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Abstract

Volume visualization with random data access poses significhallenges. While tiling
techniques lead to simple implementations, they are not suéled for cases where the goal
is to access arbitrarily located subdimensional datasegs, (being able to display an arbitrary
2D planar “cut” from a 3D volume). Significant effort has bedevoted to volumetric data
compression, with most techniques proposing to tile vokiime cuboid subvolumes to enable
random access. In this paper we show that, in cases whergrseixional datasets are accessed,
this leads to significant transmission inefficiency. As aeraltive, we propose novel server-
client based data representation and retrieval methodshvdain be used for fast random access
of oblique plane from 3D volume datasets. In this paper, 3peerents are shown but the
approach may be extended to higher dimensional datasetss&ultiple redundant tilings of
the 3D object, where each tiling has a different orientatibla discuss the 3D rectangular tiling
scheme and two main algorithm components of such 3D systamely, (i) a search algorithm
to determine which tiles should be retrieved for a given guerd (i) a mapping algorithm
to enable efficient encoding without interpolation of rethtiles. In exchange for increased
server storage, we demonstrate that significant reductioagerage transmission rate can be
achieved relative to conventional cubic tiling techniquesg., nearly 40% reduction in average
transmission rate for less than a factor of twenty overheaddrage before compression. Note
that, as shown in our earlier work on the 2D case, the storagehead will be lower after
compression (e.g., in 2D the relative increase in storagledrcompressed domain was at least
a factor of two lower than in the uncompressed domain.)

. INTRODUCTION

In many fields (e.g., biomedical imaging, earth sciencesymgdational fluid dynamics,
etc.) researchers need to manipulate and visualize vegge ldatasets. Often it is not
practical for a personal computer to be equipped with sefiicmemory so as to enable
manipulation, visualization and rendering of the compldétaset. In these kinds of
applications, a client-server approach can be more effgctiith the server providing
only the data needed for the specific visualization task atcttent. Such client-server
approaches are widely used [1]-[6] , e.g., for interactii@mng of maps at various
resolutions, and are often supported by tiling technigeeghat the server provides only
those tiles corresponding to data requested by the client.

Tiling-based techniques are efficient when most of the médion included in the tiles
is used for display. This is the case, for example, when a givneof a larger 2D dataset
(e.g., a map) is to be displayed or when small sub-volumes laefge 3D volume are
needed [2] (i.e., the dimension of the subset and the ddtasetwhich it is extracted are
equal). In this paper we tackle a more challenging problenwfuch conventional tiling
techniques are inefficient. Specifically, we focus on situret where lower dimensional
portions of a dataset need to be accessed. For example, wltiraetric image example,



arbitrary oblique planes of the volume may need to be exdaeind rendered, as is
required in some medical imaging applications. Standdirljtcan be inefficient in this
scenario, because for each retrieved cubic tile the onlglgbihat are “useful” are those
near the intersection between the cube and the desired 2i2.dBecause tiles are the
basic unit for compression, complete tiles have to be retdeeven in cases when just a
small number of voxels in each tile will be used for displag We shall see, it is more
efficient to use overlapping rotated tiles to represent tta-get; this leads to an increase
in the average number of useful voxels per tile so that thal fmtmber of tiles to be
retrieved is smaller (and hence a lower transmission bitiachieved). This comes at
the cost of an increase in storage at the server. Thus we-offdlecreased storage at
the server’s side for lower bandwidth during the interaetaccess to the data-set.

Many techniques have been proposed for volumetric imagengd@&]—[6], including
approaches such as JP3D [7]-[9]. In all cases, some formndbra access is provided
via tiling, with non-overlapping, independently encodedbaid subvolumes being used.
Clearly, the improved random access achievable by tilingeoat the expense of some
reduction in coding efficiency (i.e., there would be lessrbead if bigger tiles were used
for encoding). The main novelty of our approach comes frorth&r exploring this trade-
off by allowing tiles that i) overlap and ii) are rotated atrieas angles. In this paper,
we illustrate our proposed tiling scheme with 3D exampldsene the goal is to retrieve
arbitrary oblique plane from 3D objects, but our method mayelatended to higher
dimensions. We demonstrate that by using overlapped tiigs different orientations,
we can achieve lower transmission overhead for arbitracgessto lower dimensional
datasets, at the cost of requiring additional storage aténeer.

