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Abstract

Remote visualization of an arbitrary 2-D planar “cut” from a large volumetric dataset with
random access has both gained importance and posed significant challenges over the past few
years in industrial and medical applications. In this paper, a prediction model is presented that
relates transmission efficiency to voxel coverage statistics for a fast random 2-D image retrieval
system. This model can be used for parameter selection and also provides insights that lead
us to propose a new 3D rectangular tiling scheme, which achieves an additional 10% - 30%
reduction in average transmission rate as compared to our previously proposed technique, e.g.,
a nearly 30% / 45% reduction in the average transmission rate at the cost of a factor of ten
/ fifteen in storage overhead compared to traditional cubic tiling. Furthermore, this approach
leads to improved random access, with less storage and run-time memory required at the client.

I. INTRODUCTION

Researchers in many fields (e.g., biomedical imaging, earth sciences, computational
fluid dynamics, etc.) need to manipulate and visualize very large datasets. In these kinds
of applications, a client-server approach has been often used in order for a personal
computer equipped with limited memory to be able to manipulate, visualize, and render
the complete dataset. With a client-server approach (e.g., [1]–[6]), the server provides
only the data needed for the specific visualization task required at the client end. We
focus on situations where lower dimensional portions of a dataset need to be accessed.
In this paper, arbitrary oblique planes of a 3D volume may need to be extracted and
rendered, as is required in some medical imaging applications. An example of oblique
plane intersection with the 3D volume is shown in Fig. 1. In many techniques proposed
for volumetric image coding [2]–[6], including approaches such as JP3D [7]–[9], some
form of random access is provided via a non-overlapped, independently encoded, cuboid
tiling. These approaches can be inefficient in the scenario we focus on, because the
only useful voxels1 for each retrieved cubic tile are those near the intersection between
the cube and the desired 2D plane. In our previous work [10], we showed that it is
more efficient to use overlapping rotated tiles to represent the dataset, which leads to
an increase in the average number of useful voxels per tile so that the total number of
tiles to be retrieved is smaller (and hence a lower transmission bitrate is achieved). In
this approach, we trade-off increased storage at the server’s side for lower bandwidth
during interactive access to the data-set. Our proposed system is displayed in Fig. 2 and
consists of 5 components: 1) 3D rectangular tiling scheme, 2) mapping algorithm, 3) tile
searching algorithm, 4) 3D compression, and 5) random oblique plane reconstruction and
display. We have proposed a 3D rectangular tiling scheme and discussed components (2)

1A volume element, representing a value on a regular grid in three dimensional space.
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Fig. 1. Random oblique plane acquisition illustration.

Fig. 2. Retrieval system

and (3) in [10]. The tiling scheme provides multiple redundant tilings of the 3D object,
where each tile has a different orientation and is associated with one rotation center. The
searching algorithm determines which tiles should be retrieved for a given query while
the mapping algorithm enables efficient coding without interpolation of rotated tiles.
In this paper, we first propose a model for our system that allows us to optimize



system parameter selection without the need for simulations of system performance. The
proposed model can be used to predict transmission rate and storage, given how the cells
are partitioned. Then, based on the insights obtained from the proposed model, a new
3D rectangular tiling scheme is proposed, which leads to better performance and verifies
the model. We demonstrate that in exchange for increased server-side storage, significant
reductions in average transmission rate can be achieved relative to both the conventional
cubic tiling techniques and our previously proposed approach [10]. The run-time memory
space can also be reduced accordingly. Each tile is compressed and encoded indepen-
dently. 3D DCT, a 3D zig-zag scanning order and VLC are used in our compression
experiments. Random oblique plane display allows the acquisition and display of the
requested plane from the selected overlapped rectangular tiles. Due to space constraints,
details of the 3D compression and the random oblique plane reconstruction/display we
use here are left for a future paper.
We start by providing a prediction model for parameter selection in Section II, followed

by presenting a new 3D rectangular tiling scheme in Section III. Then in Section IV, a
performance comparison of the proposed 3D rectangular tiling scheme with the previous
tiling scheme [10] is provided. The new tiling scheme achieves an additional 10% - 30%
reduction in the average transmission rate compared to the previous rectangular tiling
scheme. Finally, we conclude the paper in Section V.

