
Minimum Memory Implementations of the Lifting Scheme

Christos Chrysa�s Antonio Ortega

Hewlett-Packard Laboratories Integrated Media Systems Center

1501 Page Mill Road, Bldg.3U-3 University of Southern California

Palo Alto, CA 94304-1126 Los Angeles, CA 90089-2564

chrysafi@hpl.hp.com ortega@sipi.usc.edu

ABSTRACT

All publications on the lifting scheme up to now [1, 2] consider non-causal systems, where the assumption is that
the whole input signal is bu�ered. This is problematic if we want to use lifting in a low memory scenario. In this
paper we present an analysis for making a lifting implementation of a �lter bank causal, while at the same time
reducing the amount of delay (or memory) needed for the whole system. The amount of memory needed for the
lifting implementation of any �lter bank can be shown to be always smaller than the corresponding convolution
implementation. The amount of memory savings is �lter bank dependent, it ranges from no savings for the Haar
transform to 40% for a 2� 10 �lter bank. The amount of savings depends on the number of lifting steps as well as
the length of the lifting steps used. We will also elaborate on the use of boundary extensions on each lifting step
instead of the whole signal. This leads to lower memory requirements as well as simpler implementations.

Keywords: Lifting Scheme, Wavelet Transforms

1 INTRODUCTION

There have been a number of publications that propose constructing wavelet transforms as a series of lifting and
dual lifting steps [1, 2], or prediction and update steps. A number of authors worked on di�erent aspects of the
lifting implementations of wavelets [4, 5]. The lifting approach to WT allows for arbitrary decompositions including
nonlinear �lters. Complexity trade-o�s for this approach have not yet been studied in depth. There have been no
general theoretical analyses of the memory reduction potential of using lifting implementation of wavelets. Consider
the lifting structure in Figure 1, where �lters Pk(z) and Uk(z) may or may not be causal. The structure provides
an easy way to understand the lifting implementation for one dimensional signals. Prediction and update operators
can have any form. For example we can apply linear or non linear operator and we can even quantize the di�erent
prediction values. The �lter bank implemented using a lifting structure will always be perfect reconstruction.

A \naive" implementation would consist of applying each �lter, for example P0(z), to the whole signal, storing
the result, then applying U0(z) to the output that was stored. If we follow the update/predict steps in the sequence
they appear for the whole signal length, one step at a time, memory of the order of the signal length is needed.
Whole signal bu�ering is undesirable if not impossible in many applications such as real time audio processing or
wavelet image compression of large images.

In this paper we will study how to implement such systems with minimal memory, i.e., such that outputs can be
produced as soon as su�cient inputs are available. We will discuss causality in lifting structures. In section 2 we will
rearrange the delay elements in a lifting structure in order to make the whole system causal. After causality has been
achieved we will look into \sharing" certain delay elements in between adjacent lifting steps so that we can minimize
the amount of delay (memory) needed. In section 3 we will discuss about the advantages of symmetric lifting steps
for fast implementations and we will give a procedure to recursively construct symmetric �lters with theorem 3.1 .
In section 5 we will describe the process of applying symmetric extension in lifting structures, and in Appendix A
we will give a number of examples of memory savings for di�erent �lter banks with the proposed approach.

2 LIFTING IMPLEMENTATIONS IN LOW MEMORY

The system in Figure 1 may have to be used as a causal system, for example for audio processing applications or for
a low memory wavelet transform. That is, we may not have access to the whole signal at once and, instead, we may
receive input samples one sample at a time. We would like to process data as we receive them and therefore we need
to have a causal system. Our goal is to generate outputs while bu�ering the minimum number of data. In this case



nx ..
.

..
.
..
.

22

22

1−z ..
.

Pn-1(z)Pn-1(z)P0(z)P0(z) U0 (z)U0 (z) UN-1(z)UN-1(z)

-

+

-

+

22

22

nxUN-1(z)UN-1(z) ..
.

