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ABSTRACT

We address the problem of compression for wireless sensor
networks, where each of the sensors has limited power, and ac-
quires data that should be sent to a central node. The final goal
is to have a reconstructed version of the sampled field at the cen-
tral node, with the sensors spending as little energy as possible.
We propose a distributed compression algorithm for multihop, dis-
tributed sensor networks based on the lifting factorization of the
wavelet transform that exploits the natural data flow in the network
to aggregate data by computing partial wavelet coefficients that are
refined as the data flows towards the central node. A key result of
our work is that by performing partial computations we greatly re-
duce unnecessary transmission, significantly reducing the overall
energy consumption.

1. INTRODUCTION

Low cost programmable sensors can be deployed in the environ-
ment to perform a variety of coordinated tasks, such as object
tracking, environment monitoring/ surveillance and control [1].
The fast development and decreasing cost of wireless technolo-
gies have made sensor networks a key technology for the future,
and led to substantial interest on distributed algorithms targeted at
these networks [2, 3, 4, 5].

Assume that a number of power-constrained sensors are spr-
ead over an area, acquiring data, e.g., temperature measurements.
An estimate of the temperature in each point of that area is to
be made available at a central node (sink) based on transmissions
from the sensors. Each sensor is capable of transmitting data only
over a small distance. Communication is done via data hoping,
where data from each sensor is forwarded (using other sensors as
relay stations) until it reaches the target node. Such a network is
referred to as a multihop network.

A simple and naive design would be for each sensor to just
transmit a quantized version of its own measurement to the central
node. However, this approach would not be exploiting the fact that
measurements originated from spatially close sensors are likely to
be correlated, and energy would be wasted with the transmission
of redundant data to the central node. As an alternative, since data
is correlated, it would be reasonable to use some sort of transform
as a means to decorrelate the information from sensors, and, there-
fore, represent the measurements using fewer bits.

Previous works [2, 3] have proposed the use of distributed
transforms to decorrelate data. A main drawback of those al-
gorithms is that in a power constrained sensor network scenario,
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transmission costs account for most (if not all) the energy con-
sumption. Distributed algorithms that rely on a potentially large
number of intersensor communications, or do not take into account
communication costs as a function of the number of bits and the
distances over which bits are transmitted, might in the end be el-
evating power consumption to unacceptable levels. For example,
in the case of distributed wavelet algorithms, the amount of neces-
sary data exchanges and the degree of decorrelation achieved are
directly related to the number of levels of decompositions used.
Depending on the network properties (data correlation, distances
between sensors, etc), a specific number of decompositions may
perform better.

Distributed implementation of the wavelet transform poses sev-
eral challenges. First, if the filters contain anticausal terms, sensors
would be required to transmit data backwards (i.e., away from the
sink instead of towards the sink) or alternatively to send uncom-
pressed data forward. Second, any data transmitted back and forth
over the network has to be quantized, since tramsmissions at full
precision can substantialy increase energy consumption, affect-
ing the final performance. In this work we propose a distributed
wavelet transform algorithm to decorrelate data as it flows through
the network. We eliminate unnecessary transmissions by calculat-
ing partial approximations of the wavelet coefficients based on the
available data at each sensor. The coefficients are refined at future
nodes, as data is forwarded to the sink. We also address the impact
of data quantization on the final distortion. We derive an upper
bound to the resulting extra distortion introduced by quantization
in terms of the bits allocated to the partial data, and use it as a tool
to design the quantizers so the extra distortion is within a given
threshold.

The paper is organized as follows. Section 2 introduces the
proposed algorithm. The quantization effect of the partial data is
addressed in Section 3. Section 4 presents some preliminary re-
sults. In Section 5 we present our conclusion and discuss future
work.

2. THE PROPOSED ALGORITHM

The lifting scheme is an alternative method to compute wavelet
transforms. It allows a faster implementation, along with a full
in-place calculation of the coefficients [6].

