generated by the 3D graphics rendering engine in order to facilitate video
encoding. Primarily, we seek to use depth information to infer useful properties of the motion field. We can
construe two intuitions based on depth information. First, we would expect regions that have “similar” depth to
be more likely to exhibit uniform motion as well. Second, when performing motion estimation across frames, we
would expect that two blocks in different frames will be more likely to be well matched after motion estimation if
their depths are “similar”. In this paper, we exploit the first intuition to reduce the complexity of mode selection.
Exploiting the second intuition to speed up motion estimation is one of our planned future topics.

Note that in both cases we are invoking a notion of similarity between depth maps (either within a block or
across blocks), so in what follows we first present two different arguments for absolute and relative value metrics
that can potentially help quantify the similarity of regions at different depths. We will test both metrics in the
experiments presented later. We then provide a specific formulation for the case when depth is obtained from a
3D graphics card.

4.1. Argument for Absolute Value Metric

Viewing from a camera, a singular object likely has gradually changing depth values on its surface. When there
is an abrupt discontinuity in depth values along a spatial axis within a block (see Figure 2a)), there are likely two
different objects across the discontinuity, each of which likely has its own unique motion. One way to discover
these discontinuities is to look at the absolute difference in depth values between spatially neighboring pixels
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Figure 2. Arguments for Absolute and Relative Value Metrics

and/or blocks. Hence we advocate an absolute value metric, z′ − z, to identify discontinuity between block A of
depth z and block B of depth z′.

4.2. Argument for Relative Value Metric

Consider now instead two objects at different depths z and z′ as shown in Figure 2b). When viewing frames
displaying these two objects, a distance of one pixel in the video frame corresponds to different “real world”
distances for each object. Denote d and d′ the real distances corresponding to one pixel distance for the objects
at depth z and z′, respectively. From basic pinhole camera geometry20 we have that:

f
d

z
= f

d′

z′
(1)

where f is the depth of the focal plane and therefore

d

z
=

d′

z′
(2)

or
d′

d
= 1 +

δz

z
, (3)

where z′ = z + δz. Note that (3) essentially implies that we should not focus on absolute depth differences in
order to assess the effect of depth changes on pixel-domain matching, since the same absolute depth difference
will have a greater impact in terms of pixel distortion when objects are close to the camera. Hence we advocate
a relative value metric like (3) to evaluate “distance distortion” as an object appears at different depths. Clearly,
metrics such as (3) are simplistic in that they do not take into consideration of the characteristics of the objects.
For example, objects appearing at different depths but lacking texture may in fact lead to a good match∗.
Conversely, highly textured objects may be hard to match even if their depth is relatively similar.

4.3. Estimating Depth Similarity from Z-buffer Data

We now describe how to use directly depth information available in the Z-buffer of a typical graphics card. In
a Z-buffer, depth information for each pixel is represented by a finite N -bit representation, with N typically
ranging from 16 to 32 bits. Because of this finite precision limitation, instead of true depth values z, common
implementations of Z-buffers use quantized depth values11, 21 zb of N -bit precision:

zb = 2N

(

a +
b

z

)

(4)

where

a =
zF

zF − zN
and b =

zF · zN

zN − zF
. (5)

∗As usual in the context of video coding we are only interested in how well a particular portion of a frame can be
predicted from previously transmitted data, which does not require identifying the ground truth match.
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zN and zF are the z-coordinates of the near and far plane as shown in Figure 3 for perspective viewing.11 Near
plane is the projection plane, while far plane is the furthest horizon from which objects would be visible; zN and
zF are carefully selected by graphics programmers to avoid erroneous object occlusion21 due to rounding of true
depth z to quantized depth zb. (4) basically means that depth information is quantized non-uniformly; objects
close to the camera have finer depth precision than objects far away, which is what is desired in most rendering
scenarios. We can also define a normalized quantized depth:

z0 =
zb

2N
, (6)

with z0 ∈ [0, 1]. Either the scaled integer version zb or the normalized version z0 of the quantized depth can
typically be obtained directly from the graphics card.

Note that as z approaches zF (resp. zN), z0 approaches 1 (resp. 0). Since typically zF >> zN we can
approximate

a ≈ 1 and b ≈ −zN, (7)

and therefore

z =
zN

(1 − z0)
(8)

Thus in what follows, we will be using either an absolute or relative value metric to determine whether two
depths should be considered significantly different.

5. MODE SELECTION BASED ON DEPTH INFORMATION

Figure 4. Original Image (left), Depth Values (center), and Selected Modes (right) of Frame 30 in Counter-Strike

Sequence. For Selected Modes (right), green block indicates Skip, red block indicates Intra and blue block indicates
Inter.



