
Analysis and Testing for Error Tolerant Motion Estimation ∗

Hyukjune Chung and Antonio Ortega
Signal and Image Processing Institute

Department of Electrical Engineering-Systems, University of Southern California
Los Angeles, California, 90089-2564

{hyukjunc,ortega}@sipi.usc.edu

Abstract

We propose a novel system-level error tolerance approach specifically targeted for multimedia
compression algorithms. In particular we focus on the motion estimation process performed by
most video encoders. While current manufacturing process classifies fabricated systems into two
classes, namely, perfect and imperfect, our proposed scheme employs categories which are based
on acceptable/unacceptable performance degradation. By enabling the use of systems that would
otherwise have been discarded we seek to increase the overall yield rate in the system fabrication
process. To achieve this, we propose testing algorithms that aim at determining if faults in a given
chip produce acceptable performance degradation, and we propose a technique which can cancel the
effect of those among the acceptable faults that can be compensated.

1 Introduction

Widespread deployment of multimedia applications is continuing to create a need for highly
integrated chips which support various multimedia functionalities. Also, as technologies advance
the dimension of chips tends to decrease, which leads to increases in the effects of manufacturing
defects and reductions in yield rate. Low yield rates can increase the cost of chips and delay their
mass production stage [6]. To address these problems, fault tolerance (FT) techniques have been
proposed to provide reliable operations in the presence of faults or errors. Defect tolerance (DT)
techniques enhance the yield rate by using redundancy (spares) and/or defect avoidance techniques
in layout and circuit design, etc. Examples of FT schemes are [8, 2, 16, 14]. Some approaches
[8, 2] are based on algorithmic level computations using redundant data. In other cases [16, 14],
the algorithm itself is modified to enable fault location and correction. In these systems the goal
is to compensate the effect of the faults so that a system that contains a faulty subsystem behaves
exactly as a fault-free one. In [1] a system-level error tolerance (ET) scheme was proposed to
increase effective yield. ET is a new design and test paradigm, which takes into consideration
whether erroneous outputs of defective circuits produce acceptable results. ET classifies a chip as
being acceptable/unacceptable by estimating the performance degradation due to faults, rather than
relying solely on the conventional perfect/imperfect classification. ET analyzes the system-level
effects of faults, and accepts chips if the performance degradation they lead to is within some,
application-specific, ranges of acceptability.

A common characteristic of all compression standards for digital video (and indeed for images,
speech, or audio) is that they rely on lossy compression, that is, the decoded video is not an exact
copy of the original. Thus, in this work, we view the effect of faults as potential additional distortion

∗This paper is based upon work supported in part by the National Science Foundation under Grant No.
0428940. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.



AD AD AD AD

AD AD AD AD

AD AD AD AD

AD AD AD ADM

V

N

D

AD AD AD AD

AD AD AD AD

AD AD AD AD

AD AD AD AD

N

++++M

V D

AD

AD

AD

AD

N

+

+++++

++

+M
V D

AD

AD

AD

AD

M
V

N

D

+

Figure 1. Examples of matching architectures for ME [13]. Only processing elements (PEs) are shown

for simplicity. AD is a PE that computes the absolute difference (AD-PE) and M is a PE that computes

the minimum (M-PE). Type-1: upper left, Type-2:upper right, Type-3: lower left, and Type-4: lower right.

suffered by the decoded video. This added distortion will in some cases still lead to an acceptable
output. Therefore, multimedia compression systems are good applications for ET techniques. For
example, our analysis of a complete video compression system [5] indicates that numerous errors at
the encoder are non-catastrophic, i.e., a valid bitstream is generated and can be decoded, so that
the impact of the faults can be measured in terms of video quality degradation.

In this paper, we propose an ET scheme specifically targeted for the motion estimation (ME)
subsystem in video compression systems, as this is one of the most challenging subsystems in terms
of both computation and memory requirements. While our focus is system-level analysis of ME
techniques for acceptable degradation, testing can also be applied to lower level components of a
system [10] and to other subsystems within a video encoder [3]. Our proposed schemes are aimed
at separating the systems being tested into four classes, namely, (i) fault-free systems, (ii) faulty
systems such that a simple programmable algorithmic level compensation can make them error-free
(i.e., the output will then be the same as that of a fault-free system), (iii) faulty systems producing
acceptable quality degradation, and (iv) faulty systems producing unacceptable quality degradation.
Only systems in the last class will be discarded. Thus the main novelty of our approach is to identify
systems in the third class, which do not produce an output identical to that of a fault-free system,
but can still be used. Also, we provide a novel FT scheme for the second class. To achieve the
proposed goal, we first analyze and model the system level effect of faults within the ME process
(Section 2). We then propose test vector generation and testing algorithms for the proposed ET
scheme (Section 3).