Considering the actual storage (in bits) to be proportiem#the volume of the encoded
3D tiles, the experimental results demonstrate the avenageber of bits transmitted
when using the proposed tiling scheme can be nearly 15% - Bi9r|for different
storage overhead, as compared to the traditional cubngtdcheme. The reduction can
be even greater by allowing additional storage overheaagudifferent size of tiles.

We start by considering tiling methods, parameterized lgyltication and orientation
of the tiles, that can guarantee that all data can be retti€8ection Il). Because tiles
overlap, there is no longer a unique way to retrieve data fgivan query, and so we
propose a 3D search algorithm to identify the most efficientos tiles to be transmitted
in response to a query. We also propose a simple mappingitgehto compress the data
points on the rotated tiles that do not coincide with the €aan grid points. Finally,
we conclude the paper in Section V.

II. 3D RECTANGULAR TILING SCHEME FOR EFFICIENT TRANSMISSION WITH
RANDOM ACCESS

The intuition behind the proposed redundant tiling is tHagdach voxel is available
from more than one tile, one can achieve lower bandwidth @naae by delivering the
set of tiles that provide all requested voxels most effidyefite., with lowest number
of tiles required). Since queries of interest are planes at arbitrary angissstiygests
that rotated tiles should be used. Thus, we assume that es s#fri“rotation centers”

a volume element, representing a value on a regular gridreettimensional space.
2Note that in a non-redundant case the set of tiles requirehswer a query is unique.
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Fig. 1. Comparison of rectangular and square tiling schem@p case(retrieve a random line from a plane). Just
10 rectangular tiles are needed, insteadkdfsquare tiles (note that tiles have the same 8ize 32 and 16 x 16,
respectively).

are chosen, in which several tiles of different orientadi@me centered. Using rotated
rectangular tiles will lead to a lower average transmiss@e because each selected
tile will lie along the requested plane, which will lead ireses in the average number
of voxels contained in the intersection between planesgoedguested and the “best
matching tiles”. Figure 1 illustrates the potential berselising a 2D example(with the
line being requested for display). It can be seen that feWes have to fetched when
rectangular rotated tiles are used (in this example realangnd square tiles contain
the number of pixels). Clearly, the number of tiles to be sraitted will depend on the
data being requested. Figure 2 illustrates achieving ldvegrsmission rate in 3D case,
where a random plane is retrieved from a 3D data set. By shpthe front view and
the side view of the selected tiles in Figure 2, we can seeevat though overlapping
exists in the rectangle tiling scheme, as compared withrddtional cubic tiling scheme
(seen in the front views), a great amount of transmissiog ¢anh be reduced using our
proposed method (seen in the side views and the retrievedbemai the tiles) , where
much more voxels per tile containing the voxels of the retpeeplane.

Figure 3 illustrates the 3D tiling scheme. The tiling laygubur proposed system can
be described by the widti/, length L and heightH of each 3D tile, the numbe¥N of
rotated rectangles associated with each rotation cemérDa, D, and D., the distance
between rotation centers along the x, y and z directions erCédwrtesian grid. Because
the selected tiles should lie along the requested planedardo increase the size of
the intersection, we choosé = L and H < W, so that the 3D tiles are themselves
“thin”. The pattern of the rotation centers could be squaexagonal, or triangular, etc.
in the 2D case and the rotation angles can be different fan eatation center. For 3D
case, similarly, the pattern of the rotation centers cowddchboctahedral, octahedral,
icosahedral or tetrahedral, etc. and the rotation anglesdeadifferent for each rotation
centers. In this paper we locate the rotation centers atgoma regular octahedron grid
patten (the rotation centers are located at the regulahedtan vertices) and at each
rotation center, théV rotated rectangles are uniformly spread out by using equiadre
tessellation method [10]. Cases using different pattesnshie rotation centers and using
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(a) Front view: rectangular tiling scheme result. (b) Front view: cubic tiling scheme result. Tiles
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(c) Side view: rectangular tiling scheme result. (d) Side view: cubic tiling scheme result.
Tiles lie alone the plane.