Given the discussion of metrics in the previous section, we now develop several schemes to pre-prune H.264
coding modes using depth information from the set of candidate modes, before starting a pixel-domain mode
selection algorithm. To evaluate our system we use two representative pixel-domain mode selection algorithms:
i) the full search algorithm implemented as low-complexity mode (LC) in the JM version reference software
12.422 and ii) the faster algorithm Yin et al.7 (YTTB), which uses a specific decision tree based on expected
properties of pixel-domain data. We consider these two algorithms to be representative of techniques proposed
in the literature; we expect that similar results could be achieved by combining our proposed scheme with other
pixel-domain mode decision tools. As will be seen, our proposed pre-pruning schemes can often obtain additional
speedups on top of those provided by a given pixel-domain algorithm. This is because the depth information
can capture scene structure that is difficult to obtain from the pixel domain. For example, using simple criteria
based on depth, it may be easier to determine that a set of pixels belong to a single object, something that could
be more challenging based on pixel intensity information alone.

Figure 5. Original Image (left), Depth Values (center), and Selected Modes (right) of Frame 80 in Counter-Strike

Sequence. For Selected Modes (right), green block indicates Skip, red block indicates Intra and blue block indicates
Inter.

To motivate our pre-pruning schemes, consider Figure 4 and 5, each showing the original image in a captured
Counter-Strike1 sequence in QCIF (176 × 144), the quantized depth values zo’s obtained from the Z-buffer,
and the corresponding “optimal” coding modes selected using LC in JM version 12.4. We see that among the
selected INTER blocks with larger block sizes (8 × 16, 16 × 8, 16 × 16, SKIP ), they tend to have more uniform
depth values. This validates our intuition discussed earlier that blocks with “similar” depth values tend to have
uniform motion.
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Figure 6. Depth-based Decision Tree to Prune H.264 Coding Block Sizes from Candidate Set

To pre-prune coding blocks with dissimilar depth values, we construct a decision tree starting from small
blocks to large blocks as shown in Figure 6. We first compare the depth values of four 4 × 4 blocks within each
8 × 8 block (say A[0], . . . , A[3] of 8 × 8 block A) using a similarity function sim() (to be discussed). If they are
sufficiently similar (< τ0), then we remove block sizes smaller than 8× 8 from the candidate set (skip8sub := 1).
We then compare depth values of the four 8 × 8 blocks in two parallel tracks: we check if the horizontal 8 × 8



blocks are sufficiently similar (< τ), and we check if vertical 8 × 8 blocks are sufficiently similar. If either of
them is true, we eliminate 8 × 8 block size from consideration (skip8x8 := 1). Finally, if the two 8 × 16 blocks
(16 × 8 blocks) are similar (< τ1), then 8 × 16 block size (16 × 8 block size) is pruned as well (skip8x16 := 1 or
skip16x8 := 1). Note that because 16 × 16 contains only one motion vector, it has low coding cost, and so it is
never eliminated from the candidate set.

Obviously, the performance and complexity of the depth-based decision tree depends on how the similarity
function sim() is defined. In the following sections, we discuss how sim() can be implemented in increasing
complexity based on our discussion on metrics in Section 4.

5.1. Pre-pruning Scheme 1: Min-Max in Z-Buffer

In this low-complexity pre-pruning scheme, we find the maximum and minimum values of zo from the Z-buffer
in a given block. By (6), we know zo is monotonically decreasing in z, so the maximum (minimum) value in zo

corresponds to the minimum (maximum) value in z. We then define the similarity of a block by applying either
an absolute value or relative value metric using the maximum and minimum values of zo. More precisely, given
two blocks A and B, we compute:

zmin(A) =
zN

1 − maxzo∈A(zo)
, zmax(A) =

zN

1 − minzo∈A(zo)

sim(A, B) = zmax(A ∪ B) − zmin(A ∪ B) or
zmax(A ∪ B) − zmin(A ∪ B)

zmax(A ∪ B) + zmin(A ∪ B)
(9)

Given four blocks A, B, C and D, sim(A, B, C, D) can be similarly defined as follows:

sim(A, B) = zmax(A ∪ . . . ∪ D) − zmin(A ∪ . . . ∪ D) or
zmax(A ∪ . . . ∪ D) − zmin(A ∪ . . . ∪ D)

zmax(A ∪ . . . ∪ D) + zmin(A ∪ . . . ∪ D)
(10)

