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Abstract

Volume visualization with random data access poses significant challenges. While tiling
techniques lead to simple implementations, they are not well suited for cases where the goal
is to access arbitrarily located subdimensional datasets (e.g., being able to display an arbitrary
2D planar “cut” from a 3D volume). Significant effort has beendevoted to volumetric data
compression, with most techniques proposing to tile volumes into cuboid subvolumes to enable
random access. In this paper we show that, in cases where subdimensional datasets are accessed,
this leads to significant transmission inefficiency. As an alternative, we propose novel server-
client based data representation and retrieval methods which can be used for fast random access
of oblique plane from 3D volume datasets. In this paper, 3D experiments are shown but the
approach may be extended to higher dimensional datasets. Weuse multiple redundant tilings of
the 3D object, where each tiling has a different orientation. We discuss the 3D rectangular tiling
scheme and two main algorithm components of such 3D system, namely, (i) a search algorithm
to determine which tiles should be retrieved for a given query and (ii) a mapping algorithm
to enable efficient encoding without interpolation of rotated tiles. In exchange for increased
server storage, we demonstrate that significant reductionsin average transmission rate can be
achieved relative to conventional cubic tiling techniques, e.g., nearly 40% reduction in average
transmission rate for less than a factor of twenty overhead in storage before compression. Note
that, as shown in our earlier work on the 2D case, the storage overhead will be lower after
compression (e.g., in 2D the relative increase in storage inthe compressed domain was at least
a factor of two lower than in the uncompressed domain.)

I. INTRODUCTION

In many fields (e.g., biomedical imaging, earth sciences, computational fluid dynamics,
etc.) researchers need to manipulate and visualize very large datasets. Often it is not
practical for a personal computer to be equipped with sufficient memory so as to enable
manipulation, visualization and rendering of the completedataset. In these kinds of
applications, a client-server approach can be more effective, with the server providing
only the data needed for the specific visualization task at the client. Such client-server
approaches are widely used [1]–[6] , e.g., for interactive viewing of maps at various
resolutions, and are often supported by tiling techniques,so that the server provides only
those tiles corresponding to data requested by the client.

Tiling-based techniques are efficient when most of the information included in the tiles
is used for display. This is the case, for example, when a 2D region of a larger 2D dataset
(e.g., a map) is to be displayed or when small sub-volumes of alarge 3D volume are
needed [2] (i.e., the dimension of the subset and the datasetfrom which it is extracted are
equal). In this paper we tackle a more challenging problem for which conventional tiling
techniques are inefficient. Specifically, we focus on situations where lower dimensional
portions of a dataset need to be accessed. For example, in thevolumetric image example,



arbitrary oblique planes of the volume may need to be extracted and rendered, as is
required in some medical imaging applications. Standard tiling can be inefficient in this
scenario, because for each retrieved cubic tile the only voxels1 that are “useful” are those
near the intersection between the cube and the desired 2D plane. Because tiles are the
basic unit for compression, complete tiles have to be retrieved, even in cases when just a
small number of voxels in each tile will be used for display. As we shall see, it is more
efficient to use overlapping rotated tiles to represent the data-set; this leads to an increase
in the average number of useful voxels per tile so that the total number of tiles to be
retrieved is smaller (and hence a lower transmission bitrate is achieved). This comes at
the cost of an increase in storage at the server. Thus we trade-off increased storage at
the server’s side for lower bandwidth during the interactive access to the data-set.

Many techniques have been proposed for volumetric image coding [2]–[6], including
approaches such as JP3D [7]–[9]. In all cases, some form of random access is provided
via tiling, with non-overlapping, independently encoded cuboid subvolumes being used.
Clearly, the improved random access achievable by tiling comes at the expense of some
reduction in coding efficiency (i.e., there would be less overhead if bigger tiles were used
for encoding). The main novelty of our approach comes from further exploring this trade-
off by allowing tiles that i) overlap and ii) are rotated at various angles. In this paper,
we illustrate our proposed tiling scheme with 3D examples, where the goal is to retrieve
arbitrary oblique plane from 3D objects, but our method may be extended to higher
dimensions. We demonstrate that by using overlapped tiles with different orientations,
we can achieve lower transmission overhead for arbitrary access to lower dimensional
datasets, at the cost of requiring additional storage at theserver.