Fig. 2. Comparison of rectangular and cubic tiling scheme3D case(retrieve a random plane from a 3D data set).
Just9 rectangular tiles are needed, instea@sftubic tiles (note that tile sizes are cloge,x 32 x 8 and20 x 20 x 20,
respectively).

different rotation angles will be discussed in future wddkiformly rotated 3D tiles can
be obtained by making their norm vectors (refer to Figure @)pread uniformly in a
sphere around the rotation center. This means that fof, théth norm vectom;, will be
such that this norm vector will be at a constant anyylg with respect to the norm vectors,
n;, of all its immediate neighbors. In Figure 4 (b), the normtees are represented
with a common origin and with their end points uniformly sgaeout on a 3D sphere,
so that sphere tessellation methods can be used for degitivertile angles. Therefore,
icosahedron, octahedron and tetrahedron sphere tegs®latith different refining levels
can be used for choosing the directions of the uniformlyteataectangular tiles. When
two vectors with exactly opposite directions are part oftdsselation, only one of them
is used as the norm vector of a tile. The 3D tile angle seledtadllustrated by Figure 4
and the number of the tile angles obtained by using the diftetessellation methods in
this paper are shown in Table I. Different tile angle setimgn be used associated to
different rotation centers. In this paper, when differalg &ngle settings are used, the
rotation centers with different tile angle settings aresiitgaved. For the tiling layout in
our proposed system, parameter configurations which caer @hthe pixels in the 3D
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Fig. 3. 3D tile demonstrationD is the distance (between P angl) From the rotation center of the tile to the plane.
0 is the angle between the tile and the plafiels one norm vector of the rectangle tile. The other norm veigto
opposite with 180.

(a) Icosahedron sphere tessellation: refinement (b) Tile direction vectorsi
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(c) The number of the tiles at each rotation center by usingahedron sphere tessellation: 6 in total

Fig. 4. Angles selection for 3D tiles: Note (b) shows poim both possiblei vectors associated with a given
tile, contrary to the definition, for illustrative purposesthe geometry.

object are chosen. Considering that the actual bits redjaifter compression by each tile
are proportional to the volume of the encoded 3D tile, we rhttteaverage transmission
rate to be proportional to the average number of tiles to Aestitted times the tile

volume.

[1l. ALGORITHMS FOR THE RECTANGULAR TILING SCHEME

After selecting a tiling strategy, two algorithms have todssigned for our proposed
approach. First, since multiple sets of tiles can be usednswer any given query,
Algorithm 1 is provided to determine which set of tiles anssva query with minimum
rate. Second, since data is rotated before coding, Alguarighis designed to map 3D
original data to the corresponding 3D rotated samplingsgrid



Ico: LO | Ico: L1 | Oct: LO | Oct: L1 | Oct: L2 | Tetra: L1 | Tetra: L2
No. Vertices 12 42 6 18 66 10 34
No. Tile angles 6 21 3 9 33 7 24
TABLE |

ICO: ICOSAHEDRON TESSELLATION OCT: OCTAHEDRON TESSELLATION TETRA: TETRAHEDRON TESSELLATION
L MEANS REFINING LEVEL.

A. Fast 3D Rectangle Search Algorithm

Since there are many possible rectangle combinations ter @plane, we consider a
solution to be “optimal” when the number of rectangles toarahe plane is minimum.
This is a reasonable criterion, because the total trangmisate needed will be roughly
proportional to the number of rectangles that have to beeketd. Note that several
solutions may be optimal (different rectangle combinatidimat cover the plane, using
the same number of rectangles). Our 3D rectangle searchithlgois similar to our
previously proposed 2D rectangle search algorithm [113tdad of sorting the points
associated with a line as in the 2D case in [11], the points plaae are sorted in order
of decreasing distance to the center point of the plane ¢thited list of points is called
List A.) In Algorithm 1, we start by finding the tile that coethe first element of List
A (the furtherest point from the center of the plaraed covers the largest number of
points in the list. Then the selected tile will be recorded af the points covered by
the selected tile will be removed from List A. The procedwsethen repeated on the
updated List A, until all the points on the plane are covereel,(List A is empty).
While it cannot be guaranteed that this algorithm is optimahe 3D case, the resulting
transmission rate can be significantly reduced by usingsissch algorithm (as will be
seen from our experiments in Section IV.) Additionally,sttgearch algorithm is very
fast, since we only need to search for the rectangles loatmehd the rotation centers
close to the plane.