We propose the use of the lifting scheme to generate the wavelet
coefficients at each of the sensors. Even-numbered sensors corre-
spond to the even samples and odd-numbered sensors to the odd
samples. In-place computation reduces the memory requirements
for the sensors. Implementations as the one proposed in [7] enable
the partial computation of coefficients at the boundaries. In this



perspective, the sensors can be divided into groups and increasing
levels of the wavelet decomposition would be computed, as long
as the extra energy spent in the calculations and transmissions is
compensated by the increase in decorrelation.

Efficient implementation of a lifting based distributed wavelet
transform becomes challenging once inter node communication
costs are taken into account. Fig. 1 illustrates a typica imple-
mentation of the lifting algorithm for the 5/3 wavelet, where

�������
denotes the high-pass data and � ����� denotes the low-pass data after
the transform is computed. In [8], we proposed the introduction of
internode communication, using extra transmissions, to give sen-
sors knowledge about their neighbors’ data, allowing them to com-
pute the wavelet coefficients. The reduction in the average number
of bits per sensor compensated the cost of the extra transmissions,
resulting in a smaller overall energy consumption. However, for a
multihop network, where all data already flows in a particular di-
rection, sensors that need to transmit data away from the sink may
be wasting resources. A simple solution could be the introduc-
tion of a delay, making the system causal, and having the sensors
calculating the transform coefficients only after all the necessary
data becomes available at a future node. This approach, however,
is clearly inefficient, since raw data has to be transmitted until it
reaches the node that will process it, the memory requirements for
the sensors can increase substantially, not to mention the poten-
tially large increase in the energy consumption due to the raw data
transmission itself.
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Fig. 1. Lifting implementation of wavelet transform. Sensors ex-
change data with neighbors in order to compute transform coeffi-
cients.

In this work, as a solution to the causality problem, we take
advantage of the data flow in the network to compute a distributed
wavelet transform. By performing partial computations with the
available data, we eliminate unnecessary backward (against the
flow) transmissions. The transmission of partially computed co-
efficients then raises another important issue, given that all trans-
missions have to be made with finite precision. A poor choice of
intermediate coefficient quantization might considerably affect the
final distortion. We address the issues of causality and quantiza-
tion in the following sections.

2.1. The Partial Coefficients Approach

As a means to overcome the causality problem, we propose that
each sensor perform partial computations using the available data
that arrives with the network flow. Let � ����������� �!#"%$'&����(�)� "� 
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, be a general filter defined by the transform to

be applied to the network. This filter can also be represented as� ���5�6�879���5�)�;:�<=:?>@���5�)� "�A
, where A(z) and B(z) are the

anticausal and causal parts of the filter, respectively. In the first
step in the partial coefficient approach, the current node receives a
quantized version of

>@���5�
. Then, it computes and sends to the next

node a quantized version of
>@���5�)� "�A :B<

. This, and the subsequent

nodes will update the coefficient using their local data, until it is
fully computed.

The lifting implementation of the wavelet transform facilitates
the distributed implementation. The in-place computation greatly
reduces the memory requirements for the sensors. Within a lift-
ing implementation it is easy to compute the partial data updates
in terms of previous partial coefficients, eliminating the need to
transmit extra information. As an example, let C ����� denote the
raw (quantized) data and DC ���(� the full coefficient for the n-th sen-
sor. The 5/3 wavelet coefficients using lifting at odd and even sen-
sors are given by:EF9GIHKJMLONQP�RTS NH F9GUHKJ%P%LVF9GIHKJMLWNQPXS

N
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In our approach, since sensor ^ �_:a` does not have access to data
from sensor ^ ��: ^ , it computes just the partial coefficient DCBb � ^ ��:`Z�

as DCBb � ^ �V:�`Z�c�edgfihkj  mlj : C � ^ �V:�`Z�
. When this partial

data arrives at sensor ^ �_: ^ , it will be updated to DC � ^ �g:,`n�o�
DCMb � ^ �p:q`Z�#d?fihkj  mr j lj . Data present at each sensor is illustrated

in Fig. 2, for a 1-level 5/3 wavelet. The computations performed
at each even and odd sensor for this transform are summarized as
follows:

Computations performed at
even (2n) sensors:

Computations performed at
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Fig. 2. Partial coefficients are transmitted forward and updated at
future sensors until the full coefficients are computed.

