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Abstract
As wavelet-based image coding is set to become more

widely used (e.g. with the completion of the JPEG2000
standard), memory efficiency for wavelet-based coding is
becoming an increasingly important issue. In this paper we
present a complete system to perform low memory wavelet
image coding. Our approach is “line-based” in that the
images are read line by line and only the minimum required
number of lines is kept in memory. The line-based trans-
form is combined with a low memory entropy coder that
does not require any global image information. Our sys-
tem achieves a large (two orders of magnitude) reduction in
memory requirements compared to other available coders,
with limited performance loss (e.g., less than 0.5dB).

1 Introduction
Memory efficient compression algorithms are needed

for some cost-sensitive applications (e.g. printers or dig-
ital cameras) and are also desirable in general purpose
platforms (e.g., lower memory requirements can speed up
computation by allowing more effective caching.) Discrete
Cosine Transform (DCT) based compression (e.g., JPEG
[1]) is memory efficient, since processing is based on small
blocks. In this paper we investigate memory efficiency for
wavelet-based image coding algorithms, such as those that
will make the core of the upcoming JPEG2000 standard
[2].

Algorithms such as those in [3, 4, 5], are representa-
tive of the state of the art in wavelet coders. These al-
gorithms assume that the wavelet transform (WT) of the
whole image is computed before coding, so that some use-
ful “global” information (e.g., maximum and minimum co-
efficient values in one subband, energy per subband, etc)
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can be derived and used for coding (e.g. for classification,
initialization of the probability models used by a quantizer,
etc.) Clearly, the corresponding memory utilization will be
of the order of the image size. Instead, in this paper we de-
scribe a wavelet-based coder with a memory requirement
well below the size of the input image. An early version of
this work was presented in [6] and a complete description
of the system can be found in [7]. A complete encoder and
decoder system that operates with low memory requires
(i) a wavelet transform implementation that uses as little
memory as possible and (ii) an algorithm that can com-
press wavelet coefficients as they are generated and does
not rely on global information.

Low memory implementations of the WT were first ad-
dressed in [8], where only one-dimensional (1D) trans-
forms were studied. This work did not consider the syn-
chronization issues that arise when both forward and in-
verse transform memory requirements are considered, and
it focused only on the WT (i.e., the impact of low mem-
ory operation on a potential compression algorithm was not
studied.) One straightforward approach to address overall
(i.e., transform and coding) memory is to tile a large im-
age into smaller subimages, which are then independently
coded. This approach has well known drawbacks in terms
of coding performance. The more efficient approach of
[9] uses a standard algorithm (e.g. [3]), which buffers the
whole image at the encoder, but then allows the bit-stream
to be re-ordered before transmission so as to reduce the
memory utilization at the decoder.

Unlike prior work, we address both encoder and de-
coder memory utilization and consider a complete coding
system. To address the low memory wavelet transform re-
quirement we propose a line-based implementation, which
yields the same results as a “normal” row column filter-
ing implementation, and where, we address memory issues
arising from the need to synchronize encoder and decoder.
Our proposed line-based transform, which has been incor-
porated in the JPEG 2000 verification model, is discussed



briefly in Section 2; we refer to [7] for more details. Our
focus in this paper is the novel context-based encoder de-
scribed in Section 3. This encoder achieves excellent com-
pression performance while not requiring any global infor-
mation to be available. Wavelet coefficients are generated
line-by-line in an interleaved fashion and are encoded and
transmitted as soon as they are generated. Thus, overall,
only a few lines of wavelet coefficients (rather than entire
subbands) will have to be buffered before encoding. The
experimental results of Section 4 show that, with respect to
existing coders, the degradation in performance is modest
(e.g., less than 0:5dB in average with respect to [4]) al-
though we do not support progressive transmission as [3].
In terms of memory utilization our results show reductions
of almost two orders of magnitude with respect to widely
available implementations of wavelet image coders.

2 Line-based Wavelet Transform
Throughout this paper we will assume that the encoder

can scan or read an image one line at a time. Obviously,
performing a 1D WT on a single line can be done with-
out significant memory. However, in order to implement
the separable 2D transform the next step is to perform col-
umn filtering and here memory utilization can become a
concern. For example, a completely separable implemen-
tation would require that all the lines be filtered before col-
umn filtering starts and thus memory sizes of the order of
the image size will be required. The obvious alternative is
to start column filtering as soon as a sufficient number of
lines, as determined by the filter length, has been horizon-
tally filtered. For example, for a one level decomposition,
if we use 9-7 tap filters we only need 9 image lines in order
to start the column filtering and generate the first line of
output wavelet coefficients.