For this scheme we use the same threshold τ throughout the pre-pruning tree in Figure 6b):

τ0 = τ1 = τ. (11)

Notice that in this scheme, we avoid any direct conversion from zo in the Z-buffer to true depth z. Considering
only computation up to 8×8 block size in the depth-based decision tree in Figure 6 (computation in larger block
sizes contributed marginally per pixel), the computation cost per pixel using the absolute value metric is:

C1 =

(

2 ∗
63

64

)

∗ cost(comp) +

(

3 ∗
1

64

)

∗ cost(add) +

(

2 ∗
1

64

)

∗ cost(mult)

≈ 2 ∗ cost(add) (12)

where cost(comp), cost(add), and cost(mult) denote the estimated costs of comparisons, additions and multipli-
cations, respectively. In the approximation, we assume cost(comp) is about as complex as cost(add).

5.2. Pre-pruning Scheme 2: Average Depth Values

In this mid-complexity pre-pruning scheme, we first convert all zo-values from the Z-buffer to true depth z-values
using (8), then compute the sum of the z-values. The similarity function sim() using an absolute value metric
is then the largest difference in sums between any two blocks. (Relative value metric can be similarly defined as
done in previous pre-pruning scheme and hence is omitted.) More precisely, given two blocks A and B, sim(A, B)
is:

sim(A, B) =
∑

(A) −
∑

(B),
∑

(A) =
∑

zo∈A

zN

(1 − zo)
(13)



Similarly, given four blocks A, B, C and D, sim(A, B, C, D) is:

sim(A, B, C, D) = max
{

∑

(A),
∑

(B),
∑

(C),
∑

(D)
}

− min
{

∑

(A),
∑

(B),
∑

(C),
∑

(D)
}

(14)

Because of the different sizes of the cumulated sums, we scale the thresholds in the pre-pruning tree in Figure
6b) as follows:

τ0 = τ/4, τ1 = 2τ (15)

The computational cost per pixel in this case is:

C2 =
5

64
∗ cost(comp) +

(

1 +
60 + 1

64

)

∗ cost(add) + 1 ∗ cost(mult)

≈ 2 ∗ cost(add) + 1 ∗ cost(mult) (16)

5.3. Pre-pruning Scheme 3: Sobel Operator

In the high-complexity pre-pruning scheme, like the mid-complexity scheme we also first convert all zo values
from the Z-buffer to true depth using (8). For each pixel, we then apply the Sobel operator ,23 which is commonly
used in image processing to detect edges in images. Wu et al.9 had also proposed to use Sobel operator in the
pixel domain to detect singular objects in coding blocks, but unlike their work, we apply the Sobel operator
in the depth domain. Applying the Sobel operator in the depth domain instead of the pixel domain makes it
easier to identify singular objects with complex texture. As done in Wu et al.,9 the Sobel operator involves the
following operations:

dxi,j = pi−1,j+1 + 2pi,j+1 + pi+1,j+1 − pi−1,j−1 − 2pi,j−1 − pi+1,j−1

dyi,j = pi+1,j−1 + 2pi+1,j + pi+1,j+1 − pi−1,j−1 − 2pi,j − pi−1,j+1 (17)

Amp( ~Di,j) = |dxi,j | + |dyi,j |. (18)

The similarity function sim() is then simply defined as number of pixels with gradients Amp( ~Di,j)’s greater
than a pre-set gradient threshold θ:

sim(A, B) =
∑

(i,j)∈A∪B

1(Amp( ~Di,j) > θ) (19)

where 1(c) = 1 if clause c is true, and = 0 otherwise. Similarly, given four blocks A, B, C and D, sim(A, B, C, D)
is:

sim(A, B, C, D) =
∑

(i,j)∈A∪B∪C∪D

1(Amp( ~Di,j) > θ) (20)

Threshold τ in the pre-pruning tree is set to constant as done in pre-pruning scheme 1. The computational
cost per pixel for this scheme is:

C3 = (2 + 1) ∗ cost(comp) +

(

1 + 10 + 1 +
63

64

)

∗ cost(add) + (1 + 4) ∗ cost(mult)

≈ 16 ∗ cost(add) + 5 ∗ cost(mult) (21)

6. COMBINING DEPTH-BASED & PIXEL-BASED MODE SELECTION
ALGORITHMS

In this section, we show how our proposed pre-pruning schemes can be implemented in combination with an
existing mode selection algorithm like YTTB7 to further reduce computation at minimal bitrate increase. We
first describe the YTTB mode selection, then discuss the combination of depth-based pre-pruning scheme with
YTTB.
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6.1. YTTB Mode Selection