..
.
..
.

)0(
ny

)1(
ny

1−z

PN-1(z)
PN-1(z) U0 (z)U0 (z) P0(z)P0(z)

++

--

(a) (b)

Figure 1. Lifting structure for a two channel analysis and synthesis �lter banks.

klz−

klz−

�k(z)�k(z)Pk(z)Pk(z)

klz−

kgz−

Pk
Pk

klz−

(a) (b) (c)

- - -

Figure 2. (a) Non causal (b) causal (c) modi�ed causal lifting steps.

the systems in Figure 1 need to be modi�ed with a few extra delay elements or memories having to be used in the
system.

Assume that we have a series of Np prediction steps and Nu update steps, where each prediction step is followed
by an update step. If we have an odd total number of lifting steps the last one will be a prediction step and will
not be followed by an update step. We assume that we start the lifting decomposition by �rst applying a prediction
step and then an update step. If we happen to have two or more prediction steps following each other then we can
combine them in a single prediction step. So, based on the above observations, without loss of generality we can
assume that Np = Nu or Np = Nu + 1, which are the only two possible situations for any two channel �lter bank.
That is, the number of prediction steps is either equal to the number of update steps or one more than the number
of update steps.

)0(
ny

)1(
ny

nx
22

22 0lz−

1−z

00 lmz −− 11 −− −− NN lmz

1−− Nmz

...

...

...

01 mlz −−

�N-1(z)�N-1(z)�0(z)�0(z) �0 (z)�0 (z) �N-1(z)�N-1(z)

+

-

+

-

Figure 3. Analysis lifting structure with causal lifting steps P(z);U(z), the synthesis structure can be derived in a
similar manner.



0gz−

P0
P0

0fz−

0mz−

U0
U0

1lz−

1gz−

P1
P1

1lz−

1fz−

1mz−

U1
U1

1mz−0lz−

0lz−

0mz−

+

-

+

-

Figure 4. Modi�ed lifting representation analysis �lter bank, with �ltering dis-jointed from delay units. Blocks [Pi]
do not include any delay, instead they reads multiple input data from the delay lines z�l0 and z�g0 .

Let the kth prediction Pk(z) and update steps Uk(z) steps be:

Pk(z) = p�lkz
lk + p�lk+1z

lk�1 + � � �+ p0z
0 + � � �+ pgk�1z

�gk+1 + pgkz
�gk (1)

and

Uk(z) = u�mk
zmk + u�mk+1z

mk�1 + � � �+ u0z
0 + � � �+ ufk�1z

�fk+1 + ufkz
�fk (2)

Let P(z) be a causal version of P (z) obtained by shifting by z�lk , and U(z) be a causal version of U(z) obtained by
shifting by z�mk :

Pk(z) = z�lkPk(z) = p�lk + p�lk+1z
1 � � �+ pgk�1�lkz

�gk+1�lk + pgk�lkz
�gk�lk (3)

Uk(z) = z�mkUk(z) = u�mk
+ u�mk+1z

1 � � �+ u�mk+fk�1z
�fk�mk+1 + ufk�mk

z�fk�mk (4)

Let us introduce the operators C and A denoting the causal and anti-causal parts of a signal, that is:

Cf
1X

i=�1

aiz
�ig =

1X
i=0

aiz
�i; Af

1X
i=�1

aiz
�ig =

1X
i=1

aiz
i

(5)

The orders of the causal and anti-causal parts of Pk(z) and Uk(z) are:

orderfCfPk(z)gg = g0; orderfAfPk(z)gg = l0 (6)

orderfCfUk(z)gg = f0; orderfAfUk(z)gg = m0 (7)

The lengths of the predict and update steps Pk(z) and Uk(z) are:

LengthfPk(z)g = 1+ orderfCfPk(z)gg+ orderfAfPk(z)gg = 1 + g0 + l0 (8)