2 System Level Error Tolerance for Motion Estimation

For each block of size N ×N pixels in the current frame (the reference macroblock X), ME seeks
to find the best match among all the blocks (candidate macroblocks Yi) in a search window located in
the previous and/or future frames. ME algorithms include a search strategy and a matching metric
computation. The search strategy (e.g., full search, three-step search [11], and two-dimensional
logarithmic search [9]) decides the set of candidate blocks to be tested and the order in which their



metrics should be computed. The matching metric (e.g., the sum of absolute differences (SAD) or
the sum of square differences (SSD) between a candidate block and the reference block) is computed
for successive candidate blocks, until a sufficiently good candidate block has been found, i.e., one
whose SAD or SSD with respect to the reference block is sufficiently low. The encoder then subtracts
this chosen candidate from the reference block and transmits the resulting difference data (i.e., the
prediction residual) to the decoder (as long as the energy in the difference is sufficiently low this
leads to better compression efficiency than sending the reference block directly.)

It is important to note that even if the encoder does not choose the “best” candidate block
(e.g., the one having the lowest possible SAD among all the candidates for a given reference block),
encoding and decoding are still possible. There is a penalty in compression performance (i.e., more
bits are needed to represent the residual signal when a sub-optimal candidate block is chosen) but
otherwise the encoder and decoder operate normally. This is a key of observation in our analysis of
motion estimation hardware: we will seek to estimate the impact of faults on the accuracy of the
metric computation and hence on the quality of the candidates chosen by the encoder. Acceptable
hardware faults will be such that the optimal candidate may not always be chosen, but such that,
in general, sufficiently good candidates are chosen instead. It is important to note that the exact
computed SAD metric is itself of little concern; what is important is the relative ranking of the
candidate blocks. Thus, certain faults in the matching metric computation result in no error in the
resulting video encoding. If the faulty systems only rarely affect the block ranking during ME, then
the coding penalty is likely to be minimal.

Examples of implementation architectures with different levels of parallelism for the metric com-
putation are illustrated by Fig. 1 [13]. While we focus our analysis on the architectures shown in
Figure 1, and assume full search block matching with SAD metric, the results can be applied to
other implementation structures as well.

We also make the following assumptions. First, all the outputs of AD (absolute difference)
processing elements (AD-PEs) and adders are 16 bit wide. Usually ME is performed on 16 × 16
luminance macroblocks, where each luminance pixel is represented with 8 bits. Thus the absolute
difference between two luminance values can also be represented by 8 bits. Therefore, the maximum
SAD value when combining the ADs of N2 pixels can represented using 16 bits1. Second, our
work is focused on the interconnect faults that affect the data transfer between PEs. Therefore,
we assume that the absolute difference operation and the carry generation process in an adder are
error-free. These error-free processes can be achieved by well-known self checking design techniques
[15, 7, 12]. Third, we assume that the faults in the interconnect between processing elements are
stuck-at-0 (SF0) or stuck-at-1 (SF1) faults, which cause the given data line to produce a constant
value (0/1) independent of other signal values in the circuit. Fourth, in our yield-rate analysis, we
assume uniform spatial distribution of faults and use the Poisson distribution model.

2.1 Tree structured model of matching metric computation architectures

In a matching metric computation (MMC) architecture, the main component for each PE is an
adder that computes the absolute pixel difference for the current pixel and adds it together with
one or more partial SAD values. MMC architectures can be viewed as arrays of cascaded adders
and represented as tree graphs (see Figure 2), where each node represents an adder, and edges
connecting two nodes represent a data bus (i.e., a set of data lines). Tree graphs similar to that
in Figure 2 can be constructed for all non-recursive architectures in Figure 1, i.e., all except Type
4. Under our assumption that numerical operations are correct, this tree model will be used to
determine the errors caused at the output by faults in the data transfer between PEs.

