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Abstract

This paper addresses the problem of low memory wavelet image compression.

While wavelet or subband coding of images has been shown to be superior to

more traditional transform coding techniques, little attention has been paid until

recently to the important issue of whether both the wavelet transforms and the

subsequent coding can be implemented in low memory without signi�cant loss

in performance. We present a complete system to perform low memory wavelet

image coding. Our approach is \line-based" in that the images are read line by

line and only the minimum required number of lines is kept in memory. The main

contributions of our work are two. First, we introduce a line-based approach for

the implementation of the wavelet transform, which yields the same results as

a \normal" implementation, but where, unlike prior work, we address memory

issues arising from the need to synchronize encoder and decoder. Second, we

propose a novel context-based encoder which requires no global information and

stores only a local set of wavelet coe�cients. This low memory coder achieves

performance comparable to state of the art coders at a fraction of their memory

utilization.

1 Introduction

Memory is an important constraint in many image compression applications. In some cases,

especially for mass market consumer products such as printers or digital cameras, this is due

to the need to maintain low costs. In other cases, even if su�cient memory is available (e.g.,
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image encoding/decoding in a PC or workstation), ine�cient memory utilization may limit

scalability and hinder overall performance. For example, if for a given algorithm doubling of

the image size results in doubling of the memory requirements, the practicality of using the

algorithm over a wide range of systems may be questionable.

Existing Discrete Cosine Transform (DCT) based compression algorithms such as those

de�ned under the JPEG standard [2] are very e�cient in their memory utilization because,

if needed, they can operate on individual image blocks and thus the minimum amount of

memory they require is low indeed (e.g., a system could conceivably be implemented so as

to manipulate a single image block at a time). Wavelet based coders have been shown to

outperform DCT based coders in terms of compression e�ciency, but their implementations

have not yet reached the stage of maturity of DCT based approaches [2]. Memory e�ciency

is in fact one of the key issues to be addressed before a widespread deployment of wavelet

based techniques takes place and it is currently one area of major research activity within

the JPEG2000 standardization process [3].

Algorithms such as those in [4, 5, 6, 7, 8, 9, 10, 11], are representative of the state of the

art in wavelet coders. All of these algorithms assume that the wavelet transform (WT) for

the whole image has been computed so that all the corresponding coe�cients are available

in the coding process. Global image information1 is used in various ways including, among

others, classi�cation (e.g., [7]), initialization of the probability models used by a quantizer or

arithmetic coder [8, 9, 10] or selection of speci�c decompositions of the signal [6]. It is also

worth noting that even if no global information has to be measured, algorithms that provide

progressive transmission [4, 5] might require to store the complete set of wavelet coe�cients.

The above mentioned algorithms were developed with the goal of achieving competitive com-

pression performance and thus memory utilization was not a major consideration in their

development. These algorithms are typically required to bu�er the whole image at the en-

coder, so that memory usage increases proportionally to the image size, without such factors

as �lter length, or the number levels of the wavelet decomposition a�ecting signi�cantly the

memory utilization.

Low memory implementations of wavelet transforms were �rst addressed in [12], which

only considered one-dimensional (1D) transforms and did not consider the synchronization

issues that arise when both forward and inverse transform memory requirements are consid-

1i.e., information that can only be obtained after the whole image has been transformed. Examples of

global information include the maximum and minimum coe�cient values in one subband, the energy per

subband, histograms of coe�cient values in a subband, etc.
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ered. Interest in memory issues has recently increased as memory needs for the WT have

been found to be the one of the main bottlenecks for wavelet-based image compression. There

have been several recent studies of hardware issues in the implementation of the WT [13, 14].

Many of these studies consider an in-depth analysis of the whole wavelet transform system,

including architecture level optimizations and memory usage as in [13], but do not consider

the joint design of transform and compression algorithm to guarantee low memory operation.

In addition, much of this work has focused on video compression implementations, where

images can be orders of magnitude smaller than some of those processed in the hard-copy

industry, and thus the proposed approaches might not scale well to large image sizes. For

example, typical designs consider an on chip memory to handle the �ltering operations [15]

and such memory can become prohibitively large when images of hundreds of millions of

pixels or more have to be processed.

Assume that a particular WT implementation can handle small images e�ciently. Obvi-

ously there are approaches to use such an implementation for wavelet coding of large images.

The most immediate approach is to tile the large image and encode each tile independently

of the others, i.e., as if each tile were a separate image. While tiling is a simple approach

it can present some serious drawbacks, especially if the tile size is small with respect to the

image size. For example as compression is performed independently, blocking artifacts may

appear at the boundaries between tiles. Moreover, since it is not easy to allocate bits among

the tiles (since the wavelet coe�cients of all the tiles are not known and each tile is treated

independently) the performance degradation due to tiling may be severe.

An alternative and more e�cient approach can be found in the recent work of Cosman and

Zeger [16, 17]. Here, the memory utilization of the encoder is left unchanged and a standard

algorithm (e.g. [5]) can be used to compress the image. The whole image is bu�ered at the

encoder, but the order of transmission of the bit-stream is altered from that used in a normal

implementation so that the memory utilization at the decoder is reduced. The basic idea is

to have the decoder receive \local" sets of encoded wavelet coe�cients so that the inverse

wavelet transform can be started without having to wait for all the coe�cients to be decoded.

Performance can be further improved by selecting �lters so that the number of coe�cients

required at the decoder remains small (this can be achieved for example by choosing shorter

�lters for �ltering along the vertical direction.) We refer the reader to [16, 17] for further

details.

