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ABSTRACT

We present a new graph-based transform for video signaig ugvelet lifting. Graphs are created
to capture spatial and temporal correlations in video secege Our new transforms allow spatial
and temporal correlation to be jointly exploited, in costrtb existing techniques, such as motion
compensated temporal filtering, which can be seen as “daparmansforms, since spatial and
temporal filtering are performed separately. We designieffiovays to form the graphs and to
design the prediction and update filters for different leva the lifting transform as a function of

expected degree of correlation between pixels. Our initislilts are promising, with improvements
in performance as compared to existing methods in terms BRP& a function of the percentage
of retained coefficients of the transform.

Index Terms— Wavelet transforms, Video coding, MCTF, Lifting, Graphs

1. INTRODUCTION

The lifting scheme is an intuitive and structurally invbléi approach to construct multiresolution
signal representations [1]. Lifting based wavelet tramafohave been widely used for image and
video processing, mainly in the last ten years, and therenargy works about these topics in the
literature. In the field of image coding, lifting-based wkete have been used to capture directional
information, avoiding filtering across the object edgesingj rise to very efficient representations
of the image. Examples can be found in [2], [3] or [4]. For vddmding, lifting is usually applied
in the temporal domain. The main multiresolution decommsistructures in wavelet-based video
coding aret + 2D and2D + t. In the former, the video sequence is first filtered in the teralp
direction along the motion trajectories (motion-compeéedaemporal filtering-MCTF) and then a
2D wavelet transform is carried out in the spatial domain [B] the latter, each frame is firstly
wavelet transformed in the spatial domain, followed by MCF&cusing in the temporal domain,
representative examples of MCTF implementations are [6]@h which use motion-compensated
lifting steps to implement the temporal wavelet transfdiiftering along a set of motion trajectories
described by a specific motion model. These approaches cdadogibed as “separable” in that
spatial and temporal filtering are applied in separate steps

In all of these works, in order to perform the prediction apdate steps of the lifting scheme,
the input sequence is split into update (even frames) ardigti@n (odd frames) subsequences, and
for each level of the transform, the prediction subsequé&npeedicted from the update subsequence
giving rise to the high-pass subband sequence, and theeaupdhsequence is updated by using
a filtered version of the prediction one, thus obtaining the-pass subband sequence. In cases
in which the motion model cannot accurately capture the maation of the scene, this kind of
splitting into even and odd frames will lead to the linkingupfdate and prediction pixels with very
different luminance values. In this way, prediction franvg be poorly predicted from update



frames, leading to significant energy in the high pass sublsaguence, and thus relatively low
energy compaction. Moreover, when using MCTF, problenseatue to occlusions and uncovered
areas (pixels that are filtered several times or are notdidtett all). Some authors handle this
problem by identifying unconnected and multiple connegieels and adapting the predict and
update operators accordingly (e.g., [8]).

The key novelty in our work is describing the video sequersca graph of connected pixels and
applying the lifting transform on this graph. Given thatgdix(the nodes of the graph) are linked to
spatial or temporal neighbors (or both) it is easy to makeofispatio-temporal filtering operations,
selected to follow spatio-temporal directions of maximuonrelation between pixels. Similar to
[2], [3], bandelets [9] or directionlets [10], examples afedtional wavelet transforms whose ba-
sis functions are adapted to any 2-dimensional directiotnénspatial domain for efficient image
representation, our approach can filter following any 3etisional direction of the spatio-temporal
domain. Moreover, our proposed scheme can avoid probleragalocclusions and uncovered
areas, leading to simple critically sampled invertiblensfarm.

Our starting point is the lifting-based wavelet transforon graph data presented in [11]. We
extend the transform t&/-levels of decomposition and apply it to video coding. Tharexctions
in the graph are constructed in such a way that pixels expeateave similar luminance will tend
to be connected. Therefore, the prediction of a pixel frangiaph neighbors can be more accurate,
leading to reduced energy in the high-pass subband at anymbesition level of the transform. To
get a more accurate prediction, the connection betweenainpfpixels is weighted as a function
of estimates of correlation between the pixels, i.e., higlxpected correlation tends to lead to better
prediction and larger prediction weights. This weightingl lne used in the design of the prediction
and update filters and in the construction of the graph inessiee levels of decomposition, thus
helping improve prediction at all levels.