LengthfUk(z)g = 1 + orderfCfUk(z)gg+ orderfAfUk(z)gg = 1 + f0 +m0 (9)

We can force all �ltering steps in Figure 1 to be causal by introducing appropriate delays. In Figures 2(a)
and 2(b) we see a single lifting step implementation with a non causal and a causal structure respectively. The
complete modi�ed analysis system with the use of causal building blocks is depicted in Figure 3. To understand the
transition from a non causal to a causal system let us introduce a delay of z�lk on both inputs of the system in



0lz−

P0
P0

0φ−z

U0
U0

0mz−

1lz−

P1
P1

1φ−z

U1
U1

1mz−
2γ−z1γ−z0γ−z

+

-

+

-

Figure 5. Analysis lifting structure with causal lifting steps and minimum memory requirements.

Figure 2(a), in the upper part of the input in Figure 2(a) we can distribute the delay into both branches. We know
that z�lkPk(z) = Pk(z), this leads to Figure 2(b) which is a causal system.

The main problem in forcing the system to be causal is the increased amount of memory or delay needed. The
system in Figure 3 requires more delay than the one in Figure 1(a), due to the z�lk and z�mk delays that were
introduced to produce a causal system. We can combine the memory needed for �ltering Pk(z) and the delay line
z�lk in between consecutive lifting steps by using the single modi�ed block in Figure 2(c). Figure 2(c) is the exact
same structure as the one in Figure 2(b), the only di�erence is the use of di�erent notation in representing the
�ltering operation. We switch to a vector notation in Figure 2(c), to facilitate further simpli�cations in a complete
system. The complete analysis system with the use of the cell� in Figure 2(c) is seen in Figure 4. If we combine
adjacent delays from two cells into a single delay element we get Figure 5. The quantities 
k; �k are de�ned as:


k , maxflk; fk�1g; k = 0; 1; 2 : : : ; N � 1 (10)

�k , maxfgk;mkg; k = 0; 1; 2 : : : ; N � 1 (11)

In the above equations we assume that:

lk = gk = 0; for k 6= 0; 1; 2 : : : ; Np � 1; (12)

and

mk = fk = 0; for k 6= 0; 1; 2 : : : ; Nu � 1 (13)

The above two conditions are used to avoid special cases in the de�nitions (10) and (11). The total memory TS
needed for the lifting system in Figure 5 is:

TS =

Np�1X

k=0


k +

Nu�1X

k=0

�k +

Np�1X

k=0

lk +

Nu�1X

k=0

mk (14)

The above memory does not include the two samples for input and output. The lifting system described in this section
is a two input two output system and as such there is also need to bu�er the two input samples. In this case the total
memory needed to implement the �lter bank is TA = TS+2. For the case where lk = l; gk = g; k = 0; 1; 2; : : : ; Np�1,
mk = m; fk = f; k = 0; 1; 2; : : : ; Nu � 1 and Nu = Np = N .

TS = N(l+m+ f + g) (15)

For example for the 9� 7 tap �lters:

T
(9�7)
S = 1 + 1 + 1 + 1 = 4 (16)

�By cell we refer to either a prediction or an update step seen in Figure 2



Filter llow lhigh TS TA = TS + 2 memory savings

9� 7 9 7 4 6 33:33%
13� 7 13 7 6 8 38:46%
9� 3 9 3 4 6 33:33%
5� 3 5 3 2 4 20:00%
13� 11 13 11 8 10 9:09%
5� 11 5 11 7 9 18:18%
2� 6 2 6 2 4 33:33%
2� 10 2 10 4 6 40:00%
2� 2 2 2 0 2 0:00%

Table 1. Memory savings for di�erent �lters according to Appendix A

In Appendix A we give several �lter coe�cients for convolution and lifting implementations as presented in the
JPEG2000 standardization meetings [6]. In all cases the memory needed for the lifting structure implementation
is signi�cantly smaller than that needed for the straight forward convolution implementation. The total memory
needed for the system is denoted by TS . To this memory we need to add the memory from the two input samples,
since the system is a two input two output operator. However, in many cases, depending on our system design, we
may not have to account for this memory as part of the WT system memory. Since the input and output memory
locations will be provided by another system, for example the image reader or writer. This is the reason we decided
not to include the two additional samples of delay in TS . Still we do include values of TA.