In summary, the recent work on memory e�cient wavelet image coding does not consider
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a complete coding system but concentrates instead on the WT or the compressor alone, or

only considers either encoder or decoder, but not both.

Our proposed approach di�ers from earlier work in several ways. First, we consider the

overall memory utilization and propose a system with reduced memory at both encoder and

decoder, whereas [12] and [16, 17] addressed only the memory usage at encoder and decoder,

respectively. We thus consider the memory needed for synchronization between encoder and

decoder (e.g. a minimum memory forward wavelet transform may require a high memory

inverse wavelet transform). Second, we consider a complete coding system, i.e., including both

WT and quantization plus entropy coding, and propose a novel context-based compression

approach to provide high compression performance with reduced memory utilization. With

respect to existing coders, the degradation in performance is modest (e.g., less than 0:5dB

in average with respect to [9]) although we do not support progressive transmission as [4,

5]. In terms of memory utilization our results show reductions of almost two orders of

magnitude with respect to widely available implementations of wavelet image coders. In fact,

our proposed low memory WT implementation has been adopted within the latest version of

the JPEG 2000 veri�cation model.

Our proposed system includes a line-based implementation of the WT, where we assume

the image data is available one image line at a time. We begin by analyzing the minimum

memory requirements to compute the wavelet transform in Section 2. Analyzing the 1D WT

allows us to discuss the various ways in which memory is utilized, including �ltering but

also synchronization between encoder and decoder. We extend these analyses to the two-

dimensional (2D) WT and propose an implementation that requires the minimum number of

image lines to be stored for a given �lter length and number of levels of decomposition. With

this approach the memory needs of the encoder and decoder depend only on the width of

the image (rather than the total size as in a traditional row column �ltering implementation)

which signi�cantly enhances the scalability of the system. Moreover, appropriate choices of

�lters (e.g., short �lters for the vertical �ltering) can be used as in [16, 17] to further reduce

the memory requirements.

In Section 3 we then propose a backward adaptive context-based coding scheme which

utilizes only a reduced number of coe�cients stored at the encoder or decoder at a given time.

While this approach precludes the use of any global information we show that competitive

performance can be achieved because, as has been shown in [10, 9, 8, 7], there exists signi�-

cant localization of energy within wavelet subbands, which can be e�ciently exploited with
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context-based methods. We provide a complete description of our algorithm and highlight

the modi�cations that had to be undertaken with respect to our earlier context-based coding

approaches [9] in order to compensate for the lack of global information.

Our experimental results are presented in Section 4, where we include comparisons with

several algorithms [9, 5, 11, 2], which all have signi�cantly larger memory requirements. Our

results indicate that the low memory approach we propose can achieve excellent compression

performance with signi�cantly lower memory utilization. In section 5 we revise the main

contributions of our work.

2 Line-based 2D wavelet transform

Image data is usually acquired in a serial manner. For example, a very common way to

acquire image data is to scan an image one line at a time. Throughout this paper we will

assume our system operates with this line-by-line acquisition. Given this, our objective in

this section will be to design a 2D, WT that requires storing a minimum total number of lines.

The assumption is that images are stored in memory only while they are used to generate

output coe�cients, and they are released from memory when no longer needed.

Obviously, performing a 1D WT on a single line can be done without signi�cant memory.

However, in order to implement the separable 2D transform the next step is to perform column

�ltering and here memory utilization can become a concern. For example, a completely

separable implementation would require that all the lines be �ltered before column �ltering

starts and thus memory sizes of the order of the image size will be required. The obvious

alternative is to start column �ltering as soon as a su�cient number of lines, as determined

by the �lter length, has been horizontally �ltered. For example for a one level decomposition

if we use 9-7 tap �lters we only need 9 lines of the image in order to start the column �ltering

and generate the �rst line of output wavelet coe�cients.

This online computation approach, which is described in more detail in [12] for the 1D

case, will form the basis of our wavelet �ltering. This will allow us to store in memory only

a reduced number of input lines. The memory needs, as will be discussed in what follows,

depend not only on the �lter length but also on the number of levels of decomposition and

the type of decomposition. For example generic wavelet packet [18] decompositions require

di�erent structures than a dyadic tree decomposition and need to be considered separately.

In addition, the order in which lines of wavelet coe�cients are generated at the analysis

�lter bank is not the same order the synthesis �lterbank expects them and we will thus need
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to introduce some additional \line management" functionality to synchronize encoder and

decoder.

2.1 One dimensional wavelet transform

Let us consider �rst an implementation of a 1D WT, where the system receives data sequen-

tially, one pixel at a time. Let L = 2S + � be the maximum length of the �lters used in the

analysis �lterbank, which can be either odd or even, for � = 1 and � = 0, respectively. In

the next sections, without loss of generality, we will only consider the odd length �lter case.

The even length �lter case can be treated in a similar way. For compression e�ciency we

use symmetric extensions throughout this paper. Similar delay analyses can be found in [12],

although syncronization delays were not considered there.

Consider �rst a single stage of the WT. At time zero we start receiving data and store it

in a shift register as seen in Figure 1. At time S we have received enough data to �ll the entire

input bu�er, i.e., we have received S+1 samples and after symmetric extension we can have

the total of L = S+1+S samples we need for �ltering. Thus, the delay for generating output

coe�cients for one level of decomposition is S. Note that it is more e�cient to generate two

coe�cients at a time as shown in Figure 1, i.e., we read two input samples at a time and

generate both a low-pass and a high pass coe�cient.