Note that the sensors make their computations only based on pre-
vious partial or full coefficients, and not on raw data, eliminat-
ing the need for extra information. Although this representation
is straightforward for the 5/3 wavelet lifting factorization, other
filters might require specific optimiztion.

3. PARTIAL COEFFICIENT QUANTIZATION EFFECTS

In standard transform computing, the computations to obtain the
transform coefficients are performed at full precision, and only
the final coefficients are quantized. However, in a distributed net-
work scenario, transmissions at full precision would significantly
increase energy costs, making it necessary to also quantize partial
coefficients. In this section we study the impact of partial coef-
ficient quantization on the final distortion, and propose a rule to
determine how many bits should be used to quantize the partial in-
formation so as to achieve a target level of degradation, in the form



of added distortion as compared to calculating coefficients without
partially quantized data.

Assume we have a uniform quantizer
���

, with bin size equal
to � . We want to quantize the result of ��� A :�� � j , where � and�

are known constants (
-
	 � /���	,` ) and � A and � j are random

variables uniformly distributed on the interval  -�/n`�� . The resulting
quantization

� � � ��� A :�� � j � gives a mean-squared error of � .
Assume now that a second quantizer

���
, with bin size equal to�

, is used to quantize � A and � j before the quantizer
���

. The
resulting mean-squared error of

� � � � ��� � � A ��:�� ��� � � j �2� is ��� .
Expressing the MSE for both cases as double integrals gives:� �����a� ��� A :�� � j d ��� � ��� A :�� � j �2�2jQ� � A � � j (1)� � �����a� ��� A :�� � j d ��� � � ��� � � A ��:�� ��� � � j �2�2�2jQ� � A � � j

(2)

A graphical interpretation of the distortion calculation is shown
in Fig. 3 for the case where � ���Y�?`

. The rectangular grid cor-
responds to the quantization regions for the pair

� � A / � j � . The
diagonal lines define the decision regions for the quantizer

� �
.

Let
�� � A

j�� . It can be shown that the number of extra bits that
should be assigned to

���
when compared to

���
is given by  .

Then, by computing the MSE ratio in terms of  , we can relate
the additional extra distortion to the bits used to quantize the par-
tial data, defining a rule to design the quantizer
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Fig. 3. Graphical interpretation of quantization effects. (a) Re-
gions for which

� � � ��� A :[� � j �]\� � � � � � � � � A �]:[� � � � � j �2�
(b) Regions for which

�^� � ��� A :_� � j � � �^� � � ��� � � A �o:� ��� � � j �2�
Calculating the above integrals for the case � �`�3� `

gives
us (intermediate steps omitted due to the lack of space):� �� ��`�: a

^ j�b (3)

This result shows that the MSE ratio is independent of the ab-
solute value of the bin sizes of the quantizers, depending only on
their ratio. Simulations have shown that the case � �c� � `
represents a worst case, with the ratio "$#" decreasing as � and

�
decrease, and that the results are little affected by the probability
distributions of � A and � j .

Fig. 4 shows the theoretical curve from (3) plotted together
with simulated results for a number of cases where � /d��	 `

and� A , � j are gaussian r.v.’s. In practical transform computations,
typical values for � and

�
might increase or decrease depending

on the specific coefficient, but in general they are always smaller

than one, making the curve
` : ej w � a still reasonable approxima-

tion for an upper bound of the ratio "$#" . By allocating  extra bits
when quantizing � A and � j than when quantizing ��� A :�� � j
we can guarantee that the extra distortion introduced by the inter-
mediate quantization will be bounded by the values given by the
theoretical curve. The figure also shows that values of  smaller
than 3 introduce a large extra distortion, and the reduction in the
extra distortion has a diminishing return as  increases for values
above 3.
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Fig. 4. Theoretical and simulated results for MSE ratio with and
without partial coefficient quantization

4. SIMULATION AND RESULTS

In this section we present some preliminary results. We show that
the partial coefficient quantization has indeed a major impact on
the final distortion, and the results obtained in section 3 can be
used to design the partial quantizers such that a good trade-off
point between the allocated bits and the extra distortion introduced
is achieved. We also compare the performance of the proposed
scheme with the cases of raw data transmission (no encoding)
and of two-way transmissions (no partial coefficients) in terms of
signal-to-noise ratio against transmission cost.