II. PREDICTION MODEL

In our previous work [10], we were able to achieve reductions in transmission rate of
15% - 50%, as compared to the conventional tiling scheme, depending on the desired
trade-off with the storage overhead. For a fixed storage overhead, different values of
distance between rotation centers and the number of rotation tiles around each rotation
center achieve different levels of transmission efficiency. Thus, in designing such re-
dundant storage systems it is important to determine how to select parameter settings
in order to achieve the best transmission efficiency for a given storage overhead. In
this section, a model is proposed for the parameter selection that provides insight as to
why different parameter settings produce different transmission efficiencies with a fixed
storage overhead. With this insight we then propose a new tiling scheme (Section III),
which leads to improved performance compared to our previous scheme.
We start by noting that with a redundant tiling strategy each voxel (or pixel) is available

from more than one tile. Intuitively, since each voxel is equally likely to be selected, it
would make sense for all voxels to be available from a similar number of tiles. Thus
our model provides a way to estimate relative transmission efficiency by computing the
mean and standard deviation of the number of tiles per voxel. While we use our previous
tiling scheme to illustrate this model, it can be readily applied to other tiling approaches
(e.g., to the new tiling scheme of Section IV). Let L × W × H be the size of each tile
(with L = W and L, W > H in this paper) and let N be the number of rotation angles
we use, chosen using sphere tesselation (refer to [10]), so that the N norm vectors of
the tiles are ñ = {�n1, �n2, �n3, · · · , �nN}. Tiles are thus rotated by selecting one of the N
angles. In our previous work [10] multiple tiles with different orientations shared the
same rotation center, while in our new approach, the tile centers can be different.
In order to compute the mean and standard deviation of the number of tiles per voxel,

assume that a tile has a random orientation around a rotation center. More precisely, we



select a tile with norm vector ñ
′ = RφRϕñ, where ϕ and φ are independent random

variables with uniform distribution U(0, 2π). Rφ and Rϕ are the corresponding rotation
matrices. Since ϕ and φ are independent random variables with uniform distribution
U(0, 2π), the possible norm vectors of the tiles form a unit sphere.

d

Fig. 3. Model for calculating the average number of tiles covering an arbitrary voxel around a rotation center.

Based on this we derive expressions for the coverage probability, P (x, y, z), i.e., the
probability that a voxel at location (x, y, z) will be covered by a randomly rotated tile. Let
d =

√
(x − xc)2 + (y − yc)2 + (z − zc)2 be the distance between this voxel and the tile

rotation center at (xc, yc, zc). Fig. 3 illustrates the possible cases to consider. Intuitively,
the coverage probabilities are higher for voxels closer to the rotation center. For example,
as shown in Fig. 3, voxels in the range I (inside the ball with radius H) can always be
covered and voxels in the range IV can never be covered, regardless of the rotation angle
of the tile. From Fig. 3, notice that the coverage probability of an arbitrary voxel depends
only on d: P (x, y, z) can be obtained as the ration between i) the area of the intersection
of a sphere of radius d and a tile with arbitrary orientation and ii) the area of the sphere:

A =
∫

2π

0

∫ π−θ

θ
sin αdαdϕ, where θ = arcsin(

H

2d
) (1)

P (x, y, z) =
A

4π
. (2)

The four cases illustrated in Fig. 3, for different ranges of d, lead to different expressions
for P (x, y, z) which are summarized in Table I.

Range Distance(d) Coverage Probability
I d ≤ H

2
P (x, y, z) = 1

II H

2
< d ≤ L

2
P (x, y, z) = 1 − 1

2
(cos θ − cos(π − θ)),

where θ = arcsin( H

2d
).

III L

2
< d ≤ 1

2
×√

L2 + W 2 + H2 P (x, y, z) ≈ 0

IV d > 1

2
×√

L2 + W 2 P (x, y, z) = 0

TABLE I
COVERAGE PROBABILITY FOR ANY VOXEL BY ONE TILE WITH RANDOM NORM VECTOR.



For the tiling scheme of [10], assume we have N tiles around a rotation center,
with orientations chosen independently with an identical uniform angle distribution, as
discussed before. Then, the average number of tiles covering a voxel is P (x, y, z)× N .
Alternatively, assume there are multiple rotation centers in the neighborhood N{j} of
voxel j. Here we consider neighboring rotation centers to be those that are within a
distance

√
(L/2)2 + (W/2)2 + (H/2)2 of a given voxel. Then the average number of tiles

covering voxel j is Tj =
∑

i Pi(x, y, z) × N , where Pi denotes the coverage probability
for one of the rotation centers i in N{j} and (x, y, z) corresponds to the location of
voxel j. This coverage probability will depend on the distance between the voxel and
each of the neighboring rotation centers.
The mean (μ) and standard deviation (σ) of the tile coverage for a whole volume can

be computed based on one Voronoi region spanned by the rotation centers, given that
regular tilings will be used (i.e., the same tiling structure will be repeated throughout
the volume). The Voronoi region associated with rotation center Ci is defined by