Like other mode selection algorithms6, 8 that operate in the pixel domain, YTTB makes an astute assumption
about the rate-distortion (RD) surface for different coding modes, and as points on the surface corresponding
to some coding modes are generated, other points can be eliminated without actual computation of their corre-
sponding coding modes. In YTTB, the property being exploited is RD monotonicity with respect to block size:
if RD cost of coding blocks 4 × 4, 8 × 8 and 16 × 16 are strictly decreasing, then the remaining potential block
candidates are only 8 × 16 and 16 × 8 that are between two best performing blocks thus far, 8 × 8 and 16 × 16.
Conversely, if RD cost of coding blocks 4× 4, 8× 8 and 16× 16 are strictly increasing, then remaining potential
block candidates are only 4× 8 and 8× 4 that are between two best performing blocks thus far, 4× 4 and 8× 8.
If RD costs of coding blocks 4×4, 8×8 and 16×16 are neither strictly increasing nor decreasing, then all coding
blocks must be tried. The decision tree for YTTB is shown in Figure 7. There are two thresholds γ1 and γ2 in
YTTB; for our experiments, we set both to zero.

6.2. Combined Pre-pruning Schemes & YTTB

To combine one of our proposed pre-pruning schemes with YTTB, we first execute a chosen depth-based pre-
pruning scheme to limit the potential coding block-size candidates to a smaller set, and set the RD costs of the
pruned coding block sizes to ∞. We then execute YTTB as described previously. Notice that our depth-based
pre-pruning tree always prunes smaller coding blocks before larger coding blocks. That means that RD costs are
set to ∞ successively from smaller blocks to larger blocks, and we will never lead YTTB to eliminate block sizes
erroneously if the original RD surface is itself not monotonic.

7. EXPERIMENTAL RESULTS

In the experimental results section, we test the effectiveness of our proposed pre-pruning schemes using a cap-
tured 100-frame game sequence from popular Internet game Counter-Strike.1 Frames of a viewing client were
rendered at 10 frames per second (fps) at resolution 640 × 480, then scaled down to QCIF 176 × 144 for H.264
encoding. Depth values of these frames were captured in the Z-buffer as well. With the exception of the first
frame which was coded as I-frame, the rest of the frames were coded as P-frames. We used the available JM
version 12.422 as the baseline codec. Quantization parameters were kept constant throughout the sequence.

7.1. Complexity and Coding Efficiency Tradeoff

We begin by examining the tradeoffs among bitrate, visual quality (Peak Signal-to-Noise Ratio (PSNR)) of
encoded video and encoding complexity for low-complexity pre-pruning scheme minMax discussed in Section 5.
By running minMax in combination with the low-complexity mode (LC) of JM 12.4 and varying the threshold τ ,
we obtained the bitrate-complexity reduction and PSNR-complexity reduction graphs shown in Figure 8a) and
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Figure 8. Rate-distortion-Complexity Tradeoffs for minMax with LC for Counter-Strike Sequence

Figure 8b), respectively. We see that as τ increases, the complexity reduction—the fraction of full motion search
pre-pruned by minMax—increases, and correspondingly bitrate and PSNR increases and decreases respectively.
We see the range of PSNR decrease is actually quite narrow. We also see that the rate of bitrate increase worsens
after complexity reduction of 0.4. This seems to be a characteristics of all our proposed pre-pruning schemes.
As a result, we adjust the thresholds in all our pre-pruning schemes so that the complexity reduction in each
case is roughly at 40%.

7.2. Metric Selection
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LC+minMax(abs)

LC+minMax(ratio) Encoding Scheme QP PSNR Bitrate

minMax(abs) 27 34.65 236.48
minMax(ratio) 27 34.64 237.33

minMax(abs) 29 33.00 179.35
minMax(ratio) 29 32.99 180.21

minMax(abs) 31 31.64 139.54
minMax(ratio) 31 31.65 140.07

minMax(abs) 33 30.15 99.26
minMax(ratio) 33 30.14 99.65

minMax(abs) 35 28.70 67.24
minMax(ratio) 35 28.69 67.41

a) Distortion-Rate Tradeoff for Counter-Strike b) Numerical Comparison for Counter-Strike

Figure 9. Rate-distortion Performance for Different Metrics with LC-minMax for Counter-Strike Sequence

We next investigate the appropriate metric for our pre-pruning schemes. As discussed in Section 4, we can
use either an absolute value metric or a relative value metric; we examine both metrics for minMax here. As
discussed in Section 5.1, the absolute value metric (abs) for minMax simply finds the absolute difference between
the maximum and minimum depth in a block. The relative value metric (ratio) divides the same absolute
difference by the sum of the maximum and minimum depth. After the threshold in each case had been adjusted
to have a complexity reduction of 40% from full motion search, we see rate-distortion performance of both metrics



in Figure 9. We see that abs is point-by-point better than ratio. We can therefore conclude that abs is a more
suitable metric for our data set, and will henceforth use abs as our chosen metric for subsequent evaluation of
pre-pruning schemes.