Depending on the architecture used, the set of possible outputs of each PE is different. Here we
define the dynamic range as the set of all possible signal values in a given data bus. Clearly, since
the system computes the total SAD by adding partial SAD values, the dynamic range of nodes
closer to the final output node (i.e., the root node) will tend to be larger. This can be seen in Figure

1This is obtained as �log2(N
2 × (28 − 1))�, N = 16, where �·� is the ceiling operator.



N

16

12

12 8

16

12

812 8

8

88

8

13

12

812

8

8

12

812

8

8

8

88

AD

AD

AD

AD

AD

AD

AD

AD

+ +

AD

AD

AD

AD

AD

AD

AD

AD

+M
V D

8

9

12

12

16 16 13

+

12

12

Figure 2. Dependence graph (left) of the Type-2 architecture and the corresponding tree structured

flow graph (right). Next to each PE we show the number of bits needed to represent partial SADs.

2 where we include the bit-width needed to represent the output dynamic range of each node in the
fault-free case. The dependence graphs and the tree graph models can be constructed in a similar
way for other (non-recursive) architectures.

2.2 Fault effect modeling for the matching process

Let us first analyze a single stuck-at fault in an m-bit data bus, where data line 0 corresponds to
the LSB. Let x and x̂ denote the input and output of the data bus, respectively, and let the error
in the data bus be e = x̂ − x. If there is a single SF1 fault in the p-th data line then we have that:

e =

{
2p, 2k · 2p ≤ x ≤ (2k + 1) · 2p − 1
0, (2k + 1) · 2p ≤ x ≤ (2k + 2) · 2p − 1

∀ k = 0, 1, . . . , 2m−p−1 − 1.

(1)

A similar relationship can be derived for the case of SF0 fault. As can be seen from (1), a single
stuck-at fault causes some inputs to be shifted by a constant amount, while some other inputs
remain unchanged. Thus all inputs belonging to an interval

I(k, p) = [k · 2p, (k + 1) · 2p − 1], (2)

are shifted by the same amount (2p if k is even, 0 if odd). We will call I(k, p) the uniform offset
intervals for a fault at data line p.

Note that if all the inputs to a faulty data-line are shifted by the same amount (i.e., the dynamic
rage of the input falls within one of these I(k, p)), then the ranking of values at the output remains
unchanged in spite of the fault. This is illustrated by Fig. 3, where Fig. 3(a) represents the fault-free
case and Fig. 3(b) shows the case when all input values are equally shifted. Conversely, when the
input dynamic range is not completely enclosed in one of the I(k, p), a non-uniform offset of the
inputs is introduced (see Fig. 3(c) and (d)), which can lead to changes in the ranking at the output.
Note that in the fault-free case the lower bound of all dynamic ranges is zero, but this is no longer
the case if faults occur.

For the multiple fault case, the problem becomes more complex. At each individual node, the
dynamic ranges are transformed by the mechanism shown in Figure 3, but the effect of multiple
faults located in different data buses is not necessarily the sum of the effects of each individual fault.
We denote LF (η) the width of the uniform offset interval at node η, e.g., LF (η) = 2p − 1 if p-th
data line is the least significant faulty data line. If all faults present in the system lead to uniform
shifts, then the ranking at the output will not be affected and the outcome of ME will be the same
as in a fault-free system. Note that if the MMC architecture contains data lines that exceed the



x

x̂
Output

dynamic
range

Input
dynamic

range

Uniform Offset
Interval

x

x
^

Output
dynamic

range

Input
dynamic

range

x

x̂

Output
dynamic

range

Input
dynamic

range

x

x̂

Output
dynamic

range

Input
dynamic

range

(a)
(b)

(c) (d)

Figure 3. Dynamic range transform (a) no fault, (b) uniform shift, (c) and (d) non-uniform shifts. The

faults in this example are single SF1 faults.