The links between pixels can be temporal (pixels connecyechéans of a motion model) or
spatial (one-hop neighbor pixels that do not cross edged)tree number of neighbors that one pixel
can have in the graph can vary locally so that we can have fligxilp designing the corresponding
filtering operations. Our work could be considered as a gdization of wavelet-based video cod-
ing that gives rise to a more versatile solution where spatid temporal operations are no longer
separable. The transform requires that some side infoomb# sent to the decoder, so that the same
graph can be constructed at both encoder and decoder. Sakgifiemporal information (motion
vectors) and spatial information (edges) have to be serterins of non-linear approximation we
achieve average gains of 2.3 dB and 1.3 dB as compared to a B§&Ed lencoder and the LIMAT
method [6], respectively.

The rest of this paper is organized as follows. In Section 2@seribe in detail our novel video
coding scheme based on lifting transforms on graphs. Iri@@e8twe provide experimental results.
Finally, conclusions and future work are given in Section 4.

2. PROPOSED SCHEME

2.1. Lifting Transforms on Graphs

The lifting approach for wavelet construction and its rielatwith the multiresolution analysis are
presented in [1]. To perform the transform and ensure itsriibility, the input data at each specific
level of decompositiory should be split into prediction/;) and update((;) disjoint sets, and the

predict p,,, ;(m € P;)) and updatey, ;(n € Uj)) filters should be specified. Then, following the
notation employed in [12], the:-th detaild,,, andn-th smooths,, coefficients can be computed as:
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Fig. 1. Lifting scheme. Two levels of decomposition.

kEUj

Sn,j = Sn,j—1 T Z un,j(k)dk:,j- (l)
k’EPj

The smooth coefficients & —1)-th decomposition levek(, ;) are projected onto the approx-
imation and detail subspaces, yielding, respectivelystheoth §,, ;) and detail {,, ;) coefficients
at the j-th decomposition level. Applying this process iteratvegives rise to a multiresolution
decomposition. In Figure 1 the lifting structure for twoéév of decomposition is shown. Note that
the data at levej = 0 will be the original raw data (the luminance of the pixels ur case), and
will be denoted as;y, soz, = s, j—o, Whereg is the pixel index. Foj > 0, s, ; will be the low
pass version (smooth projection) of the— 1)-th level.

Lifting-based wavelet transforms on trees are applied tagiencoding in [2] and to sensor
networks applications in [12]. In these works, the auth@lg the data into prediction and update
sets at each level of decomposition according to their defiitihrespect to the root of the tree, so
that no pair of directly connected nodes belongs to the sain@e., prediction pixels only connect
to update pixels). [11] extends this idea to arbitrary gsafahich are in general cyclic and non-
planar). Nevertheless, in this case, for an arbitrary ptexnfi-update assignment, nodes that are
neighbors in the graph are not guaranteed to have oppositg ga that prediction pixels that are
connected to other prediction pixels cannot be used torobtai detail in (1). As a solution to this
problem, the authors seek techniques that minimize the auwoftconflicts (i.e., the percentage of
direct neighbors in the graph that have the same parity)n,Tthey perform the transform using the
edges of the graph that do not present any conflict. In theseetions we describe how to represent
video content as a graph, defining the prediction-updaigrasent at each transformation level and
the construction of the filter operators.

2.2. Graph Construction

In this section we propose a graph representation for vidateat. The goal in the construction of
the graph at thg-th level of decomposition will be to link pixels with simidduminance values, in
such a way that detail coefficients, ; in (1) will be very close to zero. In this manner, the high
pass subband energy at this leyelill be low, achieving an efficient representation of theadat
Here we explain how to form the graph at the- 0 level of decomposition from the original video
sequence. In successive levgls- 0, we will construct the graph at levglfrom the graph at level
j — 1 as explained in Section 2.4.