V (Ci) = {p : d(p, Ci) ≤ d(p, Cj), j �= i, i, j ∈ In} (3)

where p here denotes a voxel at position (x, y, z) in 3D space and d(p, Ci) is the distance
between voxel p and rotation center Ci. Denote M = |V (Ci)|, the number of voxels in
V (Ci). Then μ and σ can be calculated by using one Voronoi region,

μ =
1

M

M∑
j=1

Tj σ =

√√√√√ 1

M

M∑
j=1

(Tj − μ)2. (4)

Fig. 4(a) shows the 3D Voronoi regions. Each numbered shaded area represents one
Voronoi region. Since the rotation centers are located at points on a regular octahedron
grid patten (the rotation centers are located at the regular octahedron vertices), the Voronoi
regions are all the same polyhedrons.
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Fig. 4. In (a), 3D Voronoi region: The star points are the locations of the rotation centers. Each number indicates
one Voronoi region. In (b), New 3D rectangular tiling scheme. The tile centers for each layer are shown. 3 layers of
tiles are in this figure. The arrows show the norm vector �ni representing the tile angle.
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Fig. 5. The tile coverage statistics (σ and μ) and the transmission rate.

Using linear regression, Fig. 5(a) shows that there is a highly linear relationship
between the ratio σ

2

3 /μ, which characterizes the tile coverage, and the transmission
rate2. The reason for using the third root of the variance σ

2

3 is the dimensionality of
3D volume data. Fig. 5(b) represents σ

2

3 /μ as a function of the average storage (μ)
for different parameter settings, focusing on the range of 0 ≤ μ ≤ 60. Note that the
values of μ shown in Figs. 5(a) and 5(b) are calculated from equations (3) and (4). From
Fig. 5(a), we observe that in order to achieve a lower transmission rate, a lower σ

2

3 /μ is
preferred. Hence, for the same value μ, the parameter setting which produces the smallest
σ

2

3 /μ should be chosen. Notice that in our previously proposed tiling scheme [10], for
the same value μ, decreasing the rotation center distance is better than increasing the
rotation angles (equivalent to increasing the number of tiles per rotation center) because
decreasing the rotation center distance will lead to smaller values of σ

2

3 /μ. In order
to find the optimal parameter settings considering both μ and σ

2

3 /μ to be small, from
Fig. 5(b), a polynomial may be fit to the lower portion of the convex hull defined by the
points in the figure, the associated parameters of which would be preferred for selection.

III. NEW 3D RECTANGULAR TILING SCHEME

We now use the results of the previous section to motivate our proposed tiling scheme.
As shown by in Figs. 5(a) and 5(b), a lower variation in the number of tiles per voxel is
desirable. The approach of [10] centered multiple tiles with different orientations around
each location center, leading to high variability in coverage (all tiles covered voxels
near the rotation center, while only a few tiles covered those voxels further away).
As an alternative, we no longer place multiple tiles around each rotation center. More
importantly, we propose a technique to search for tile positions and angles in order to
minimize overlap with previously chosen tiles. This ensures that tiles are more evenly
distributed and the overall variance of tile coverage is reduced.
In our new tiling scheme we define multiple “layers” of tiles, where the tiles for each

layer have the same angle and are located uniformly throughout the volume, as shown
in Fig. 4(b). Each tile is represented by the tile center location p and the norm vector
�ni representing the tile angle. For each layer, the tiles could be arranged according to
a cuboctahedral, octahedral, icosahedral or tetrahedral pattern; in this paper we locate

2Rate = transmission bits / points in the plane. The rate is averaged over 80 random planes.



the tiles (corresponding to a set of tile centers P = {p1, p2, · · · }) at points on a regular
octahedron grid patten (the tile centers are located at the vertices of an octahedron).
There are N layers in total, each with different tile angles. The N norm vectors (one
for each layer) are obtained by using the equal sphere tessellation method [11] and are
represented with a common origin and with their end points uniformly spread out on a
3D sphere. When two vectors with exactly opposite directions are part of the tessellation,
only one of them is used as the norm vector [10].
The new tiling scheme aims to decrease the standard deviation in the number of tiles

that cover a typical voxel. In this scheme, starting with first layer tiles with arbitrary
locations on a regular grid pattern and an arbitrary angle, the new layer tiles are deter-
mined by minimizing the maximum overlap value between the new tiles and the existing
tiles. We then record the new layer of tiles in the existing tile list, and proceed to find the
next layer of tiles until all the layers (with different angles) are determined. Intuitively,
the 3D rectangular tiling method uses an over-complete set (overlapped rectangular tiles)
to represent the 3D dataset, while the traditional method uses an orthogonal set (non-
overlapped cubic tiles) to represent the 3D dataset. Minimizing the value of the maximum
overlap between the new tile and the existing tiles leads to less correlation within the over-
complete set, which then leads to greater transmission efficiency, as shown in Fig. 6(a).
We now describe the algorithm we propose to select tile locations and angles for each