Considering the actual storage (in bits) to be proportionalto the volume of the encoded
3D tiles, the experimental results demonstrate the averagenumber of bits transmitted
when using the proposed tiling scheme can be nearly 15% - 55% lower for different
storage overhead, as compared to the traditional cubic tiling scheme. The reduction can
be even greater by allowing additional storage overhead using different size of tiles.

We start by considering tiling methods, parameterized by the location and orientation
of the tiles, that can guarantee that all data can be retrieved (Section II). Because tiles
overlap, there is no longer a unique way to retrieve data for agiven query, and so we
propose a 3D search algorithm to identify the most efficient set of tiles to be transmitted
in response to a query. We also propose a simple mapping technique to compress the data
points on the rotated tiles that do not coincide with the Cartesian grid points. Finally,
we conclude the paper in Section V.

II. 3D RECTANGULAR TILING SCHEME FOR EFFICIENT TRANSMISSION WITH

RANDOM ACCESS

The intuition behind the proposed redundant tiling is that if each voxel is available
from more than one tile, one can achieve lower bandwidth on average by delivering the
set of tiles that provide all requested voxels most efficiently (i.e., with lowest number
of tiles required)2. Since queries of interest are planes at arbitrary angles this suggests
that rotated tiles should be used. Thus, we assume that a series of “rotation centers”

1a volume element, representing a value on a regular grid in three dimensional space.
2Note that in a non-redundant case the set of tiles required toanswer a query is unique.
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Fig. 1. Comparison of rectangular and square tiling schemesin 2D case(retrieve a random line from a plane). Just
10 rectangular tiles are needed, instead of21 square tiles (note that tiles have the same size8 × 32 and 16 × 16,
respectively).

are chosen, in which several tiles of different orientations are centered. Using rotated
rectangular tiles will lead to a lower average transmissionrate because each selected
tile will lie along the requested plane, which will lead increases in the average number
of voxels contained in the intersection between planes being requested and the “best
matching tiles”. Figure 1 illustrates the potential benefits using a 2D example(with the
line being requested for display). It can be seen that fewer tiles have to fetched when
rectangular rotated tiles are used (in this example rectangular and square tiles contain
the number of pixels). Clearly, the number of tiles to be transmitted will depend on the
data being requested. Figure 2 illustrates achieving lowertransmission rate in 3D case,
where a random plane is retrieved from a 3D data set. By showing the front view and
the side view of the selected tiles in Figure 2, we can see thateven though overlapping
exists in the rectangle tiling scheme, as compared with the traditional cubic tiling scheme
(seen in the front views), a great amount of transmission bits can be reduced using our
proposed method (seen in the side views and the retrieved number of the tiles) , where
much more voxels per tile containing the voxels of the requested plane.

Figure 3 illustrates the 3D tiling scheme. The tiling layoutin our proposed system can
be described by the widthW , lengthL and heightH of each 3D tile, the numberN of
rotated rectangles associated with each rotation center, and Dx, Dy andDz, the distance
between rotation centers along the x, y and z directions on the Cartesian grid. Because
the selected tiles should lie along the requested plane in order to increase the size of
the intersection, we chooseW = L and H < W , so that the 3D tiles are themselves
“thin”. The pattern of the rotation centers could be square,hexagonal, or triangular, etc.
in the 2D case and the rotation angles can be different for each rotation center. For 3D
case, similarly, the pattern of the rotation centers could be cuboctahedral, octahedral,
icosahedral or tetrahedral, etc. and the rotation angles can be different for each rotation
centers. In this paper we locate the rotation centers at points on a regular octahedron grid
patten (the rotation centers are located at the regular octahedron vertices) and at each
rotation center, theN rotated rectangles are uniformly spread out by using equal sphere
tessellation method [10]. Cases using different patterns for the rotation centers and using



(a) Front view: rectangular tiling scheme result.
Tiles overlap.