Algorithm 1 3D Rectangle Cover Searching Algorithm

1: Find the indices for the points in the requested planeeHlee points on Cartesian grid which have distances
less than 1 are considered. Sort the indices with decreasigr by calculating the distance from the points in
a plane to the plane origin, calling the sorted list

2: Find rotation centers which are close to the plane, aaliie list B.

3: while isemptyd == 0) do

4:  Starting withA(1), the beginning point of the list, find the rotation centers i, which are close toi(1),

calling the listC.

for i=1:length(C)do
For the rectangle tiles associate with the rotation esriteC'(7), find the one coversi(1) and covers the
greatest amount of, calling R(7).

7 end for

8: MaxR = max(R);

9 In A, remove the points covered by MaxR, the rectangle tile satefrom the previous step. Update lidt

and record the rectangle.
10: end while




B. Mapping Algorithm for Rotated Tile Encoding

From Figure 5, the points on the rotated rectangular grig @Phot coincide with the
original Cartesian grid points (CB, CP._l). A straightforward approach to represent the
data would be to interpolate the values on the rotated rgatangrid before compression,
but interpolation results in loss of some high frequencyiinfation. Instead we propose
to map the original values on the Cartesian grid into thetedtaectangular grid before
compression. While many alternative mappings are possildeare interested in methods
that minimize the mapping distancP (n Figure 5), where pixels are displaced from their
original positions for encoding. Clearly this is desirabkethese displacements “distort”
the frequency contents of the blocks prior to encoding. @appsed mapping algorithm
seeks to: i) map all Cartesian points inside the rectanguksa, ii) minimize the average
and maximum of the pointwise mapping distancBs,and iii) be symmetric about the
rotation center. Starting from the rotation center, we ntepCartesian and rotated grid
points to each other in a 1-to-1 mapping moving from the geafehe tile outward.
Refer to Algorithm 2 for the implementation details. In Rigub, certain points, such
as the rotation center, are in the same positions in botls gwtiile in other cases, the
pixel in a given location in the rotated grid has been copredhfa neighboring location
in the Cartesian grid. Note that the pixels are copied ungbdni.e., no interpolation is
performed. The blue lines show how pixels are remapped.

Fig. 5. 3D Mapping: CPO (cartesian points outside the rectangle), IC@artesian points inside the rectangle), RP
(point on rectangle grid), D (mapping points distance).

The main advantage of this approach is that it lowers thedingédecoding complex-
ity, but at the cost of introducing some distortion (i.e ¢ fhixel values that are aligned
for encoding were not aligned in the original representgtitn our 3D case study, 3D
compression has not been applied yet, however experimesgalts using compression
in the 2D case with the same mapping algorithm [11] demotestieat the symmetric
mapping algorithm leads to better RD performance than asyommetric approach and
both the mapping algorithms lead better RD performance tharinterpolation method.
A situation analogous to that observed in compression oeB#élfer images [12] arises:



interpolation leads to smoother images, but also removiesnration from the original
data so that at high rates re-mapping leads to better peafarenthan interpolation. Note
that tiles having the same rotation angles around theifef@ift) rotation centers have
the same mapping table relative to the Cartesian grid pwiitksjust a shift between the
rotation centers. Thus, we only need to store a small numb&bies (one per angle)
to specify the mapping.