This online computation approach forms the basis of
our wavelet filtering and was considered in [8] for the 1D
case. Assume X is the width of an image and L is the
maximum length of a filter in a filter bank. Because dyadic
decompositions are employed (and thus after each level,
only haff the output coefficients are filtered again) it can
be shown that the memory needed for filtering is 2L lines,
asymptotically as the number of levels of decomposition
increases.

However, as illustrated in Fig. 1, additional memory
is needed because unbalanced decomposition trees (e.g.,
dyadic decompositions) are used. As can be seen in Fig. 1,
some of the highpass samples (H1(z) filter) have to be
buffered at either encoder or decoder, since they can only
be used for reconstruction with the output of the lowpass
branch, and this output is delayed. Thus, it will be neces-
sary to introduce some additional “line management” func-
tionality to synchronize encoder and decoder.

For 1D signals and N levels of decomposition, the

memory needs for the nth level of decomposition will con-
sist of (i) a filtering buffer of size L, and (ii) a synchro-
nization buffer of size DN�n = (2N�n � 1)S. There-
fore the total memory size needed for N levels of de-
composition for both analysis and synthesis filter banks is:
Ttotal;N =

PN�1
n=0 (DN�n+L) = (2N �N � 1)S+NL.

Note that as the number of levels increases synchroniza-
tion buffers become a major concern. For 2D signals the
increase in the synchronization buffer sizes is even more
dramatic. For an N -level dyadic decomposition, we will
need filtering buffers for up to 2LX pixels, and synchro-
nization buffers for T (2d)

N = (2 � 2N + 2�N � 3)XS pix-
els. Thus, as the number of decomposition levels grows,
the filtering requirements remain relatively modest, while
the size of the synchronization buffers tends to grow fast.
However, memory-efficient implementations are still pos-
sible because the filtering buffers hold data that is accessed
multiple times, while the synchronization buffers are only
delay lines (FIFO queues). This is a key distinction be-
cause the data in the synchronization buffers will only be
used by the decoder and therefore it can be quantized and
entropy coded so that the actual memory requirements are
much lower (see [7] for details.)

3 Line based entropy coder
We now describe our proposed low-memory coding

strategy. Processing is based on the lines of wavelet co-
efficients produced by the WT, which are compressed as
they are generated; no global information is required. Each
band is encoded independently, i.e., we do not use any kind
of information from one band in order to encode another.
All wavelet coefficients are quantized with a dead-zone
quantizer, with a step size � that is chosen to be the same
for all subbands. The quantizer maps a wavelet coefficient

� to the index v = b
�

�
c. The reconstructed value �̂ is

obtained as

�̂ =

8<
:

(v + 1=2) � � if v > 0
(v � 1=2) � � if v < 0

0 otherwise
(1)

3.1 Context Modeling and low memory
Context modeling is a key ingredient in many compres-

sion algorithms, and is particularly useful for lossless com-
pression [10, 11]. These algorithms exploit the fact that
large coefficients tend to be found in clusters in image sub-
bands. Thus, in a neighborhood with several large coef-
ficients, another large coefficient will tend to occur with
higher probability. Therefore context information will be
used to classify the neighborhood so that different proba-
bility models are used depending on the magnitude of the
surrounding coefficients. Here we will use context model-
ing for lossless compression of the quantized coefficients.
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Figure 1: Synchronization buffers are needed to match the delays between the x(0)(n) and the x(1) samples.

Note that separate context information is kept for each sub-
band. Also note that we will be concerned with both coding
performance and memory needs.

The context information consists of a single line of
magnitude and sign information (per subband). Sign and
magnitude of each coefficient are coded separately, and
different context-adaptive probability models are used for
each. Refer to Figure 2 and note that only causal informa-
tion is used, so that no side information is required. Let
�i; i = 0; : : :K be the current quantized wavelet coeffi-
cient, where K is the width of a line. Let ci; i = 0; : : : ;K
be the context information for magnitude in this subband.
Subbands are scanned from left to right, top to bottom, and
the ci’s are initially set to zero. The update of ci after we
have encoded a pixel of value �i is as follows:

ci =

�
j�ij �i 6= 0
ci=2 otherwise

(2)

Thus, if a coefficient is found to be non-zero (at the given
quantization level), we keep its absolute value as the con-
text information in the current position in the line. How-
ever if the current coefficient is zero we divide the previous
context information by 2, so as to lower (but not set to zero)
the neighborhood magnitude. The factor of 2 is chosen for
simplicity of implementation, and there was no particular
optimization involved.