(b) Front view: cubic tiling scheme result. Tiles
do not overlap.

(c) Side view: rectangular tiling scheme result.
Tiles lie alone the plane.

(d) Side view: cubic tiling scheme result.

Fig. 2. Comparison of rectangular and cubic tiling schemes in 3D case(retrieve a random plane from a 3D data set).
Just9 rectangular tiles are needed, instead of24 cubic tiles (note that tile sizes are close,32×32×8 and20×20×20,
respectively).

different rotation angles will be discussed in future work.Uniformly rotated 3D tiles can
be obtained by making their norm vectors (refer to Figure 4) be spread uniformly in a
sphere around the rotation center. This means that for tilei, with norm vector~ni, will be
such that this norm vector will be at a constant angle∆α, with respect to the norm vectors,
~ni, of all its immediate neighbors. In Figure 4 (b), the norm vectors are represented
with a common origin and with their end points uniformly spread out on a 3D sphere,
so that sphere tessellation methods can be used for designing the tile angles. Therefore,
icosahedron, octahedron and tetrahedron sphere tessellations with different refining levels
can be used for choosing the directions of the uniformly rotated rectangular tiles. When
two vectors with exactly opposite directions are part of thetesselation, only one of them
is used as the norm vector of a tile. The 3D tile angle selection is illustrated by Figure 4
and the number of the tile angles obtained by using the different tessellation methods in
this paper are shown in Table I. Different tile angle settings can be used associated to
different rotation centers. In this paper, when different tile angle settings are used, the
rotation centers with different tile angle settings are interleaved. For the tiling layout in
our proposed system, parameter configurations which can cover all the pixels in the 3D
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Fig. 3. 3D tile demonstration:D is the distance (between P and P0) from the rotation center of the tile to the plane.
θ is the angle between the tile and the plane.~n is one norm vector of the rectangle tile. The other norm vector is
opposite with 180◦.

(a) Icosahedron sphere tessellation: refinement
level 0
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(b) Tile direction vectors~n

(c) The number of the tiles at each rotation center by using icosahedron sphere tessellation: 6 in total

Fig. 4. Angles selection for 3D tiles: Note (b) shows points from both possible~n vectors associated with a given
tile, contrary to the definition, for illustrative purposesof the geometry.

object are chosen. Considering that the actual bits required after compression by each tile
are proportional to the volume of the encoded 3D tile, we model the average transmission
rate to be proportional to the average number of tiles to be transmitted times the tile
volume.

III. A LGORITHMS FOR THE RECTANGULAR TILING SCHEME

After selecting a tiling strategy, two algorithms have to bedesigned for our proposed
approach. First, since multiple sets of tiles can be used to answer any given query,
Algorithm 1 is provided to determine which set of tiles answers a query with minimum
rate. Second, since data is rotated before coding, Algorithm 2 is designed to map 3D
original data to the corresponding 3D rotated sampling grids.



Ico: L0 Ico: L1 Oct: L0 Oct: L1 Oct: L2 Tetra: L1 Tetra: L2
No. Vertices 12 42 6 18 66 10 34
No. Tile angles 6 21 3 9 33 7 24

TABLE I
ICO: ICOSAHEDRON TESSELLATION; OCT: OCTAHEDRON TESSELLATION; TETRA: TETRAHEDRON TESSELLATION.

L MEANS REFINING LEVEL.

A. Fast 3D Rectangle Search Algorithm

Since there are many possible rectangle combinations to cover a plane, we consider a
solution to be “optimal” when the number of rectangles to cover the plane is minimum.
This is a reasonable criterion, because the total transmission rate needed will be roughly
proportional to the number of rectangles that have to be retrieved. Note that several
solutions may be optimal (different rectangle combinations that cover the plane, using
the same number of rectangles). Our 3D rectangle search algorithm is similar to our
previously proposed 2D rectangle search algorithm [11]. Instead of sorting the points
associated with a line as in the 2D case in [11], the points on aplane are sorted in order
of decreasing distance to the center point of the plane (thissorted list of points is called
List A.) In Algorithm 1, we start by finding the tile that covers the first element of List
A (the furtherest point from the center of the plane)and covers the largest number of
points in the list. Then the selected tile will be recorded and all the points covered by
the selected tile will be removed from List A. The procedure is then repeated on the
updated List A, until all the points on the plane are covered (i.e., List A is empty).
While it cannot be guaranteed that this algorithm is optimalin the 3D case, the resulting
transmission rate can be significantly reduced by using thissearch algorithm (as will be
seen from our experiments in Section IV.) Additionally, this search algorithm is very
fast, since we only need to search for the rectangles locatedaround the rotation centers
close to the plane.