of the layers. Let B ≡ {1, 2, . . . , N} be the set of angles indexes. We let (Pi, Ii) denote
the selected tiles for layer i, where Pk = {pk1, pk2, · · · } are the kth layer tiles locations
and Ik ∈ B is the kth layer angle index. Let Bk be the set of angles used up to the kth

layer so that B − Bk is the set of angles unused up to kth layer. We let Ak denote the
set of tiles that have been assigned to the first k layers. Initially A0 = ∅ and B0 = ∅, but
these sets grow as the algorithm assigns tiles to the layers. Note that each angle index
will be assigned to one of the layers, such that at the end of the entire algorithm we will
have B −BN = ∅. For each layer Algorithm 1 searches for the tile positions/angles that
minimize the maximum overlap with tiles in all the previously chosen layers. Algorithm 2
is called in order to break ties, whenever multiple angles and positions lead to the same
maximum overlap.
Since the tile centers of all layers are on regular octahedron grids (with the grid in

one layer typically shifted with respect to those of other layers) it follows that once
we know the position of one tile location in a given layer, we know the locations of
all the tile centers for that same layer. Fig. 4(a) shows the 3D Voronoi regions, with
each color representing a separate region. Since the Voronoi regions are the same within
each layer, we only need to determine the location and the angle index of one tile in
the center Voronoi region, denoted by V , in order to generate all the tiles for that layer.
We let Ck denote the tiles in Ak that are inside or close to the Voronoi region. Let
O({p1, I1}, {p2, I2}) denote the overlap between two tiles {p1, I1} and {p2, I2} and let

Omax({p1, I1}, Ck) = max
{pm,Im}∈Ck

{O({p1, I1}, {pm, Im})}

be the maximum overlap between tile {p1, I1} and all the tiles in Ck. We then search



for solutions {p∗k, I∗
k}3 that minimize the maximum overlap, i.e.,

{p∗k, I∗
k} = arg min max

{pm,Im}∈Ck

{O({pk, Ik}, {pm, Im})},

where pk ∈ V , and Ik ∈ B − Bk−1. The new tile {p∗, I∗} minimizes the maximum
overlap with previously chosen tiles. For a given tile location p, it is possible that a
continuous range of tile angles may be equally optimal due to the fact that tile overlap
is measured by the number of discrete grid points that are contained in the overlapping
regions. In this case, Algorithm 2 chooses the median angle index. For example, if tiles
{p, 3}, {p, 4}, {p, 5}, {p, 6}, {p, 7} are equivalent in terms of overlap, then tile {p, 5}
will be selected. Similarly, if the tile at location p∗ minimizes overlap, then it may be
possible for some points (x, y, z) ∈ N{p∗} to achieve the same maximum overlap. Let S
denote the set containing all the points (x, y, z) ∈ N{p∗} (including p∗) that achieve the
minimum max-overlap value. Algorithm 2 chooses the central point of S as the selected
tile location p∗∗ with its associated angle index I∗∗ to be the new tile in the Voronoi region
for the next tile layer. In order to speed up the search, we partition the voronoi region
into several 3D subregions. At the center point of each subregion, the maximum overlap
value is calculated. Then, we pick the subregion with the minimum value to be used for
the next level partition. The partition procedure stops once the selected subregion is very
small (e.g., less than 70 voxels within the final selected subregion in our experiments).
Algorithm 1 lines 5-7 will then be employed for the final selected subregion, rather than
using V . In our experiments, this procedure speeds up the search time dramatically.

Algorithm 1 New 3D Rectangle Tiling Algorithm
1: Starting with first layer tiles {Pi, Ii} with arbitrary locations on a regular octahedron grid pattern and with tile
angle index Ii = 1. A0 = ∅, B0 = ∅.