7.3. Coding Performance
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LC

LC+minMax

LC+avgDepth

LC+sobel

Encoding Scheme QP PSNR Bitrate

LC 27 34.72 234.16
LC+minMax 27 34.65 236.48
LC+avgDepth 27 34.65 237.01

LC+sobel 27 34.64 237.07

LC 31 31.71 138.71
LC+minMax 31 31.64 139.54
LC+avgDepth 31 31.65 139.87

LC+sobel 31 31.64 139.89

LC 35 28.74 66.88
LC+minMax 35 28.70 67.24
LC+avgDepth 35 28.69 67.38

LC+sobel 35 28.69 67.47

a) Distortion-Rate Tradeoff for Counter-Strike b) Numerical Comparison for Counter-Strike

Figure 10. Rate-distortion Performance for Different Pre-Pruning Schemes with LC for Counter-Strike Sequence

To compare our proposed pre-pruning schemes, in Figure 10a) we plotted the RD performance of the discussed
pre-pruning schemes when used in combination with LC: LC+minMax, LC+avgDepth and LC+sobel corresponding
to the three discussed in Section 5. We again adjusted the threshold τ in each case so that the reduction in
complexity from LC is roughly 40%. We see that there is a very slight drop in RD performance for the three
pre-pruning schemes relative to the full search. Looking more closely at the numerical comparison in Figure
10b), we see that LC+minMax actually has the best average performance of the three. In particular, LC+minMax,
LC+avgDepth and LC+sobel have average bitrate increase of 0.67%, 0.79% and 0.87% in bitrate relative to LC,
respectively, and average PSNR decrease of 0.066dB, 0.064dB and 0.074dB, respectively. Given minMax has the
lowest complexity, we can conclude minMax is the preferred pre-pruning scheme for this data set.

We conducted the experiment again, this time using YTTB in combination with each for the three pre-
pruning schemes we have proposed. We plotted their RD performance in Figure 11a). Note that complexity
reduction of close to 40% relative to YTTB is maintained in the experiment. We again see that there is a very
slight drop in RD performance for the three pre-pruning schemes relative to YTTB. Looking more closely at the
numerical comparison in Figure 11b), we again see that YTTB+minMax has on average the smallest increase in
bitrate for about the same PSNR. In particular, YTTB+minMax, YTTB+avgDepth and YTTB+sobel have average
bitrate increase of 0.44%, 0.71% and 0.75% relative to YTTB, respectively, and average PSNR decrease of 0.066dB,
0.072dB and 0.072dB, respectively. Again, given minMax has the lowest complexity, we can conclude minMax is
the preferred pre-pruning scheme for this data set.

8. CONCLUSIONS

Depth information—the distance between rendered pixels of objects and the virtual camera—are popularly used
by graphics renderer to determine object occlusion during image rendering. In this paper, we propose to use
depth information to expedite MB’s mode selection in H.264 encoding when the encoded source is graphically
rendered images. We show that complexity of the full motion search can be decreased by 40% at the modest
cost of less than 0.7% increase in bitrate and less than 0.07dB decrease in PSNR.
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YTTB

YTTB+minMax

YTTB+avgDepth

YTTB+sobel

Encoding Scheme QP PSNR Bitrate

YTTB 27 34.73 234.02
YTTB+minMax 27 34.65 236.90
YTTB+avgDepth 27 34.65 236.68

YTTB+sobel 27 34.65 237.16

YTTB 31 31.71 138.95
YTTB+minMax 31 31.64 139.58
YTTB+avgDepth 31 31.64 140.08

YTTB+sobel 31 31.64 139.81

YTTB 35 28.74 67.09
YTTB+minMax 35 28.70 67.01
YTTB+avgDepth 35 28.68 67.29

YTTB+sobel 35 28.68 67.31

a) Distortion-Rate Tradeoff for Counter-Strike b) Numerical Comparison for Counter-Strike

Figure 11. Rate-distortion Performance for Different Pre-Pruning Schemes with YTTB for Counter-Strike Sequence
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