In Table 1 we present data for nine di�erent �lters, the length of the low pass and the high pass �lters llow; lhigh,
the memory TS and the memory TA, along with the percentage of memory saving for each �lter.

3 LIFTING STEPS, FILTER SYMMETRY AND FAST IMPLEMENTATIONS

For a lifting structure to achieve perfect reconstruction no �lter symmetry is needed. Because of the structure,
arbitrary prediction/update �lters can be used and perfect reconstruction will still be guaranteed. However, imposing
symmetry helps in reducing numerical operations; as symmetric �lters have approximately half the complexity of the
equivalent non-symmetric �lters of same length.

Consider a symmetric �lter P (z):

P (z) =

N�1X
j=0

pj(z
�j + zj) (17)

a convolution of a signal xn with the �lter will be implemented as follows:

yn =

1X
i=�1

(xn�i + xn+i)pi (18)

when we are performing �ltering along the vertical direction in two dimensional signals we need to perform all
operations in lines instead of samples. In this case we will need to add two lines and multiply the result with the
corresponding �lter coe�cient. Symmetry is a key point to fast implementations of a wavelet transform in software.
Moreover we should scan along the image in the horizontal direction as much as possible and try to avoid vertical
scanning. The reason is that image data are stored line by line and therefore by scanning in the same order we reduce
the memory accesses to a minimum. The key operation needed is the ability to add two lines together and multiply
the result by the appropriate coe�cient. Adding two lines and multiplying the result by a single number is a highly
regular operation, it is highly predictable and does not cause and disturbances in the pipeline of a processor.

The issues of e�cient data accesses for complexity reductions did not arise in the JPEG standard since the number
of coe�cients in a DCT block is very small. Instead, the main focus was on reducing the number of additions and
multiplications. In wavelet transforms it is more bene�cial to concentrate on e�cient memory accesses than on



multiplication reductions. For example the 9-7 Daubechies �lter bank requires more multiplications per pixel than
the DCT transform. Moreover the data manipulations in both cases follow completely di�erent patterns, and more
savings are possible by memory re-arrangements than by reducing the number of additions and multiplications.

In all of the above examples the lifting steps were symmetric and were derived from symmetric �lters. For
symmetric �lter banks it is always possible to design lifting structures with symmetric lifting steps [7]. Moreover
even length �lters correspond to odd length lifting steps, while odd length �lters correspond to even length lifting
steps.

Theorem 3.1. Let h(z) = (�1)�hh(z�1)z�h and g(z) = (�1)�gg(z�1)z�g be the two low pass and high pass �lters

of an analysis, symmetric, bi-orthogonal �lter bank. Every lifting step of the form p(z) = (�1)�h+�gp(z�1)z
�h��g

2

applied to the original pair of �lters will lead to a new symmetric, bi-orthogonal �lter bank.

Proof:

h(z) = (�1)�hh(z�1)z�h (19)

g(z) = (�1)�gg(z�1)z�g (20)

After application of one additional lifting step p(z) the new high pass �lter hnew(z) will be:

hnew(z) = h(z)� p(z2)g(z) (21)

The new high pass �lter hnew(z) will be symmetric if and only if:

hnew(z) = (�1)�z�hnew(z
�1), (22)

h(z)� p(z2)g(z) = (�1)�z�(h(z�1)� p(z�2)g(z�1)), (23)

h(z) (1� (�1)�h+�z��h+�)| {z }�g(z) (p(z
2)� p(z�2)(�1)�g+�z��g+�)| {z } = 0 (24)

if we set the two terms multiplying h(z) and g(z) equal to zero we will achieve the desired symmetry properties,
therefore:

1� (�1)�h+�z��h+� = 0; p(z2)� p(z�2)(�1)�g+�z��g+� = 0, (25)

� = �n; � + �h = even; p(z) = (�1)�g+�hz
��g+�h

2 p(z�1) (26)

The above theorem is very important since symmetric systems reduce the implementation complexity of a given
�lter bank by a factor of two. Theorem 3.1 gives us a way to design a symmetric �lter bank based on lifting steps,
we can start with a small number of lifting steps and keep increasing the number of lifting steps while at the same
time preserving the linear phase properties.

4 BOUNDARY EXTENSIONS AND LIFTING STEPS

When working with lifting steps at the boundaries of a signal and wanting to take advantage of symmetric extensions,
we can extend the original signal in the same way we do for the convolution implementation. Even though this will
work and will give the exact same result as the convolution implementation it is preferable not to do so. The reason
is that in order to perform symmetric extension along the vertical direction we need to bu�er a number of lines equal
to half the �lter length in a bu�er outside our system. This increases signi�cantly our memory requirements and
also does not allow us to take advantage of the powerful lifting structures.

A much better solution to the problem is to perform symmetric extension, as we go through each individual lifting
step. In this way we can utilize the memory allocated for lifting without a need for any additional memory. For
example at the end of the image when we reach a boundary we do not have any lines in the input, so we recycle the
lines already stored inside the bu�er. We just need to know we have reached the end of the image. The same applies
to the beginning of the image. In the beginning of the image we read a line and we copy this line to a location in
an internal bu�er line. When �ltering if we need to go beyond the beginning of the image we just reuse the lines we



Delay Element

Input Output

Figure 6. Delay line for one band of an analysis �lter bank.

already have in the bu�er. This o�ers a systematic way of dealing with the boundaries since each individual lifting
step is responsible for it's own symmetric extension.

A simpler way of looking on this approach is by considering each lifting step as a stand alone system. Consequently,
the amount of symmetric extension needed at the boundaries is much smaller than by considering the complete �lter
bank. Each lifting step performs symmetric extension based on the data it receives from the previous lifting step.
Related work has also been independently performed in [8,9] for the purpose of having a parallel implementation of
a lifting scheme in a two or more processors, and storing partially updated results.

When working with lifting structures symmetric extension is not the only choice. When working with lifting we
can have almost arbitrary boundary conditions without compromising on perfect reconstruction as can be deduced
from [2]. We can for example use repetition on each lifting step, so instead of using symmetric extension we can
instead just repeat the last sample of our signal. Lifting implementations will always give us perfect reconstruction.
The reason we will not elaborate more on this issue is that repetition does not allow us a uni�ed approach in both
convolution and lifting implementations of wavelets.

5 SOFTWARE/HARDWARE ARCHITECTURES FOR LIFTING
IMPLEMENTATIONS ON IMAGES

The direct lifting algorithm is probably the most e�cient approach for �ltering in the horizontal direction when
working with images. The direct algorithm works in place as described in [2], i.e. we read one line of the original
image and we process everything in place. Even symmetric extensions can be handled in place. In the case of
symmetric extensions we do not need to extend the input signal instead we can achieve the same e�ect by using
boundary �lters. The design of boundary �lters is trivial in the case of lifting structures.

In the vertical direction special treatment is needed as mentioned above. The best way to implement the lifting
structure is to allocate two delay lines one for the even samples and another for the odd samples. Even samples will
become low pass coe�cients while odd samples will become high pass coe�cients. The length of each delay line can
be derived from Figure 5. The length for the even samples will be

P
i �i+

P
i li elements while the delay for the odd

samples will be
P


i +
P

imi. Those will be the total lengths of the delay lines, but the lines will not be \straight",
as it can be seen from Figure 6. Each line might have a number of branches equal to the number of lifting steps
originating from this line. An example of the whole system with the delay line and �ltering can be seem in Figure
7. From Figure 7 one can see that our proposed approach not only minimizes the total memory needed for �ltering
but also minimizes the delay between input and output. The approach is not only bene�cial for software it might
also be extremely useful in hardware, since by using this structure we do not need to have multiple accesses to our
data, the algorithm becomes one pass unlike the direct implementation which requires a number of passes equal to
the number of lifting steps.