Consider now a two-level decomposition, as shown in Figure 2. Let � be the sample rate

(in samples per second) at the input of the �lterbank. Then the sample rate at the output

of the �rst level will be 2�1�. Let us consider the interval between input samples (i.e., 1=�

seconds) as our basic time unit. Each individual �lterbank introduces an S sample delay.

However the input to the second �lterbank arrives at a lower rate 2�1�, due to downsampling.

Thus to begin �ltering and see the �rst outputs of the second �lterbank we will have to wait

(i) S time units for the �rst output of the �rst level �lterbank to be generated, and then (ii)

another 2S time units until su�cient samples have been generated at rate 2�1�. Thus, the

total delay from input to output of the second level in the system of Figure 2 is the sum of

those individual delays, i.e., S + 2S input samples.

This analysis can be easily extended to the the case where an N -level decomposition is

used. Assume that the levels in this decomposition are indexed from 0 to N � 1, where 0

corresponds to the �rst level, 1 corresponds to the second level, and so on. It will take 2nS

time intervals for S samples to be loaded in the nth level �lters and this will happen only

after outputs have been generated by levels 0 to n� 1. Thus the total delay from the input
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to the output of an N level �lterbank will be the sum of all the individual delays for each

level, DN = S + 2S + 22S + 23S + : : : + 2N�1S =
PN�1

k=0 2kS = (2N � 1)S. The delay from

the nth level to the output will be the same as the delay from the input to the output of an

N � n level decomposition, i.e., Dn;N = DN�n = (2N�n � 1)S.

The memory needed for �ltering will be L samples2 for each level of decomposition, i.e.,

the total will be L �N if we use a dyadic tree decomposition. In general we will just need an

additional memory of size L for each additional 2-channel �lter-bank added to our wavelet

tree.

In the synthesis �lter-bank the delays from input to output are the same as in the analysis

�lter-bank and are thus a function of the number of levels of decomposition. Note that,

referring to Figs. 2 and 3, the synthesis �lterbank will not be able to process x
(0)

1 until it has

processed a su�cient number of x
(1)

0 ; x
(1)

1 coe�cients to generate x
(0)

0 . However the analysis

bank generates x
(0)

1 with less delay than x
(1)

0 ; x
(1)

1 . Thus we will need to store a certain number

of x
(0)

1 samples while the x
(1)

0 ; x
(1)

1 samples are being generated. We will call the required

memory to store these samples synchronization bu�ers.

Because 2S samples at level 1 are produced before the �rst sample at level 2 is produced,

we will need a synchronization memory of 2S samples (see Figure 3). The required memory

can be split into two bu�ers of size S pixels, with one bu�er assigned to the analysis �lterbank

and the other to the synthesis �lterbank.

In the more general N -level case the delay for samples to move from level n to level N �1

is DN�n. The synchronization bu�er for level n is equal to the delay for data to move from

level n to level N�1 which is also DN�n, thus the total bu�er size needed for synchronization

is TN =
PN�1

k=0 DN�k =
PN

k=1Dk = (2N � N � 1)S. For a �ve level decomposition the size

of the synchronization bu�ers can be seen in Figure 4.

As a conclusion, for the 1D case when considering both analysis and synthesis banks,

our design will have to optimize memory for both �ltering and synchronization. In the above

analysis we have kept analysis and synthesis �lterbanks symmetric in terms of memory needs.

However, synchronization bu�ers can be easily assigned to either the analysis or the synthesis

�lterbanks if it is necessary to make one more memory-e�cient than the other. In the rest of

2Implementations with memory sizes of S + 1 samples (or lines) are also possible, but here we assume

storage of L lines to facilitate the description of the synchronization problems. More e�cient approaches

based on lifting implementations or lattice structures, can asymptotically bring the memory needs from L

down to S + 1. For example the lattice structure used in [14] can help in reduce both complexity and

memory. These structures will not be considered here since the memory savings are �lter dependent and do

not signi�cantly a�ect our proposed solution. Lifting or lattice structures can be used within our framework

to provide additional memory reductions.
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the paper we will only consider symmetric systems. In summary, for 1D signals and N levels

of decomposition, the memory needs for the nth level will consist of

� a �ltering bu�er of size L, and

� a synchronization bu�er of size DN�n = (2N�n � 1)S.

Therefore the total memory size needed for N levels of decomposition in a symmetric system

is: Ttotal;N = (2N � N � 1)S + NL. Note that as the number of levels becomes large

synchronization bu�ers become a major concern.

2.2 Two dimensional wavelet transform

Let us now generalize our memory analysis to two dimensions. As a simplifying assumption

we assume that horizontal �ltering is performed in the usual manner, i.e., our memory budget

allows us to store complete lines of output coe�cients after horizontal �ltering. Thus, after

each line is received all the corresponding �lter outputs are generated and stored in memory,

requiring a memory of size X for each line, where X is the width of the image. Thus we can

now apply the above analysis to the vertical �ltering operation, except that the input to the

WT is now comprised of lines of output coe�cients generated by horizontal �ltering and thus

the memory sizes shown above have to be adjusted to account for line bu�ering requirements.

The exact memory requirements depend on the structure of decomposition. Figs. 5(a)

and (b) depict the common dyadic tree decomposition and a \hybrid" decomposition, which

have the same memory requirements. Let us concentrate on the decomposition of Figure 5(a).