Algorithm 2 Mapping Algorithm

1: Find the Cartesian points inside the rotated rectanglenve. Calculate the distances from the Cartesian points
(from the step above) to the rotation center. Sort the digtmnwith increasing order, calling the sorted likt
2: Calculate the distances from the rotated rectangle goidtp to the rotation center. Sort the distances with
increasing order, calling the sorted liBt
3: while ¢ < length(4) and k < length(B) do
: while A(¢) has been mappedo

4
5: t=1+1

6: end while

7:  while B(k) has been mappedo
8
9

k=k+1
: end while
10:  if A(¢) < B(k) then
11: Find the rotated grid point closest (i) from the unmapped points if.
12: Record the mapping points and label the points as "mdpped and B.
13: i=1i+1
14: dse
15: Find the unmapped Cartesian point closesB{a:).
16: Record the mapping points and lali#{k) as "mapped”.
17: Also label the Cartesian point as "mapped”.
18: The Cartesian point may or may not beAn
19: k=k+1
20: end if
21: end while

IV. EXPERIMENTAL RESULTS

We now compare our proposed 3D tiling (with rectangular,riagping tiles) to a
standard tiling strategy (with cubic, non-overlappingg). 80 experiments of random
oblique plane retrieval were done. For each request of aorandblique plane, both
rectangular and cubic tiling schemes are applied. We rgpettminary results for our
3D case study, where 3D compression has not been applied yte tiles. Considering
that the actual transmission rate or storage in bits is ptapal to the volume of
encoded 3D tiles, as a preliminary result, we count the nurabeetrieved voxels. The
average numbers of transmitted voxels for both schemeseameded. The rectangular
tile size is fixed to bdV = 32, L = 32 and H = 8. The side of a cubic tile i20. 7,
and T, indicate the total numbers of bits transmitted in the regtder and cubic tiling
modes, respectively, anfl. = 7,/T, denotes the ratio of required bandwidths for the
rectangular and cubic tiling schemés.and .S, are the total storage sizes when using the
rectangular and cubic tiling, respectively, afid= S, /S; is the relative storage overhead
required by the rectangular tiling scheme. Figure 6 showsrdde-off between the ratio
of required bandwidti/, and the storage overhead, while we fix one and vary the
other between the center position and the number of angles.nlimber of rotation
angles varies by using the tile angle selection method ini@ed. The rotation center
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Fig. 6. 3D case resulffe versusS,. T. denotes the ratio of required bandwidths for the rectamgand cubic tiling
schemesS, denotes the relative storage overhead required by thengdt tiling schemel. = 1. /Ts S, = Sr/Ss.
Note, the storage here is before 3D compression.

positions vary by changing the rotation center distandes (O, and D, in Section Il
). The proposed method leads to an increase in random ageessnission efficiency
of 15% - 55% as compared to cubic tiling, depending on the eimatorage overhead
(Sp)- This transmission rate can be further reduced by allowmirage storage overhead.
Intuitively, the proposed method uses an over-complet¢osetrlapped rectangular tiles)
to represent the 3D data set, while the traditional methaes wwthogonal set (non-
overlapped cubic tiles) to represent the 3D data set. Theremore over-completeness
(more storage overhead) tends to lead more transmissicreatfy. In addition, Figure 6
shows that for the same storage overheag, different transmission efficiencieg,) are
achieved by using different parameter settings,(D,, D, and the number of the tile
rotation angles). Hence, we can choose the parameters i@vadhe best transmission
efficiencies according to the different storage requiresien

V. CONCLUSION

In this paper, we proposed a new method for remotely retrgeablique plane from 3D
volume data set with fast random access. This paper hasgoarsthe 3D case, but the
methodology may be extended to higher dimensions. Our 3lltsesave demonstrated
that by using overlapped tiles with different orientatiossd allowing some storage
overhead on the server's side, transmission rate can beeddoy close to 55% in
3D case, as compared to the conventional tiling scheme. kahection is possible by
allowing more storage overhead and alternative configamatior the redundant tiles can
also be investigated. This method has the potential to deredly speed up the random
access procedure, requiring less data storage at the ctieygared to conventional tiling.
We developed a mapping algorithm, which has low complexitgserves the Cartesian
grid data and allows reconstruction very easily and effityen
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