Table 1. Effect of SF1 faults in the cumulative adders in terms of PSNR degradation (dB). Negative

entry represents PSNR degradation, and positive entry represents PSNR enhancement. These results

are achieved by using MPEG-2 TM5 and the Type-2 matching process architecture with test sequences

encoded at 400Kbps.
Bit/Column 0 4 8 12 15

0 0 0.007 0.002 0.011 0.006
2 0.037 0.014 0.001 0.049 -0.006
4 0.034 0.004 -0.010 0.005 -0.001
6 -0.005 -0.045 -0.021 0.009 -0.019
8 -0.007 -0.179 -0.126 -0.124 -0.234
10 0 -0.111 -1.019 -1.127 -0.879
12 0 0.014 -0.364 -2.466 -3.395
14 0 0 0 -0.001 -1.876

maximum dynamic range (for example there may be 16 data lines for an operation which is known
to have only 12 bit outputs), then faults in these unused data lines do not affect the ME outcome
(since clearly the dynamic range is always included within a uniform offset interval in this case).
Note, that this may occur when the MMC system is designed using a single standard module for
all AD operations.

To illustrate the impact on the ME output of those faults that produce non-uniform shifts as
in Figs. 3(c) and (d), we simulated an MPEG-2 encoder using Type-2 MMC. In the results shown
in Table 1, the same video sequence is repeatedly encoded at the same bit-rate, 400kbps, with
each table entry representing the result when a single faults affects a given PE (from rightmost,
Column 0, to leftmost horizontal PE in Figure 2) and for SF1 at different bit positions. In the table,
decreases in peak signal to noise ratio (PSNR) correspond to reduction in decoded video quality
and are due to changes in the candidate ranking with respect to the fault free system. These results
demonstrate that many faults have minimal impact on video quality2Since the actual degradation
depends on both the video content and the type of fault, an accurate estimate of the effect of of

2PSNR is a widely used objective quality metric for video compression, and degradations of 0.1dB or
less are essentially imperceptible.



Low-in-range bit

testing

NO

Dmax-Dmin
=M(0xFF) ?

YES

High-in-range bit

testing

Dmax-Dmin
=0xFF?

NO

YES

Offset

Compensation

Discard Accept

Offset

acceptable?

YES

NO

Root node,

max inputs?

NO

YES

Low-in-range bit
testing

NO

YES

High-in-range bit
testing

NO

YES

Offset
Compensation

Discard Accept

Offset
acceptable?

YES

NO

Root node,
max inputs?

NO

YES

ˆ
D DTh∆ ≤

max min (0 )

D

D D M xFF

Th

− −
≤

(a) (b)

Figure 4. Schematic flow chart for the proposed testing algorithm. (a) lossless case and (b) lossy

case.

a fault on the video output is not easy to obtain. Instead, we propose to use an upper-bound for
∆D, the matching metric error, and use this to determine fault acceptability. Assume that there
are multiple faults in the data path leading from a leaf node to the root node. The worst case is
when all these faults affect the data in the path. Since each fault at bit-line p produces an offset
2p, the maximum error introduced in the matching metric will be bounded as follows:

∆D ≤
∑

η∈Θf

∑
p∈Bf (η)

2p, (3)

where Θf is the set of faulty nodes and Bf (η) is the set of faulty data lines of node η. When the
upper bound associated with a particular fault is relatively small (e.g., smaller than the lowest SAD
values encountered during the search), then the resulting performance degradation is likely to be
negligible. This will be used to design our testing algorithm.

3 Test Vector Generation and Testing Algorithm

In our testing we distinguish the lossless case, where all faults introduce uniform offsets, and the
lossy case, where some non-uniform offsets occur. In-range faults are defined as faults occurring in
data lines within the dynamic range of data being transferred. Note that even in the lossy case not
all metric rankings are necessarily affected by the faults.

Our proposed testing algorithm is structured as follows. First, based on the tree graph corre-
sponding to the MMC architecture, we compute the minimum size of the uniform offset interval for
each node that guarantees lossless operation. Second, for each node, we test for potential in-range
faults. Third, if there are no in-range faults, then the size of the uniform offset interval is larger
than that of the input dynamic range. Therefore, input dynamic ranges overlap with at most two



Table 2. Number of tests for the proposed test and for exhaustive testing for Type-1, Type-2, and Type-3

architectures in Figure 1.
Type-1 Type-2 Type-3

Proposed 2051 1091 512
Exhaustive 7682 5738 4606

uniform offset intervals. Thus, we need to check if the minimum and maximum outputs are shifted
by the same amount. If they are, the dynamic range will be completely embedded within a single
uniform offset interval. Otherwise, non-uniform offsets will occur, potentially leading to errors at
the output.