In order to implement a one level decomposition vertically we need to bu�er L lines3. At the

second level of the decomposition again we will need to bu�er L lines, but the length of each

line will beX=2 coe�cients, because in the dyadic composition the second level decomposition

is only applied to the low pass coe�cients generated by the �rst level. Thus the width of

our image is reduced by two each time we move up one level in the decomposition, and,

correspondingly, the memory needs are reduced by half each time. For N levels we will needPN�1
k=0 2�kL = 2(1 � 2�N )L \equivalent" image lines for �ltering (refer to Figure 6). As N

grows the required number of lines tends to 2L, and the corresponding memory becomes

2LX i.e., asymptotically we only need a number of lines equal to twice the �lter length. The

above analysis is valid for both encoder and decoder as long as we use the decompositions in

Fig. 5.

3As indicated before, implementations with only S + 1 lines are possible. They are not considered here

since the memory savings in this case come at the cost of a more complicated system.
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As in the 1D case, synchronization issues have to be addressed because coe�cients from

the �rst level of decomposition are generated by the analysis bank before coe�cients from

higher levels, while the synthesis �lter-bank requires the higher level coe�cients before it

can use the coe�cients from the �rst level. For example in a two-level decomposition we

will need to store the HL0;LH0;HH0 bands4 since these bands become available before the

HL1;LH1;HH1 bands, and the synthesis �lterbank has to start processing data from the

second level before it can process data from the �rst level.

Thus, as in the 1D case, in an N -level decomposition the synchronization delay required

for data at level n is DN�n = (2N�n � 1)S lines5, where the width of each line is the width

of a subband at a particular level, e.g., the width of one line at level n will be 2�n�1X, due

to down-sampling and the use of a dyadic decomposition. Because 4 bands are generated at

each level, but only one (i.e. the LL band) is decomposed further, we will need synchroniza-

tion bu�ers for the remaining three subbands. Thus the synchronization bu�ers for level n

will have a total size of 3 � (2N�n � 1)S � 2�n�1X pixels and the total memory needed for

synchronization will be:

T
(2d)

N = 3

N�1X
k=0

(2N�k � 1)SX2�k�1 = (2 � 2N + 2�N � 3)XS pixels (1)

From (1) we see that the size of the delay bu�er increases exponentially with the number

of levels, while as discussed before the memory needed for �ltering is upper bounded by

2LX pixels. Thus, as the number of decomposition levels grows, the �ltering requirements

remain relatively modest, while the size of the synchronization bu�ers tends to grow fast.

However, memory-e�cient implementations are still possible because the �ltering bu�ers hold

data that is accessed multiple times, while the synchronization bu�ers are only delay lines

(FIFO queues). This is a key distinction because, as will be described later, the data in the

synchronization bu�ers will only be used by the decoder and therefore it can be quantized

and entropy coded so that the actual memory requirements are much lower.

In summary, for an N -level dyadic decomposition, we will need

� �ltering bu�ers for up to 2LX pixels, and

� synchronization bu�ers for T
(2d)

N = (2 � 2N + 2�N � 3)XS pixels.

The decomposition of Fig. 5(b) can be implemented with the same memory as that of

Fig. 5(a). For the case of Fig. 5(b), we perform �ve levels of horizontal decomposition when we

4Index 0 corresponds to the �rst level of decomposition
5Note that we express this delay in terms of number of input lines, instead of pixels
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�rst read a line and we skip horizontal �ltering in all the subsequent decomposition levels in

Figure 6. This decomposition gives better compression results for images having a signi�cant

part of their energy in the high frequencies. For a speci�c wavelet packet decompositions the

exact structure of a line-based implementation would have to be determined on a case-by-case

basis, and thus the above formulas do not apply. However, special decompositions such as

the one in Figure 5(b), having the same memory requirements as the simple \dyadic tree"

decomposition, can provide some of the gains of a wavelet packet decomposition, while being

memory e�cient.

2.3 Example

To illustrate our WT algorithm let us consider an example, with N = 5 levels of decompo-

sition. Refer to Figure 6. After �ltering, data from decomposition level n are passed on to

decomposition level n + 1. Assume we are at level 2 and we are receiving data from level

1. Each time we receive a line we perform horizontal �ltering and we store the data into

a circular bu�er that can hold L lines. After we have received S + 1 lines we can perform

vertical symmetric extension inside the bu�er. We will end up with L lines that have already

gone through a horizontal decomposition and we are then ready to perform vertical �ltering.

We can generate 2 output lines at once since we have all the necessary input lines. One line

will have vertical low pass information and the other will have vertical high pass information.

Moreover, half the coe�cients in each line will contain horizontal low pass information and

the other half will contain horizontal high pass information. As output we have four lines

LL2;LH2;HL2;HH2 of length half the length of our vertical bu�er at this level. The LL2 line

needs to go to the next decomposition level, i.e., level 3, while the lines LH2;HL2;HH2 need

to go through the synchronization bu�er FIFO2. The width of each input line for level n is

2�nX, while the width for each output line is 2�n�1X. This process continues for each level

of decomposition, up to the last level (level N � 1).

2.4 Speed advantages

The WT implementation described in the previous sections provides signi�cant memory sav-

ings, as compared to a \naive" row column �ltering implementation, which will require a

memory size of the order of the image size. This memory e�ciency is advantageous also in

terms of computation speed. Obviously, the number additions and multiplications is exactly

the same in our line-based implementation as in the row column �ltering implementation.
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However in image compression applications we frequently deal with large images such that

the whole image does not �t into the processor cache memory. If the cache memory is insuf-

�cient all the image pixels will have to be loaded into cache several times in the course of the

WT computation. For example, in a software environment the operating system and the pro-

cessor are responsible for loading and unloading certain parts of the whole image into cache,

and a memory ine�cient approach will result in increased memory management overhead.