Consider a video sequencelofframes of sizél/ x N and a subsequence bfframes § < V).
We will employ a new graph for every subsetiéframes, until all thé” frames in the sequence are
coded. Letr, be the luminance value of pixgle G = {1,2,...,M x N x F'}. Any pixelg € G
can be linked to any subset of pixdls C G, with h € H, g # h, following criteria to be described
next. Since we exploit the spatial and temporal correlgtantly, a pixel g can be linked to spatial
and temporal neighbors at the same time.

With respect to the spatial correlation, the criterion faagh construction will be very similar
to that employed in [2] for image compression. Pixels that@dose to each other, and in general
pixels that belong to the same object, will tend to have ¢ated luminance values. In contrast,
when filtering across edges, there can be a significant anod@mtergy in the high pass subbands,
because the value of neighboring pixels will be very différeThus, if we avoid filtering across
the edges, we will obtain a more compact representationeofitiia. Following this reasoning, we
will link those pixels that are one-hop neighbors in any cian and do not cross any edge. To do
that, we will need to estimate the edges and send this intism#o the decoder. To reduce the
resulting overhead, we note that if there are no occlusimastiae motion model captures object
motion accurately, it will be possible to obtain edge infation in the current frame using edge
data obtained from the reference frame, along with motiéorination. Thus, in practice we only
need to explicitly send edge information to the decoder aveey I’ frames.

Regarding the temporal correlation, we will link those fexthat are related by means of a
motion model. In our example, block motion search is used exery pixel belonging to a block is
linked to the corresponding pixel belonging to the bestlblmatch in the reference frame. Motion
vectors (MV) need to be sent to the decoder in order to desdhis movement. Finally, note
that motion mappings are made using the original video fearteat is, the reference frame is
not a reconstruction from a previously encoded frame. Anmgta of graph construction and
edge information transmission is shown in Figure 2 for tvamfes, where it can be seen that links
between pixels follow the motion direction and avoid crogsedges within a frame.

Temporal links are identified using an explicit search thatimizes a distortion measure be-
tween pixels (i.e., the standard motion estimation). Tloeee in general, temporal links in the
graph will be more reliable than spatial links, that is, tlxpected correlation between temporal
linked pixels will be higher than the one between spatidtdih pixels. In order to take these fea-
tures into account, we will weight the edges of the graph asnation of the reliability of each
connection. This will influence the update-predict assigntrand the filter design, to be discussed
in Section 2.3. As a starting point, temporal connection lvé weighted with a value of and
spatial connections with. Nevertheless, more specific metrics that depend on therésaof the
sequence can be investigated.

2.3. Update-Predict Assignment and Filter Design

Once a graph is constructed, the next step is to split thesniotie prediction £;) and update((;)
disjoint sets in order to perform the transform. The criterto assign a label to each pixel will
be to maximize the reliability with which update nodes caedist prediction neighbors, which is
equivalent to maximizing the total weight of the edges betweP; and thel/; sets. This problem
is generally known as th@eighted maximum cut problenm this paper we use the approach of [13]
for simplicity, leaving for future work a study of alternati methods (e.qg., the one proposed in [14]).
The greedy solution in [13] is described in Algorithm 1, wééf; and P; form a bipartition of the
node seU;_,, and we considegain of a node to be the sum of weights of all its incident edges.
An example of the update-predict assignment is shown inrEi§uNote that the update nodes
are usually connected by means of reliable links to premfictiodes, so we can obtain an accurate
prediction of these prediction nodes from the update no@esflicts are indicated as broken links.
As in [11], we will only use no-conflict links to perform theatnsform. In order to obtain the detail
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Fig. 2. Spatio-temporal graph construction. The grey level regmés the luminance value of each

pixel; the red-thick dashed lines are the object edges;nbengfine dashed lines represent temporal
connections, and the blue solid lines spatial connectisinsally, the black dashed lines represent
the block size.

coefficient (1) in a prediction pixet:, we define robust predict filters that weight the neighbor
update pixels taking into account the reliability of eachitadir connections ten. Thus, we define
the following vector of prediction weights:

W1y,j W2y g - -y WVy,5

pm,j - _ [ J " J ]] (2)
D=1 Wi j

wherefwy,, j ,ws, j, ..., wy, ;] is the vector of weights in the graph between the update heigh

{14, 24, ...V, }€ U; and the prediction pixeh € P;.