6 ASYMPTOTIC MEMORY SAVINGS

Asymptotically, as the �lter length grows the amount of memory savings will tend to 50%, this is the exact same
savings that we are getting in terms of numerical computations as explained in [7]. The proof of the amount of



Input OutputStep 1 Step 2 Step 3

0lz−

P0
P0

0φ−z

P1
P1

1φ−z

- -

1lz−

P2
P2

2z φ−

-

2lz−

(a)

(b)

Figure 7. Delay line along with the �ltering elements for one band of an analysis �lter bank. We have the inner
product between the entries in the delay elements and the coe�cients of the lifting kernels. The inner product is
added or subtracted from the other delay line. Both parts (a) and (b) represent the same system in two di�erent
ways. Part (a) is an example of the generic system in part (b). By selecting speci�c numbers for the parameters of
the �lter bank we move from (b) to (a).

memory savings is essentially the same as the one presented in [7] for the number of numerical operations.

7 CONCLUSIONS AND FUTURE WORK

In this paper we described how to use a lifting structure as a causal system. We explained why lifting implementations
proposed up to now cannot be causal. By forcing a lifting implementation to be causal we achieved a substantial
amount of memory savings. Memory savings also translate to speed advantages on a general purpose processor.
We gave a procedure to move from a lifting structure of a given length to a lifting structure of larger length, while
preserving symmetry. Symmetry is of fundamental importance in reducing computational complexity. We described
a process to apply symmetric extension on the bounds of a signal for the case of lifting �ltering without the need
for additional memory, we achieved this by extending the signal on each individual lifting step instead of the whole
original signal. The e�ect is the same as the extension of the whole signal.

There are a lot of open problems in this area. It will be of great practical interest to investigate design algorithms
to derive a symmetric lifting structure from a symmetric �lter bank. It would also be of interest to design �lter
banks directly in the lifting form. An even more detailed description of lifting implementations in causal form, in
a step-by-step approach would be of interest along with description of computational tricks. This could serve as a
reference for software and hardware implementations.



A Example of Lifting Structures

In this section we present a number of di�erent �lter banks along with the amount of memory needs for each one. We
apply the analyses of the previous sections to derive the parameters of the proposed implementations. We give the
convolution kernel, as well as the coe�cients of the lifting factorization. Most of the �lters were obtained from [6].

A.1 13-7 Filter Bank

L(13;7) =
1

29
�
�1 0 18 �16 �63 144 348 144 �63 �16 18 0 �1

�

H(13;7) =
1

24
�
1 0 �9 16 �9 0 1

� (27)

P
(13;7)
0 =

1

24
�
�1 9 9 �1

�
; U

(13;7)
0 =

1

25
�
�1 9 9 �1

�
(28)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 1; f0 = 2; 
0 = 2; �0 = 1 (29)

TS = l0 +m0 + 
0 + �0 = 6 (30)

TA = TS + 2 = 8 (31)

A.2 9-7 Filter Bank

L(9;7) =
1

26
�
1 0 �8 16 46 16 �8 0

�

H(9;7) =
1

24
�
1 0 �9 16 �9 0 1

�
(32)

P
(9;7)
0 =

1

22
�
�1 9 9 �1

�
; U

(9;7)
0 =

1

22
�
1 1

�
(33)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 0; f0 = 1; 
0 = 1; �0 = 1 (34)

TS = l0 +m0 + 
0 + �0 = 4 (35)

TA = TS + 2 = 6 (36)