In the naive approach, output coe�cients generated by horizontal �ltering will have to be

removed from the cache, then reloaded when column �ltering is performed. Instead, in our

proposed system, the enforced \locality" of the �ltering operations makes it more likely that

strips of the image get loaded into the cache only once 6. This fact alone reduces the tra�c

through the buses of the processor and cuts the bandwidth for memory access by orders of

magnitude. Cache memory is around 5 times faster than main memory, so we expect speed

ups of around 5 times by using our approach. In software implementations these were indeed

our observations in simulations. Also the larger the size of the image the greater the speed

advantages o�ered by our algorithm. No optimization was performed in our code and yet

to the best of our knowledge our algorithm provides the fastest currently available software

implementation.

3 Low memory entropy coding

3.1 Desired characteristics of a low memory compression scheme

In order to use our low-memory WT for an image compression application, and still keep

the memory needs low, we need to ensure that wavelet coe�cients are compressed soon after

they have been generated. Wavelet coe�cients are generated line by line in an interleaved

fashion (i.e., as mentioned earlier, �ltering operations generated both high-pass and low-pass

data for a given input line), and therefore it will be useful to be able to encode the data in

the order it is generated. Obviously, bu�ering all the coe�cients from a certain band before

they are coded increases memory requirements and should be avoided. Thus a low-memory

encoder should be able to code data as soon as it becomes available, bu�ering up only a few

lines before encoding (rather than entire subbands) and avoiding having to go through the

wavelet coe�cients more than once.

It should be noted that if providing an embedded bit stream is required it will be necessary

6Of course, depending of the size of the cache relative to the image size, we might need to load them more

than once.

11



to perform several passes through the data and thus the memory requirements will be larger.

An embedded coder will typically send the most signi�cant bits of all the wavelet coe�cients,

whereas a memory e�cient approach would tend to transmit coe�cients (down to maximum

level of signi�cance) as they are produced. If an embedded bit-stream is desired then it

will be necessary to store all the wavelet coe�cients (so that the most signi�cant bits of all

coe�cients can be sent �rst). Alternatively, with the appropriate bit-stream syntax, it may

be possible to generate an embedded bit-stream by �rst storing a compressed image and then

reordering the bit-stream before transmission (as in [19]). In either case, an embedded output

requires more bu�ering than our proposed approach.

As indicated earlier, to reduce the synchronization memory requirements, it will be prefer-

able to store compressed data in those bu�ers after compression. This is clearly advantageous

since wavelet coe�cients are usually kept in oating point format (32 bits) while after com-

pression they can be stored with about one bit per coe�cient on average. Thus one should

keep in compressed form as much data as possible and avoid bu�ering uncompressed wavelet

data.

3.2 Line based entropy coder

We now describe our proposed low-memory coding strategy, based on context modeling and

classi�cation along with arithmetic coding and probability estimation. Processing is based

on the lines of wavelet coe�cients produced by the WT. Each band is encoded separately, i.e.

we do not use any kind of information from one band in order to encode another. Moreover

no global information is required. Our purpose is to demonstrate that a line-based transform

combined with a line-based coder can be competitive in terms of compression performance,

at a fraction of the memory requirements of a more general algorithm like [9, 5, 11, 4, 10].

In the rest of the paper we will assume that all subband data are quantized with the same

dead-zone quantizer, that is the step size � of the quantizer is the same for all subbands. The

quantization operation is a mapping from a wavelet coe�cient � to the index v = b
�

�
c. The

inverse quantization is a mapping from the index v to an estimate �̂ of the original wavelet

coe�cient �.

�̂ =

8<
:

(v + 1=2) � � if v > 0

(v � 1=2) � � if v < 0

0 otherwise

(2)

We assume appropriate normalization of the �lter coe�cients, as discussed in [9], in order

to compensate for the fact that the biorthogonal �lter-banks we use here (to take advantage
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of the symmetry properties) do not have norm one. This normalization allows us to use the

same quantization step size for each band.

3.2.1 Introduction to Context Modeling

Context modeling is used in various forms in many compression algorithms. It has been

the central component of lossless compression algorithms like [20, 21, 22], and is also widely

applied in lossy compression environments [8, 9, 10]. We de�ne the context information

for a coe�cient as the information we can obtain from the neighboring previously quan-

tized and encoded coe�cients7. Obviously context information is only useful if the data ex-

hibits some sort of correlation, as is the case when considering wavelet coe�cients obtained

from �ltering natural images. Consider for example a one dimensional signal x0; x1; x2; : : :.

Context information corresponding to a coe�cient xn can be any function of the form

�n = f(xn�1; xn�2; xn�3; : : :). Usually we only consider a small �nite window, that is, the

number of arguments for the function f() is small. The context information �n can be use-

ful as a general form of prediction for xn, where our objective is not to predict the value

of xn itself, but rather to characterize the distribution of xn given �n. For example, if

�n = jxn�1j+ jxn�2j+ jxn�3j, i.e, is the sum of the magnitudes of three previously quantized

coe�cients, then small values of �n may correspond to a probability function for xn that

is highly peaked around zero (i.e. another small coe�cient is likely), while larger values of

�n may correspond to an almost uniform distribution for xn (i.e. large magnitude wavelet

coe�cients will tend to appear in clusters). Note, that if each value of �n had to be assigned

a di�erent probability model, the system would quickly become impractical (excessive num-

ber of models as compared to the amount of data would result in context dilution.) Thus,

in practice, a �nite number of classes or probability models N is used so that a given xn is

assigned to one of these N classes depending on the context. Since the possible values of �n

may be very large, selecting the N classes is similar to quantizing �n into N discrete values.