Thus, as a context we are using a weighted average of
all previous lines of wavelet coefficients. This approach is
a good compromise that allow us to maintain low mem-
ory (only one line) while also taking into account previ-
ous lines in the subband. Context information ci is kept
in fixed point format, so we expect to have ci = 0 in ar-
eas having many zeros, i.e., a non zero coefficient does not
“propagate” more than few lines or samples in the context
information.

We separately also keep context information for the sign
of the coefficients from the previous and current line. Co-
efficients can either be positive “+”, negative “-”, or zero

“0”, and thus two bits per coefficient are needed for stor-
age. Note that the sign we store here is that of the actual
coefficient in the line in that position.

The total memory needed for storing the context infor-
mation for all subbands is three equivalent image lines. We
need 3 lines of length X=2 for the first level of decompo-
sition, 3 lines of length X=8 for the second level, and in
general 3 lines of length 2�n�1 for the nth level. The total
buffer size is TC =

PN�1
i=0 3 � 2�n�1X = 3(1� 2�N )X ,

which tends to 3X as N grows.

3.2 Classification and Encoding
Given the context information as just described we

now discuss our proposed approach to assign a probabil-
ity model to each possible context. Given that the ci can
take many different values, in order to avoid suffering from
“context dilution”, we will define a small set of context
classes, and these classes, rather than each individual con-
text, will be assigned a probability model. Our context
classification is based on the sum of the magnitude of the
neighboring coefficients.

In what follows we use encodefv
����g, to represent en-

coding a number v given a discrete probability model �,
using arithmetic coding. encode-rawfv[�]g will repre-
sent the function of sending the � least significant bits of
v, without any form of entropy coding. We will use the

function encode-bitf�
����g, to denote encoding a sin-

gle bit using the binary probability model �. Based on the
context information ci (see Figure 2) we classify each new
coefficient �i into a class 
i, among 15 possible classes, as
follows:

�i = ci + 2ci�1 + ci+1 + (ci�3jjci�2jjci+2jjci+3) (3)


i =

8<
:

14 if �i > 214 � 1
0 if �i = 0
1 + blog2 �ic otherwise

(4)

Where jj represents the logical “or”,



ci ci+1 ci+2 ci+3
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Figure 2: The context used to encode �i, the magnitude of
the current coefficient, includes the ci’s as defined in (2),
which provide information about the current and previous
lines.

�jj� =

�
0 if � = 0 and � = 0
1 otherwise

By using the jj operation we limit the contribution of
ci�3; ci�2; ci+2; ci+3 to the context formation. The selec-
tion of the 1 + blog2 :c operator, is mostly for simplicity
since it represents the number of significant bits. More-
over using a logarithmic rule for quantization into classes
also accounts for the fact that in typical images neighbor-
hoods with small context magnitude (�i small) are more
likely than those with high magnitude. Thus a logarithmic
rule allows us to have more classes at low magnitude than
at high magnitude.

Class 
i = 0 corresponds to a coefficient where all its
neighbors are zero, so that we expect j�ij to be very close
to zero. For values of 
i further away from zero the dis-
tribution of j�ij is much less peaked around zero. Up to
15 classes can occur, but in practice the number of classes
that are used depends on the bit rate. If we happen to have
large enough wavelet coefficients, or high bit rate, all 15
classes might be used, but if we are encoding at low bit
rates only a portion of the 15 classes might occur. After
classification we encode a bit denoting if our current coef-
ficient �i is significant or not, the encoding of this bit is
conditioned upon the class 
i, sending information denot-
ing if our current coefficient �i is significant or not corre-

sponds to encode-bitfj�ij > 0
���
ig. If a given coeffi-

cient is found to be significant, we also encode a parameter
li:

li = blog2 j�ijc (5)

This parameter denotes the extra number of LSBs1 needed
to represent the magnitude of j�ij, given that j�ij > 0. We
follow by a raw encoding of the li LSBs of j�ij. As an ex-
ample if2 j�ij = 000011101, li = 4. If the decoder knows
the value of li it can then find the highest order nonzero bit
of �i, and with the transmission of li more bits, j�ij will
have been completely transmitted.

1Least significant bits
2The over-lined bit is the highest order nonzero bit, while the under-

lined bits are the additional li LSBs that will be sent to the decoder.

The sign of �i is subsequently encoded using a sepa-
rate context modeling, based on the sign of the two nearest
neighbors. Each neighbor can be either zero, positive or
negative so that we have a total of nine different combina-
tions. By using a technique known as sign flipping [10] we
can reduce the number of classes from nine to five. In sign
flipping we take advantage of certain symmetries present in
the context formation. As an example, we characterize the
probability of one coefficient having the same sign as its
two neighbors, rather than considering separate probabili-
ties depending on whether the neighbors are both positive
or both negative.