Algorithm 1 3D Rectangle Cover Searching Algorithm
1: Find the indices for the points in the requested plane. Here the points on Cartesian grid which have distances

less than 1 are considered. Sort the indices with decreasingorder by calculating the distance from the points in
a plane to the plane origin, calling the sorted listA.

2: Find rotation centers which are close to the plane, calling the listB.
3: while isempty(A == 0) do
4: Starting withA(1), the beginning point of the listA, find the rotation centers inB, which are close toA(1),

calling the listC.
5: for i=1:length(C)do
6: For the rectangle tiles associate with the rotation centers in C(i), find the one coversA(1) and covers the

greatest amount ofA, calling R(i).
7: end for
8: MaxR = max(R);
9: In A, remove the points covered by MaxR, the rectangle tile selected from the previous step. Update listA

and record the rectangle.
10: end while



B. Mapping Algorithm for Rotated Tile Encoding

From Figure 5, the points on the rotated rectangular grid (RP) do not coincide with the
original Cartesian grid points (CPO, CP I). A straightforward approach to represent the
data would be to interpolate the values on the rotated rectangular grid before compression,
but interpolation results in loss of some high frequency information. Instead we propose
to map the original values on the Cartesian grid into the rotated rectangular grid before
compression. While many alternative mappings are possible, we are interested in methods
that minimize the mapping distance (D in Figure 5), where pixels are displaced from their
original positions for encoding. Clearly this is desirableas these displacements “distort”
the frequency contents of the blocks prior to encoding. Our proposed mapping algorithm
seeks to: i) map all Cartesian points inside the rectangulararea, ii) minimize the average
and maximum of the pointwise mapping distances,D, and iii) be symmetric about the
rotation center. Starting from the rotation center, we map the Cartesian and rotated grid
points to each other in a 1-to-1 mapping moving from the center of the tile outward.
Refer to Algorithm 2 for the implementation details. In Figure 5, certain points, such
as the rotation center, are in the same positions in both grids, while in other cases, the
pixel in a given location in the rotated grid has been copied from a neighboring location
in the Cartesian grid. Note that the pixels are copied unchanged, i.e., no interpolation is
performed. The blue lines show how pixels are remapped.

D

CP_ICP_O

RP

Fig. 5. 3D Mapping: CPO (cartesian points outside the rectangle), CPI (cartesian points inside the rectangle), RP
(point on rectangle grid), D (mapping points distance).

The main advantage of this approach is that it lowers the encoding/decoding complex-
ity, but at the cost of introducing some distortion (i.e., the pixel values that are aligned
for encoding were not aligned in the original representation). In our 3D case study, 3D
compression has not been applied yet, however experimentalresults using compression
in the 2D case with the same mapping algorithm [11] demonstrate that the symmetric
mapping algorithm leads to better RD performance than a non-symmetric approach and
both the mapping algorithms lead better RD performance thanthe interpolation method.
A situation analogous to that observed in compression of Bayer filter images [12] arises:



interpolation leads to smoother images, but also removes information from the original
data so that at high rates re-mapping leads to better performance than interpolation. Note
that tiles having the same rotation angles around their (different) rotation centers have
the same mapping table relative to the Cartesian grid pointswith just a shift between the
rotation centers. Thus, we only need to store a small number of tables (one per angle)
to specify the mapping.