3.2.2 Context Modeling and low memory

We now describe a low memory context modeling approach that is well suited for our line-

based transform, refer to Fig. 7. For each subband we keep only one line of context informa-

tion, where the context contains both sign and magnitude information from previous lines.

As a context we will use a weighted average of all previous lines of wavelet coe�cients. This

7We assume that only causal contexts are used to avoid having to send any side information to the decoder.
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approach is a good compromise that allow us to maintain low memory while at the same

time being able to include in the context more information than that corresponding to the

previous line. Let �i; i = 0; : : : K be the quantized wavelet coe�cients in one line of a certain

subband, where K is the width of a line. Let ci; i = 0; : : : ;K be the context information for

magnitude in this subband. For each subband we keep one line of context information. We

start at the top of the subband with all ci equal to zero and update each ci after we encode

a pixel of value �i as follows:

ci =

�
j�ij �i 6= 0

ci=2 otherwise
(3)

The scanning within a subband is, left to right, top to bottom. If a coe�cient is found

to be non-zero (at the given quantization level), we keep its absolute value as the context

information in the current position in a line. However if the current coe�cient is zero we

divide the previous context information by 2, so as to lower (but not set to zero) the neigh-

borhood magnitude. The factor of 2 is chosen for simplicity of implementation, and there

was no particular optimization involved. The above way of forming context information is

equivalent to looking to several previous lines at a time and using the information from the

nearest nonzero coe�cient in the vertical direction. The advantage of our approach is that

we are doing it in a computationally much more e�cient way since we accumulate all context

information in one line. Context information ci is kept in �xed point format, so we expect

to have ci = 0 in areas having many zeros, i.e., a non zero coe�cient does not \propagate"

more than few lines or samples in the context information. Apart from the context related

to the magnitude of past encoded coe�cients we also keep context information for the sign

of the coe�cients from the previous line, a coe�cient can either be positive \+", negative

\-", or zero \0". Note that the sign we store here is that of the actual coe�cient in the line

in that position. We need 2 bits for each coe�cient in order to keep this information, the

context information for the sign is:

si = signf�ig =

8<
:

0 if �i = 0

1 if �i > 0

�1 if �i < 0

(4)

The total memory needed for storing the context information for all subbands is three equiv-

alent image lines. We need 3 lines of length X=2 for the �rst level of decomposition, 3 lines of

length X=8 for the second level, and in general 3 lines of length 2�n�1 for the nth level. The

total bu�er size is TC =
PN�1

i=0 3 � 2�n�1X = 3(1 � 2�N )X, which tends to 3X as N grows.
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3.2.3 Classi�cation and Encoding

In the rest of the document we will use a function encodefv
����g, to represent encoding a

number v given a discrete probability model �. encodefg will use arithmetic coding and

encode-rawfv[�]g will represent the function of sending the � least signi�cant bits of v, with-

out any form of entropy coding. For the cases where we are encoding a single bit we use the

function encode-bitf�
����g, in order to emphasize that we are encoding a single bit.

Based on the context information ci (see Figure 7) we classify each new coe�cient �i into

a class i, among 15 possible classes, as follows:

�i = ci + 2ci�1 + ci+1 + (ci�3jjci�2jjci+2jjci+3) (5)

i =

8<
:

14 if �i > 214 � 1

0 if �i = 0

1 + blog2 �ic otherwise

(6)

Where jj stands for logical \or",

�jj� =

�
0 if � = 0 and � = 0

1 otherwise

The motivation behind this scheme is to keep the contribution of ci�3; ci�2; ci+2; ci+3 to

the context formation to a minimum. The selection of the 1+ blog2 :c operator, is mostly for

simplicity since it represents the number of signi�cant bits. Moreover using a logarithmic rule

for quantization into classes also accounts for the fact that in typical images neighborhoods

with small context magnitude (�i small) are more likely than those with high magnitude.

Thus a logarithmic rule allows us to have more classes at low magnitude than at high mag-

nitude.

Class i = 0 corresponds to a coe�cient where all its neighbors are zero, so that we expect

j�ij to be very close to zero, for values of i further away from zero the distribution of j�ij

is much less peaked around zero. Up to 15 classes can occur, but in practice the number

of classes that are used depends up on the bit rate. If we happen to have large enough

wavelet coe�cients, or high bit rate, all 15 classes might be used, but if we are encoding

at low bit rates only a portion of the 15 classes might occur. After classi�cation we encode

a bit denoting if our current coe�cient �i is signi�cant or not, the encoding of this bit is

conditioned upon the class i, sending information denoting if our current coe�cient �i is

signi�cant or not corresponds to encode-bitfj�ij > 0
���ig. If a given coe�cient is found to

be signi�cant, we also encode a parameter li:

li = blog2 j�ijc (7)
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This parameter denotes the extra number of LSBs8 needed to represent the magnitude of

j�ij, given that j�ij > 0. We follow by a raw encoding of the li LSBs of j�ij. As an example,

assume9 j�ij = 000011101, li = 4. If the decoder knows the value of li it can then �nd the

highest order nonzero bit of �i, and with the transmission of li more bits, j�ij will have been

completely transmitted.