We use an arithmetic coder that operates with different
probability models, where the probability model depends
on the class 
i. For each class, we keep track of symbol
occurrences so as to update the probability model. The
models needed for each band are: 1) Five binary models
for sign encoding. 2) 15 binary models for encoding sig-
nificance information, where each model corresponds to a
class 
. 3) One model B of up to 14 symbols for encoding
the number li from (5). This model will be used as an M -
ary model with 0 < M � 14 by considering the first M
symbols. As will be seen next, li will always be bounded
by a known M for each line.

As can be deduced from the foregoing discussion, con-
text modeling does not represent a significant memory
overhead to our system as compared to the memory needed
for filtering.
3.3 Algorithm

After wavelet transform and quantization, with the same
dead-zone quantizer for all the coefficients, the algorithm
for encoding a line corresponding to one subband can be
described as follows:

1. For each new line encode-rawfL[15]g, where L =
blog2(1 + maxi j�ij)c is the number of bits needed to
represent the largest coefficient in a row line. If L >
0 go to step 2 else return to step 1. This allow us to
determine the maximum value for li and to skip lines
that are all zero.

2. Classify each new wavelet coefficient �i into a class 
i
according to equations (3) and (4).

3. encode-bitfj�ij > 0
���
ig (Encode whether �i is

zero or not, by using the corresponding model 
i ) and
update the statistics for model 
i.

4. if j�ij > 0 f

� encodefli
���B(M)g where li = blog2 j�ijc, M =

dlog2 Le, B(M) means that we are using model B as
an M�ary model, since we know that li < M .



� form a class wi for the encoding of the sign based on
the sign of the two already encoded nearest neighbors

� encode-bitf�i > 0
���wig and update the statistics

for model wi.

� encode-rawfj�ij[li]g, that is we encode the li LSBs
of j�ij.

g else go to step 5

5. update the context information according to equation
(2)

6. if not end of line go to the next pixel (step 2)

7. if not end of image go to the next line (step 1)

4 Experimental Results
In Table 2 we present PSNR results for three different

images along with comparisons with algorithms in [3, 4, 5]
and also JPEG [1] with arithmetic coding. We use JPEG
arithmetic coding in order to have a fair comparison, given
that all the wavelet coders also use arithmetic coding. Our
results are competitive at a fraction of the complexity and
memory utilization.

In Table 1 we present the exact memory usage for all
algorithms [4, 3, 5, 1], as measured in an HP-Kayak work-
station running windows NT, the memory needs of our al-
gorithm are much closer to JPEG than any of the above
mentioned algorithms. The scaling problems that occur
in traditional (i.e., not memory-optimized) wavelet coders
can be seen clearly by observing the numbers in Table 1.
As the image size increases the memory requirements can
become excessive. By contrast our approach provides a
relatively modest increase in memory.

Image Size 2560 � 2048 3312 � 5120 6624 � 5120

Compressed 650K 2.1M 4.2M

SPIHT[3] 27M 81M *
C/B[4] 21M 67M 92M

JPEG[1] 688K 720K 720K
VM2.0[5] 51M 97M *
This work 850K 1.3M 1.3M
This work (1.5M) (3.4M) (5.5M )

Table 1: All images were compressed at 1b/p. The num-
bers in parenthesis for the line based algorithm correspond
to the memory needed for the algorithm plus memory for
buffering of the complete bit stream.

Rate SPIHT[3] C/B[4] JPEGAR VM2.0[5] This work

L
en

a

0.125 31.10 31.32 28.45 30.93 31.05
0.25 34.13 34.45 31.96 34.03 34.20
0.50 37.24 37.60 35.51 37.16 37.35
1.00 40.45 40.86 38.78 40.36 40.47

B
ar

ba
ra

0.125 24.84 25.39 23.69 24.87 25.20
0.25 27.57 28.32 26.42 28.17 28.18
0.50 31.39 32.29 30.53 31.82 31.87
1.00 36.41 37.40 35.60 36.96 36.68

G
ol

dh
ill

0.125 28.47 28.61 27.25 28.48 28.49
0.25 30.55 30.75 29.47 30.58 30.64
0.50 33.12 33.45 32.12 33.27 33.27
1.00 36.54 36.95 35.57 36.81 36.66

Table 2: PSNR results, we used five levels dyadic decomposition
with 9-7 tap filters.
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