Algorithm 1 Weighted Maximum Cut Algorithm
Require: U; = {@}, P; = {U;_1}

1: Calculate the&ain of theU;_; node set
2: Select the node with largestGain, a = max(Gain)
3: while Gain > 0do
4. LetUj<—UjU{a}
5: Let Pj — Pj\ {CL}
6:
7
8
9

Change the sign of the incident edge weights
UpdateGains of adjacent nodes
. Select the node with largestGain, a = max(Gain)
: end while
10: return U; andP;
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Fig. 3. Graph construction for consecutive levels of decompmsiti = 10, b = 5 andc = 3 are
the different weight values. Grey nodes are update nodesyhite ones are prediction nodes.

The update filter is designed to smooth the next level appration coefficients as:

W1,,5 W2, -« -y WW,,j
w,; = [ pyJ JIJ/VJP ) pJ] (3)

2(21';,:1 wipyj)

where[ws, ;,wa, j, ..., ww, ;] are the weights to be applied to the neighbdrs 2,,,...W, } € P;
of an update pixeh € Uj;.

2.4. The transform in higher levels of decomposition

In order to carry out a multiresolution analysis, the lowgesefficients are successively projected
in different transformation levels onto smooth and detallspaces. To obtain the graph at trans-
formation levelj from the graph at levef — 1, we connect those update nodes that are directly
connected or at one-hop of distance in the graph at lgvell, so that the simplified graph con-
tinues to capture the correlation between pixels. In the gph inj, the weight between nodes
will be the average of the weights in the path between coedeubdes at level — 1, so that high-
correlation paths at level — 1 imply high weight links at leveli. Once we construct the graph at
level j, we should split the nodes again into predictidf)(and updatel(;) disjoint sets in order to
perform the transform. Figure 3 shows an example of a grapbktagction at levelj from a graph

at levelj — 1, and the update-predict assignment at both transforméaihs.

3. EXPERIMENTAL RESULTS

In order to evaluate the performance of our approach, weenilploy theK term non-linear ap-
proximation (outlined in [10]). It consists of keeping thelargest coefficients of the transform and
setting the rest to zero. This is a good indicator of energymaxction and thus of coding perfor-
mance. We compute the average PSNR of each sequence-0100 frames as a function of the
percentage of retained coefficients.

In our experiments, five levels of decomposition of the pegubtransform are performed on the
constructed graphs. Our method is compared to the Haaowavbthe MCTF approach described in
[6] (the LIMAT method), and to a motion-compensated disrisine transform (DCT) video coder
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Fig. 4. PSNR versus percentage of retained coefficients.

in which a residual image, obtained after block motion estion and compensation processes,
is transformed by & x 8 DCT; this scheme is the basis of the latest video coding ataisdas
H.264/AV C.

Side information is not taken into account in the resultsthimproposed method, we will have
an overhead associated with the temporal and spatial iafitsmneeded to construct the graph at
the decoder. Regarding the temporal overhead, the samemmotidel is employed iall compared
methods, i.e., a standard motion vectoRon8 pixel blocks is assumed (only one reference frame),
and thus this overhead does not need to be considered inrtiacison. As for the spatial informa-
tion overhead, we choodeé = 20 and assume a binary edge map (obtained using Roberts’ gtadie
operators) is sent to the decoder once evéryames, so that the spatial side information will be
very low?. Since this overhead is very small it is not considered inoourent version of the work.
Note that there exists a trade-off between graph accuratyhenside information needed construct
the graph. Higher rate to describe the spatial and tempui@nation (e.g., very small block sizes
for motion), means that the correlation between linked Ipixealso better captured by the graph,
leading to potential compression gains. The weights usétkiexperiments are= 10 ands = 2,
following the reasoning that temporal prediction is moreugate (and costly in bits) than the spatial
one. Finally, note that, for simplicity, in the current viersonly the two more reliables neighbors of
each pixel are used for filtering and to construct the graptiseadifferent levels of decomposition.
We plan to further investigate alternative filter and graphidgn approaches in follow up work.