The sign of �i is subsequently encoded using a separate context modeling, based on the

sign of the two nearest neighbors. Each neighbor can be either zero, positive or negative

so that we have a total of nine di�erent combinations. By using a technique know as sign

ipping [20] we can reduce the number of classes from nine to �ve. In sign ipping we take

advantage of certain symmetries present in the context formation, as seen in Table 1. Let us

consider an example. Assume that both neighbors go; g1 are positive and let p; 1� p be the

probability that a new coe�cient x has the same sign or not, respectively, as its neighbors.

We can assume that the probability of \same sign" will be the same if both go; g1 are negative

and thus we only characterize the probability of having a sign change and assume these are

roughly the same regardless of the sign go; g1 have, as long as their sign is the same.

3.2.4 State information/ Arithmetic Coder

We use an arithmetic coder that operates with di�erent probability models where the proba-

bility model depends on the class i. For each class, we keep track of symbol occurrences so

as to update the probability model. The models needed for each band are:

� Five binary models for sign encoding

� 15 binary models for encoding signi�cance information,where each model corresponds

to a class 

� One model B of up to 14 symbols for encoding the number li from (7). This model will

be used as an M -ary model with 0 < M � 14 by considering the �rst M symbols. As

explained in section 3.2.5, li will always be bounded by a number M for each line.

Therefore we will need 5+15+14 = 34 words per subband in order to store the probability

model information. As can be deduced from the foregoing discussion, context modeling does

not represent a signi�cant memory overhead to our system as compared to the memory

needed for �ltering.

8Least signi�cant bits
9The over-lined bit is the highest order nonzero bit, while the underlined bits are the additional li LSBs

that will be sent to the decoder.
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3.2.5 Algorithm

After wavelet transform and quantization, with the same dead-zone quantizer for all the

coe�cients, the algorithm for encoding a line corresponding to one subband can be described

as follows:

1. For each new line encode-rawfL[15]g, where L = blog2(1+maxi j�ij)c is the number of

bits needed to represent the largest coe�cient in a row line. If L > 0 go to step 2 else

return to step 1. This allow us to determine the maximum value for li and to skip lines

that are all zero.

2. Classify each new wavelet coe�cient �i into a class i according to equations (5) and

(6).

3. encode-bitfj�ij > 0
���ig (Encode whether �i is zero or not, by using the corresponding

model i ) and update the statistics for model i.

4. if j�ij > 0 f

� encodefli

���B(M)g where li = blog2 j�ijc, M = dlog2 Le, B
(M) means that we are

using model B as an M�ary model, since we know that li < M .

� form a class wi for the encoding of the sign according to table 1

� encode-bitf�i > 0
���wig and update the statistics for model wi.

� encode-rawfj�ij[li]g, that is we encode the li LSBs of j�ij.

g else go to step 5

5. update the context information according to equation (3)

6. if not end of line go to the next pixel (step 2)

7. if not end of image go to the next line (step 1)

4 Experimental Results and Memory Analysis

In Table 2 we present PSNR results for �ve di�erent images along with comparisons with

algorithms in [5, 9, 11] and also JPEG [2] with arithmetic coding10. Our results are not always

10In order to provide a fair comparison with a DCT based technique we select the arithmetic coding based

JPEG (JPEG-AR) rather than baseline JPEG. The memory requirements are very similar and the compression

performance better for JPEG-AR. All the wavelet coders we consider use arithmetic coding.
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the best but are competitive at a fraction of the complexity and memory utilization. It is

worth repeating that our algorithm is one pass and there are no rate distortion optimization

decisions made at any stage. The memory requirements depend upon the �lter length in

our �lter-bank, the number of levels in the decomposition, the type of decomposition itself,

and the width of the image. The height of the image does not a�ect the memory needs.

The transform can be implemented in only 2LX pixels of memory independently of the

number of levels of decomposition, the encoder and decoder are responsible for handling the

synchronization bu�ers. Even though the synchronization bu�ers grow exponentially with

the number of decomposition levels, we can bring their size down by orders of magnitude if we

keep them in compressed form. The memory needed for context modeling is 3X pixels. The

overall memory needs for our algorithm are the lowest reported in the literature for wavelet

coders.

In Table 3 we present the exact memory usage for all algorithms [9, 5, 11, 2], as measured

in an HP-Kayak workstation running windows NT, the memory needs of our algorithm are

much closer to JPEG than any of the above mentioned algorithms. The scaling problems of

wavelet coders can be seen clearly by observing the numbers in table 3. In many practical

applications images of hundreds of millions of pixels need to be compressed, but in many

cases it is impossible to bu�er the whole image. Tiling the image causes blocking artifacts

and degrades the performance. In table 2 for the column corresponding to [11] we forced

the algorithm to work with tiles of size 128� 128, this con�guration corresponds to memory

needs slightly above our current algorithm, but the performance of the wavelet coder in this

case falls below that of JPEG-AR.

It is worth pointing out that we do not use a bit plane coder for the re�nement bits as

for example [11]. Instead we are encoding each quantized wavelet coe�cient at once, without

the need for multiple passes. The results, as compared to bit plane coders [5, 11, 4], are still

very competitive. We compensate for not entropy coding some bits by the use of a higher

order arithmetic coder to encode the number li of those bits.

5 Contributions

In this paper we have developed a technique for line based wavelet transforms, analyzed the

memory needs of the transform and separated the memory needed in two di�erent categories,

namely �ltering memory and synchronization memory. We pointed out that the synchroniza-

tion memory can be assigned to the encoder or the decoder and that it can hold compressed
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data. We provided an analysis for the case where both encoder and decoder are symmetric in

terms of memory needs and complexity. We described a novel entropy coding algorithm that

can work with very low memory in combination with the line-based transform, and showed

that its performance can be competitive with state of the art image coders, at a fraction of

their memory utilization. The whole system can also be used as a tool for WT implemen-

tation in low memory, and in fact line based transforms as implemented in this work have

been incorporated into the JPEG 2000 veri�cation model. It is also worth mentioning that

we can use compression to deal with the memory growth of the synchronization bu�ers, even

in applications where compression is not the main objective, but where memory is an issue.