A.3 9-3 Filter Bank

L(9;3) =
1

27
�
3 �6 �16 38 90 38 �16 �6 3

�

H(9;3) =
1

2

�
�1 2 �1

�
(37)

P
(9;3)
0 =

1

2

�
1 1

�
; U

(9;3)
0 =

1

26
�
�3 19 19 �3

�
(38)

Nu = Np = 1; l0 = 1; g0 = 0; m0 = 1; f0 = 2; 
0 = 1; �0 = 1 (39)

TS = l0 +m0 + 
0 + �0 = 4 (40)

TA = TS + 2 = 6 (41)



A.4 5-3 Filter Bank

L(5;3) =
1

23
�
�1 2 6 2 �1)

�
; H(5;3) =

1

2

�
�1 2 �1

�
(42)

P
(5;3)
0 =

1

2

�
1 1

�
; U

(5;3)
0 =

1

22
�
1 1

�
(43)

Nu = Np = 1; l0 = 1; g0 = 0; m0 = 0; f0 = 1; 
0 = 1; �0 = 0 (44)

TS = l0 +m0 + 
0 + �0 = 2 (45)

TA = TS + 2 = 4 (46)

A.5 13-11 Filter Bank

L(13;11) =
1

210
�
�3 0 22 0 �125 256 724 256 �125 0 22 0 �3

�

H(13;11) =
1

28
�
�3 0 25 0 �150 256 �150 0 25 0 �3

� (47)

P
(13;11)
0 =

1

28
�
3 �25 150 150 �25 3

�
; U

(13;11)
0 =

1

22
�
1 1

�
(48)

Nu = Np = 1; l0 = 3; g0 = 2; m0 = 0; f0 = 1; 
0 = 3; �0 = 2 (49)

TS = l0 +m0 + 
0 + �0 = 8 (50)

TA = TS + 2 = 10 (51)

A.6 5-11 Filter Bank

L(5;11) =
1

23
�
�1 2 6 2 �1)

�

H(5;11) =
1

27
�
�1 2 7 0 �70 124 �70 0 7 2 �1

� (52)

P
(5;11)
0 =

1

2

�
1 1

�
; U

(5;11)
0 =

1

2

�
1 1

�
; P

(5;11)
1 =

1

24
�
�1 1 1 �1

�
(53)

Nu = 2; Np = 1; l0 = 1; g0 = 1; m0 = 0; f0 = 0; l1 = 2; g1 = 1;

0 = 1; �0 = 1; 
1 = 2

(54)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 7 (55)

TA = TS + 2 = 9 (56)

A.7 2-6 Filter Bank

L(2;6) =
1

2

�
1 1

�
; H(2;6) =

1

23
�
1 1 �8 8 �1 �1

�
(57)

P
(2;6)
0 = 1 ; U

(2;6)
0 =

1

2
; P

(2;6)
1 =

1

22
�
�1 0 1

�
; (58)

Nu = 2; Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; l1 = 1; g1 = 1;

0 = 0; �0 = 0; 
1 = 1

(59)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 2 (60)

TA = TS + 2 = 4 (61)



A.8 2-10 Filter Bank

L(2;10) =
1

2

�
1 1

�

H(2;10) =
1

27
�
�3 �3 22 22 �128 128 �22 �22 3 3

� (62)

P
(2;10)
0 = 1 ; U

(2;10)
0 =

1

2
; P

(2;10)
1 =

1

26
�
�3 22 0 �22 3

�
(63)

Nu = 2; Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; l1 = 2; g1 = 2;

0 = 0; �0 = 0; 
1 = 2

(64)

TS = l0 + l1 +m0 + 
0 + �0 + 
1 = 4 (65)

TA = TS + 2 = 6 (66)

A.9 2-2 Filter Bank (Haar)

L(2;2) =
1

2

�
1 1

�
; H(2;2) =

�
�1 1

�
(67)