Figure 4 shows the PSNR versus percentage of retained ceef§of three differenQCI1F
sequences) obile, Carphone and Foreman. Our proposed method outperforms the DCT based
and the LIMAT transforms in terms of PSNR. In théobile sequence, when 40 percent of coeffi-
cients are retained, our method is 7 dB and 4 dB better thab@eand the LIMAT respectively.
However, the LIMAT method is better than the proposed wheerrg small percentage of coeffi-
cients are retained if obile. One posible reason could be to have chosen spatio-tenfptaahg
directions worse than the temporal ones chosen by the LINIAE problem could be fixed by using
more accurate metrics to weight the graph.

For subjective evaluation, Figure 5 shows the original effiame number 12 of the sequence
Mobile (upper-left part) and the reconstruction from the DCT tfarm on the residual (upper-
right part), the LIMAT approach (lower-left part) and theoposed method (lower-right part). The

1For example, with JBIG compression of edge maps as used iatg of the order of 0.02 bits per pixel
are required ever0 frames, so that the overall overhead is negligibleég1 bits per pixel overall



reconstruction is carried out from the 20 % of retained coieffits. It can be shown that our trans-
form achieves significant better perceptual quality thanDICT, and slight improvements over the
LIMAT method (see for example the three animals of the upgkipart of the frames).
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Fig. 5. Original (upper-left) and reconstruction with 20 % of tmansform coefficients from the
DCT on the residual image (upper-right), LIMAT (lower-letind our proposed method (lower-
right).

3.1. Performance in uncovered areas

To further explain the advantages of our proposed schem@weonsider in more detail situations
involving uncovered areas. Refer to Figure 6, where we shm@aniotion mappings used by the
Haar version of the LIMAT approach with two levels of decorsiion. Prediction frames (P) will
be filtering following the directions indicated by the MV,cnpdate frames (U) will be updated
using inverse mappings M. Grey pixels represent non-updated pixels in jhe 1 level of
decomposition, that is, pixels that have not been low-péteseidl and thus contain high frequency
energy. This high frequency will not be removed using the aim@oefficients ajj level, giving
rise to inefficiency. The black pixel represents a pixel treg not been decorrelated at any level, so
that the coefficient after both levels of decomposition wélthe raw pixel. The proposed method
can solve this problem by representing video informatioa gsaph (Figure 2) leading to a versatile
prediction-update assignment, in which prediction ancatgdodes can belong to the same frame.
To show this statement we have encoded two diffe3ént 32 pixel areas of the sequence Foreman.
Area 1 starts at pixel (1,1), so that could be consideredrly fsiatic area. Area 2 starts at pixel
(80,80), corresponding to a very dynamic area (the faceeofrthn). The results in terms of PSNR
when saving the 20 % of the coefficients are preserved ara giv€able 1. Our proposed method
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Fig. 6. Uncovered areas in LIMAT.

Table 1. Comparison of LIMAT and the proposed transform codingedléht areas

PSNR(dB) in Area 1 | PSNR(dB) in Area 2
Proposed 43.1 36
LIMAT 42.4 33.3
A 0.7 2.7

obtains slightly better results than the LIMAT in Area 1, lehsignificantly outperforming LIMAT
in Area 2, where there is a lot of motion and the uncovered ¢racind problem manifests itself.