2: for k = 1 to N do
3: Sort Ak according to the distance from the tile center location to the center of the 3D data.
4: Find Ck.
5: for ∀ pk ∈ |V | and ∀ Ik ∈ B − Bk−1 do
6: {p∗

k, I∗

k} = arg min Omax({pk, Ik}, Ck)
7: end for
8: The parameter pairs achieving the minimum value of the maximum overlap may not be unique. Algorithm 2

is used to select the proper one {p∗∗

k , I∗∗

k }.
9: Using the new tile {p∗∗

k , I∗∗

k }, generate all tiles {Pk, Ik} for layer k.
10: Ak = Ak−1 ∪ {Pk, Ik}. Bk = Bk−1 ∪ Ik.
11: end for

Algorithm 2 Adjustment Algorithm
for ∀ pk ∈ |N{p∗

k}| and ∀ Ik ∈ B − Bk−1 do
S = {{p∗, I∗} |{p∗, I∗} = arg min Omax({pk, Ik}, Ck)}

3: end for
Find the central point p∗∗ of S.
if Continuous angles lead the same minimum max-overlap value then

6: The median angle index will be chosen as I∗∗.
end if
Return {p∗∗, I∗∗}.

3 ∗ / ∗∗ denotes the result before / after the adjustment Algorithm 2, respectively.
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Fig. 6. In (a), Te denotes the ratio of required bandwidths for the rectangular and cubic tiling schemes. So denotes
the relative storage overhead required by the rectangular tiling scheme. Te = Tr/Ts So = Sr/Ss. In (b), μ and σ
are the average and the standard deviation of the tile coverage.

IV. EXPERIMENTAL RESULTS

The performances of the proposed 3D rectangular tiling scheme and the tiling scheme
in [10] are compared in Fig. 6(a). The two tiling schemes are also compared in Fig. 6(b)
by using the model proposed in Section II, which shows that the model is also useful for
designing new tiling schemes. For all the experimental results in this section, MRI volume
data for a patient’s head4 of size 256×256×256 is used. After mapping the Cartesian grid
points to neighboring points in the rotated rectangular tiles, 3D compression is applied
independently to each tile and stored on the server.
Performance is shown compared to a standard tiling strategy (with cubic, non-overlapping

tiles). The rectangular tile size was fixed at W = 32, L = 32 and H = 8. The side of
a cubic tile was 16. Tr and Ts indicate the total numbers of bits transmitted in the
rectangular and cubic tiling modes, respectively, and Te = Tr/Ts denotes the ratio of
required bandwidths for the rectangular and cubic tiling schemes. Sr and Ss are the total
storage sizes when using the rectangular and cubic tiling, respectively, and So = Sr/Ss is
the relative storage overhead required by the rectangular tiling scheme. Fig. 6(a) shows
the trade-off between the ratio of required bandwidth Te and the storage overhead So

while we fix one and vary the other by changing the distance between tile centers and
the number of different tile angles N . N varies by using the tile angle selection method
in [10]. As shown in Fig. 6(a), the proposed new tiling scheme leads to an additional
increase in random access transmission efficiency of 10% - 30% when compared to
the previous proposed tiling scheme in [10], depending on the chosen storage overhead
(S0). Intuitively, the 3D rectangular tiling methods use an over-complete set (overlapped
rectangular tiles) to represent the 3D dataset. Therefore, less correlation between the over-
complete set leads to greater transmission efficiency. In addition, Fig. 6(a) shows that for
the same storage overhead (So), different transmission efficiencies (Te) are achieved by
using different parameter settings (the distance between the tile centers and the number
of tile rotation angles). By using the model in Section II, the parameter setting to achieve
the best transmission efficiency (given a fixed storage overhead) can be chosen without
experimental tests, shown in Fig. 6(b). Smaller variance will lead to greater transmission

4This volume data was downloaded from http://www9.informatik.uni-erlangen.de/External/vollib/.



efficiency. Intuitively, this is because by decreasing the coverage variance across all
voxels it follows that all voxels will tend to be covered by a similar number of tiles.

V. CONCLUSIONS

In this paper a prediction model was presented that provides a way to relate transmis-
sion efficiency to voxel coverage statistics (mean value and standard deviation) for a fast
random 2D image retrieval system. This model enables designers to select parameter
settings that achieve the best transmission efficiency without performing experimental
tests and also provides us with insight on designing a new tiling scheme. We have thus
proposed a new 3D rectangular tiling scheme which achieves an additional 10% - 30%
reduction in the average transmission rate compared to the previous rectangular tiling
scheme, e.g., a nearly 30% / 45% reduction in the average transmission rate at the
cost of a factor of ten / fifteen in storage overhead compared to traditional cubic tiling.
We have demonstrated that in exchange for increased server-side storage, significant
reductions in the average transmission rate can be achieved. Furthermore, compared to the
conventional tiling scheme the client side benefits from random data access and relaxed
storage requirements. The run-time memory space can also be reduced accordingly. Our
system creates a more interactive and responsive interface for humans to access 3-D
datasets and has the potential to be used on mobile devices and web applications to
allow for fast random access to oblique planes from volume datasets in a variety of
potential applications.
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