To the best of our knowledge, our work is the �rst to propose a detailed implementation

of a low memory wavelet image coder. It o�ers a signi�cant advantage by making a wavelet

coder attractive both in terms of speed and memory needs. Further improvements of our

system especially in terms of speed can be achieved by introducing a lattice factorization of

the wavelet kernel or by using the lifting steps. This will reduce the computational complexity

and complement the memory reductions mentioned in this work.
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Figure 5: (a) Five level dyadic tree decomposition. The multiplications needed for the whole

decomposition are 8
3
XY L. (b) Five levels decomposition in the horizontal direction for all

lines, followed by a dyadic decomposition in the vertical direction. The memory needs are

the same as in the previous case, the multiplications needed are 10
3
XY L

class sign ip g1 g0
0 NO 0 0

1
NO + 0

YES - 0

2
NO 0 -

YES 0 +

3
NO - -

YES + +

4
NO + -

YES - +

g0
g1 x

Table 1: Context formation for sign encoding/decoding. We only use the sign from the

two nearest neighbors for context formation. We exploit symmetry by using a sign ipping

technique and we thus reduce the number of classes from nine to �ve. g0; g1 are the signs of

the wavelet coe�cients at the corresponding locations.
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Figure 6: Full system with analysis �lter bank, encoder, decoder and synthesis �lter bank,

we consider 5 levels of decomposition. The FIFO bu�ers can become part of the encoder and

decoder, in order to reduce the total memory size. Encoder and decoder need to be able to

work with each band independent of the others. The �ltering bu�er for level n consists of

L lines of length 2�nX. The data ow is as follows: we read image data, pass through the

�ltering blocks for the appropriate levels, send data to the encoder and inverse the process

in order to reconstruct the image.
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Figure 7: Context information for magnitude encoding. For each subband we keep a line of

context information. In this Figure we see the relative position of the wavelet coe�cient �i
to be encoded and the context information around it.

Rate SPIHT[5] C/B[9] JPEG-AR VM2.0[11] This work

Lena 0.125 31.10 31.32 28.45 30.93,(27.96) 31.05

512 � 512 0.25 34.13 34.45 31.96 34.03,(31.36) 34.20

0.50 37.24 37.60 35.51 37.16,(34.75) 37.35

1.00 40.45 40.86 38.78 40.36,(38.60) 40.47

Barbara 0.125 24.84 25.39 23.69 24.87,(23.27) 25.20

512 � 512 0.25 27.57 28.32 26.42 28.17,(25.38) 28.18

0.50 31.39 32.29 30.53 31.82,(29.20) 31.87

1.00 36.41 37.40 35.60 36.96,(33.79) 36.68

Goldhill 0.125 28.47 28.61 27.25 28.48,(26.84) 28.49

512 � 512 0.25 30.55 30.75 29.47 30.58,(29.21) 30.64

0.50 33.12 33.45 32.12 33.27,(31.88) 33.27

1.00 36.54 36.95 35.57 36.81,(35.47) 36.66

Bike 0.125 25.82 26.16 24.88 25.75,(21.89) 25.92

2560 � 2048 0.25 29.12 29.43 28.20 29.30,(24.83) 29.17

0.50 33.00 33.47 32.11 33.28,(29.30) 33.04

1.00 37.69 38.27 36.39 38.08,(34.39) 37.66

Woman 0.125 27.27 27.67 26.05 27.23,(24.09) 27.51

2560 � 2048 0.25 29.89 30.36 28.83 29.79,(26.12) 30.14

0.50 33.54 34.12 32.47 33.54,(28.80) 33.74

1.00 38.24 38.92 37.11 38.30,(32.96) 38.47

Table 2: Comparison between our method and [5, 9, 2, 11] for images: Barbara, Lena, Goldhill,
Bike and Woman, the last two images are part of the test images for JPEG2000. We used �ve
levels dyadic decomposition with 9-7 tap �lters.(JPEG-AR stands for JPEG compression with the
addition of arithmetic coding.) For algorithm [11] the numbers in parenthesis correspond to tiles of
size 128� 128.
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Image

Size
compressed SPIHT[5] C/B[9] JPEG[2] VM2.0[11] Line Based

5.2M

2560 � 2048
650K 27M 21M 688K 51M (1.5M) 850K

16.9M

3312 � 5120
2.1M 81M 67M 720K 97M (3.4M) 1.3M

33.9M

6624 � 5120
4.2M * 92M 720K * (5.5M ) 1.3M

Table 3: Memory usage for algorithms [5, 9, 2, 11] for tree di�erent image sizes 5:2; 16:9 and

33:9 Mbytes. All images were compressed at 1b/p. The numbers were obtained using an

HP Kayak-XU workstation with a 300MHz Pentium II processor running windows NT, with

128M of memory. The numbers in parenthesis for the line based algorithm correspond to the

memory needed for the algorithm plus memory for bu�ering of the complete bit stream. The

numbers were measured for the decoder but for all the above algorithms encoder and decoder

are symmetric in terms of memory. The \*" corresponds to cases where the memory needs

exceeded the machines limitations .
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