4. CONCLUSIONS AND FUTURE WORK

We have proposed a directional lifting wavelet transforiat fls able to filter along 3 dimensional
spatio-temporal directions of high correlation betweertels, leading to a compact representation
of the data with low energy in the high frequencies. The tesial terms of K-term non linear
approximations are very promising. However, quantizedsf@am coefficients should be encoded
as compactly as possible to obtain an efficient real encierare currently investigating how to
use the graph information in the decoder to group togethezero coefficients. Another interesting
future line of research would be to design a low-complexdgsion of the transform that works with
sub-graphs formed from the original graph without loss afgrenance.

Acknowledgments

The authors thank Sunil K Narang and Godwin Shen for the codmplement the prediction-
update assignment and the lifting in graphs.

5. REFERENCES

[1] Wim Sweldens, “The lifting scheme: A construction of ead generation wavelets,” Tech.
report 1995:6, Industrial Math. Initiative, Dept. of Mathlniversity of South Carolina, 1995.



[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Shen and A. Ortega, “Compact image representatiamgusavelet lifting along arbitrary
trees,” inlmage Processing, 2008. ICIP 2008. 15th IEEE InternaticBahference onOcto-
ber 2008, pp. 2808 —2811.

G. Shen and A. Ortega, “Tree-based wavelets for imagéngodDrthogonalization and tree
selection,” inPicture Coding Symposium, 2009. PCS 20d8@y 2009, pp. 1 4.

Raanan Fattal, “Edge-avoiding wavelets and their @gfithns,” inSIGGRAPH '09: ACM
SIGGRAPH 2009 paperdlew York, NY, USA, 2009, pp. 1-10, ACM.

N. Adami, A. Signoroni, and R. Leonardi, “State-of-tag-and trends in scalable video com-
pression with wavelet-based approacheSijtcuits and Systems for Video Technology, IEEE
Transactions onvol. 17, no. 9, pp. 1238 —1255, September 2007.

A. Secker and D. Taubman, “Lifting-based invertible imatadaptive transform (limat) frame-
work for highly scalable video compressiorifhage Processing, IEEE Transactions, @ol.
12, no. 12, pp. 1530 — 1542, December 2003.

Gregoire Pau, Christophe Tillier, Batrice Pesquet€Xmp, and Henk Heijmans, “Motion
compensation and scalability in lifting-based video cgdirSignal Processing: Image Com-
munication vol. 19, no. 7, pp. 577 — 600, 2004, Special Issue on SubWamalet Interframe
Video Coding.

B. Pesquet-Popescu and V. Bottreau, “Three-dimensiliitiag schemes for motion com-
pensated video compression,” IBASSP '01: Proceedings of the Acoustics, Speech, and
Signal Processing, 2001. on IEEE International Conferentdashington, DC, USA, 2001,
pp. 1793-1796.

E. Le Pennec and S. Mallat, “Sparse geometric image septtations with bandeletslimage
Processing, IEEE Transactions ovrol. 14, no. 4, pp. 423 —438, April 2005.

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, ahP.L. Dragotti, “Directionlets: anisotropic
multidirectional representation with separable filtefindmage Processing, IEEE Transac-
tions on vol. 15, no. 7, pp. 1916 —1933, July 2006.

Sunil K. Narang and A. Ortega, “Lifting based waveletrtsforms on graphs,” iAPSIPA
ASC 2009: Asia-Pacific Signal and Information Processingo&gtion, 2009 Annual Summit
and ConferenceOctober 2009.

Godwin Shen and A. Ortega, “Optimized distributed 2ahsforms for irregularly sampled
sensor network grids using wavelet lifting,” Atoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference btarch 2008, pp. 2513 —2516.

Chi-Ping Hsu, “Minimum-via topological routing,"Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions eul. 2, no. 4, pp. 235 — 246, 1983.

S.K. Narang, G. Shen, and A. Ortega, “Unidirectionamr-based wavelet transforms for effi-
cient data gathering in sensor networks,Aicoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference a2010, pp. 2902 —2905.