Fig. 5 shows the distortion curves obtained for standard 5/3
wavelet implementations and when partial coefficients are coarsely
quantized (  � -

) and finely quantized (  �_f
). It can be seen

that the resulting SNR is very sensitive to coarsely quantized par-
tial coefficients. In the sensor network scenario, choosing values
of  much larger than

f
will certainly lead to better signal-to-noise

ratio, but at the cost of an increase in the overall energy consump-
tion.

For the cost comparisons, the simulations considered a simple
5/3 wavelet, as described in section 2. The input process data was
created using a second order AR model, with poles placed such
that a reasonably smooth output would be generated from white
noise (poles were at

-hg ijilklmonqpr�� ). The measurements at the sensors
corresponded to a sampling of the output of the AR model. The
sensors were assumed to lie at a constant distance

�
of each other.

This restriction, however, is not required in practice. We used uni-
form quantization and no entropy coding at this point. The cost
for the transmission of

1
bits over the distance

�
was computed as1qsn� j

.
Figure 6 shows the resulting SNR and Cost for the case where

100 sensors are equally spread over 100 meters. The 2-level wavelet
with finely quantized partial coefficients performs better, with raw
data transmission being the one spending the most energy. The
energy savings are around 30% when compared to raw data trans-
mission for a target SNR.
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Fig. 6. Cost comparison between methods when 100 sensors are
equally spread over 100 meters. Methods that result in a significant
reduction in the average number of bits per sensor tend to perform
better.

In Fig. 7 we plot the resulting costs for the case where only
10 sensors were spread over the same distance. It can be seen that
methods that require more communication tend to perform worse
than the simpler ones. This might be attributed mainly to the fact
that in a large network, a large portion of the transmissions (and
the energy consumption) are related to simply forwarding already
computed coefficients, and not with their computation. Therefore,
a method that reduces the average number of bits per sensor also
reduces the computational load due to data forwarding, resulting
in a smaller overall cost. Smaller networks should benefit from
methods that do not introduce large extra local costs, since the
energy spent with coefficient computation (including due to finer
quantization for partial coefficients) and data forwarding have the
same magnitude.

5. CONCLUSION AND FUTURE WORK

We have proposed a distributed wavelet algorithm for wireless
multihop sensor networks that exploits the data flow direction in
the network to perform partial computations to approximate the
wavelet coefficients using the available data that arrives at each
sensor. We have derived an upper bound to the distortion intro-
duced by partial data quantization, and used it as a means to design
the partial quantizers such that a good trade-off between additional

1 2 3 4 5 6 7

x 10
4

10

20

30

40

50

60

70

80

90

100
SNR x Cost

Cost

SN
R

No processing (quantization only)
1−Lvl 5/3 Wavelet With two−way communication
2−Lvl 5/3 Wavelet With two−way communication
2−level 5/3 Wavelet With Partial Coefficients, N=0
1−level 5/3 Wavelet With Partial Coefficients, N=0
2−level 5/3 Wavelet With Partial Coefficients, N=3
1−level 5/3 Wavelet With Partial Coefficients, N=3

Fig. 7. Cost comparison between methods when 10 sensors are
equally spread over 100 meters. Most methods perform simi-
larly, with 1-lvl wavelet with finely quantized coefficients being
just slightly better than simple raw data transmission.

distortion and increase in cost (due to the extra bits to be transmit-
ted) was achieved.

Simulations have shown that the proposed method can signifi-
cantly reduce transmission costs depending on the network con-
figuration. Also, the comparison between figures 6 and 7 sug-
gests that the network configuration can be optimized by breaking
the network into regions that would operate using different coding
schemes depending on the physical location of sensors, reducing
the overall energy consumption.

A number of topics are still to be addressed. Measurements at
the sensors can consist of vector data, meaning that sensors are ac-
quiring data over time. In this case, local correlation at each node
can also be exploited. Different quantizers, other than uniform,
also might be used. Under current development is the extension of
the proposed algorithm to the 2D case, where we make use of side
information to differentiate between possible paths.
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