P
(2;2)
0 = 1 ; U

(2;2)
0 =

1

2
(68)

Nu = Np = 1; l0 = 0; g0 = 0; m0 = 0; f0 = 0; 
0 = 0; �0 = 0 (69)

TS = l0 + l1 +m0 + 
0 + �0 = 0 (70)

TA = TS + 2 = 2 (71)

A.10 9-7 Filter Bank Daubechies (
oating point)

This is the popular Daubechies 9-7 �lter bank:

L(9;7) =
�
0:026749 �0:016864 �0:078223 0:266864 0:602949
0:266864 �0:078223 �0:016864 0:026749

�

H(9;7) =
�
�0:045636 0:028772 0:295636 �0:557543 0:295636 0:028772 �0:045636

�
(72)

P
(9;7)D
0 = �1:586134342

�
1 1

�
; U

(9;7)D
0 = �0:05298011854

�
1 1

�

P
(9;7)D
1 = 0:8819110762

�
1 1

�
; U

(9;7)D
1 = 0:4435068522

�
1 1

� (73)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 0; f0 = 1; 
0 = 1; �0 = 1 (74)

TS = l0 +m0 + 
0 + �0 = 4 (75)

TA = TS + 2 = 6 (76)



A.11 13-7 Filter Bank CRF

L(13;7) =
1

28
�
�1 0 14 16 �31 �80 164 �80 �31 16 14 0 �1

�

H(13;7) =
1

24
�
�1 0 9 16 9 0 �1

� (77)

P
(13;7)CRF
0 =

1

24
�
�1 9 9 �1

�
; U

(13;7)CRF
0 =

1

24
�
�1 5 5 �1

�
(78)

Nu = Np = 1; l0 = 2; g0 = 1; m0 = 1; f0 = 2; 
0 = 2; �0 = 1 (79)

TS = l0 +m0 + 
0 + �0 = 6 (80)

TA = TS + 2 = 8 (81)

REFERENCES

1. R. Calderbank, I. Daubechies, W. Sweldens, and B. L. Yeo, \Losless Image Compression using Integer to Integer
Wavelet Transforms," in International Conference on Image Processing (ICIP), Vol. I, pp. 596{599, IEEE Press,
1997.

2. W. Sweldens, \The Lifting Scheme: A custom-design construction of biorthogonal wavelets," Appl. Comput.
Harmon. Anal. 3(2), pp. 186{200, 1996.

3. C. Chrysa�s,Wavelet Image Compression Rate Distortion Optimizations and Complexity Reductions. PhD thesis,
University os Southern California, January 2000.

4. R. L. Claypoole, R. G. Baraniuk, and R. D. Nowak, \Adaptive Wavelet Transforms via Lifting," in Proc. IEEE
Int. Conf. Acoust., Speech and Signal Processing, (Seattle, WA), 1998.

5. R. Claypoole, G. Davis, W. Sweldens, and R. Baraniuk, \Nonlinear Wavelet Transforms for Image Coding," in
Proc. of 31th Asilomar Conf. on Signals, Systems and Computers, 1997.

6. C. Chui, J. Spring, and L. Zhong, \Integer Wavelet Transforms," Tech. Rep. ISO/IEC JTC/SC29/WG1 N769
Document, Geneva, Teralogic Inc., March 1998.

7. I. Daubechies and W. Sweldens, \Factoring Wavelet Transforms into Lifting Steps"," J. Fourier Anal. Appl. 4(3),
pp. 245{267, 1998.

8. W. Jiang and A. Ortega, \Parallel Architecture for the Discrete Wavelet Transform based on the Lifting Factor-
ization," in in Proc of SPIE in Parallel and Distributed Methods for Image Processing III, (Denver, CO), July
1999.

9. W. Jiang and A. Ortega, \E�cient Discrete Wavelet Transform Architectures Based on Filterbank Factoriza-
tions," in in Intl. Conf. on Image Processing, (Kobe, Japan), October 1999.