Algorithm 2 Mapping Algorithm
1: Find the Cartesian points inside the rotated rectangle volume. Calculate the distances from the Cartesian points

(from the step above) to the rotation center. Sort the distances with increasing order, calling the sorted listA.
2: Calculate the distances from the rotated rectangle grid points to the rotation center. Sort the distances with

increasing order, calling the sorted listB.
3: while i ≤ length(A) andk ≤ length(B) do
4: while A(i) has been mappeddo
5: i = i + 1
6: end while
7: while B(k) has been mappeddo
8: k = k + 1
9: end while

10: if A(i) ≤ B(k) then
11: Find the rotated grid point closest toA(i) from the unmapped points inB.
12: Record the mapping points and label the points as ”mapped” in A andB.
13: i = i + 1
14: else
15: Find the unmapped Cartesian point closest toB(k).
16: Record the mapping points and labelB(k) as ”mapped”.
17: Also label the Cartesian point as ”mapped”.
18: The Cartesian point may or may not be inA.
19: k = k + 1
20: end if
21: end while

IV. EXPERIMENTAL RESULTS

We now compare our proposed 3D tiling (with rectangular, overlapping tiles) to a
standard tiling strategy (with cubic, non-overlapping tiles). 80 experiments of random
oblique plane retrieval were done. For each request of a random oblique plane, both
rectangular and cubic tiling schemes are applied. We reportpreliminary results for our
3D case study, where 3D compression has not been applied yet to the tiles. Considering
that the actual transmission rate or storage in bits is proportional to the volume of
encoded 3D tiles, as a preliminary result, we count the number of retrieved voxels. The
average numbers of transmitted voxels for both schemes are recorded. The rectangular
tile size is fixed to beW = 32, L = 32 andH = 8. The side of a cubic tile is20. Tr

andTs indicate the total numbers of bits transmitted in the rectangular and cubic tiling
modes, respectively, andTe = Tr/Ts denotes the ratio of required bandwidths for the
rectangular and cubic tiling schemes.Sr andSs are the total storage sizes when using the
rectangular and cubic tiling, respectively, andSo = Sr/Ss is the relative storage overhead
required by the rectangular tiling scheme. Figure 6 shows the trade-off between the ratio
of required bandwidthTe and the storage overheadSo, while we fix one and vary the
other between the center position and the number of angles. The number of rotation
angles varies by using the tile angle selection method in Section II. The rotation center
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Fig. 6. 3D case result:Te versusSo. Te denotes the ratio of required bandwidths for the rectangular and cubic tiling
schemes.So denotes the relative storage overhead required by the rectangular tiling scheme.Te = Tr/Ts So = Sr/Ss.
Note, the storage here is before 3D compression.

positions vary by changing the rotation center distances (Dx, Dy and Dz in Section II
). The proposed method leads to an increase in random access transmission efficiency
of 15% - 55% as compared to cubic tiling, depending on the chosen storage overhead
(S0). This transmission rate can be further reduced by allowingmore storage overhead.
Intuitively, the proposed method uses an over-complete set(overlapped rectangular tiles)
to represent the 3D data set, while the traditional method uses orthogonal set (non-
overlapped cubic tiles) to represent the 3D data set. Therefore, more over-completeness
(more storage overhead) tends to lead more transmission efficiency. In addition, Figure 6
shows that for the same storage overhead (So), different transmission efficiencies (Te) are
achieved by using different parameter settings (Dx, Dy, Dz and the number of the tile
rotation angles). Hence, we can choose the parameters to achieve the best transmission
efficiencies according to the different storage requirements.

V. CONCLUSION

In this paper, we proposed a new method for remotely retrieving oblique plane from 3D
volume data set with fast random access. This paper has focused on the 3D case, but the
methodology may be extended to higher dimensions. Our 3D results have demonstrated
that by using overlapped tiles with different orientationsand allowing some storage
overhead on the server’s side, transmission rate can be reduced by close to 55% in
3D case, as compared to the conventional tiling scheme. Morereduction is possible by
allowing more storage overhead and alternative configurations for the redundant tiles can
also be investigated. This method has the potential to considerably speed up the random
access procedure, requiring less data storage at the clientcompared to conventional tiling.
We developed a mapping algorithm, which has low complexity,preserves the Cartesian
grid data and allows reconstruction very easily and efficiently.
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