Let Dmax(η) and Dmin(η) be the observed distortion values at the root node when we apply to
node η the maximum and minimum inputs, respectively. Following step three above, we propose to
use Dmax(η) − Dmin(η) as the metric for the proposed testing algorithm. Note that, in contrast,
most existing testing algorithms compare, for each node, the observed output values D(η) at the
root node with the expected output values, and if those are different, then mark the chip as a faulty
circuit.

3.1 Testing algorithm: lossless case

For the lossless case, there should be no in-range faults, and the following condition should hold
for each node η:

Dmax(η) − Dmin(η) = Mη × (0xFF ) (4)

where Mη is the number of leaf nodes (inputs) contained in the subtree of η. This equation guar-
antees that the minimum and maximum outputs are contained in the same uniform offset interval.
Dmax(η) is only observed at the root node, therefore, we need to test the data path from the parent
node of η to the root node before we test for η. Thus our testing algorithm operates in a top-down
manner, where the top is the root node, and the bottom contains the leaf-nodes. More specifically,
the least significant k bit data lines of a given node are tested after all the data lines connecting
these k bit lines to the root node need have been tested.

In Figure 4 (a), we show a flow chart of the proposed testing algorithm for the lossless case.
“Low-in-range” bits are the 8 least significant bits, which are enough to represent the dynamic
range of leaf nodes. “Hig- in-range” bits are those bit-lines above the 8th most significant one that
are within the dynamic range of the node. We first test low-in-range bits (low 8 bit) in top-down
manner to ensure that all the low 8 bit data path from the leaf nodes to the root node are fault-free.
Low-in-range bits are needed to excite high-in-range bits.

Testing for high-in-range bits for each node is performed from lower significance to higher signif-
icance bits and also in a top-down manner. To excite n = p bit (n = 0 is LSB) for a node, α(p)
consecutive inputs in one subbranch of the node are excited to the maximum value 0xFF , where
α(p) = � 2p

28−1�, and �·� is the ceiling operation. A detailed algorithm description and a pseudo-code
implementation can be found in [4].

An input vector is composed of 0x00s and 0xFF s because the proposed testing metric is Dmax(η)−
Dmin(η). For low-in-range bit testing, from the top node to leaf-nodes, a single node is excited to
the maximum input(0xFF ) in top-down manner. Because a single input is excited, the expected
output is 0xFF . For high-in-range bit testing, the test input sequence depends on how we traverse
nodes and data buses for the tree graph model during testing. The expected response is determined
by the expected size of the dynamic range of each node, which is determined by the number of
excited leaf-nodes α(p) for each step.

In Table 2, we show the number of tests for the proposed testing and exhaustive testing for
Type-1, Type-2, and Type-3 architectures in Figure 1. In this table the exhaustive testing method
is not based on an analysis of the ME system and therefore, it views the given system as a black
box, and checks for the correctness of each bit, so that the number of tests is proportional to



Table 3. The percentage of acceptable faults by the proposed error tolerance scheme for Type-1, Type-

2, and Type-3 architecture in Figure 1. SSF: single stuck-at fault, DSF: double stuck-at fault.
Type-1 Type-2 Type-3

SSFLossless 6.23% 34.58% 43.86%
DSFLossless 0.36% 8.54% 19.13%

SSFLossy 9.16% 56.06% 75.27%
DSFLossy 0.42% 10.84% 36.77%

the number of data lines which can be excited separately. Clearly, our proposed technique can
be implemented with limited test complexity, as compared to exhaustive testing. Moreover, for
the proposed testing algorithm, all inputs applied during testing are either the minimum (0x00)
or maximum (0xFF ) value, so that we can represent each node test input with a single bit, and
then generate the corresponding test by using a multiplication by 0xFF in the testing hardware.
Therefore, our proposed testing algorithm requires small storage space for the test vectors.

3.2 Testing algorithm: lossy case

To further increase the yield-rate, we will accept low-in-range faults which result in acceptable
performance degradation. If maximum increase in the metric ∆D for a given fault is less than a
threshold ThD, this fault will be acceptable. For single fault cases, ∆D can be estimated using
the proposed testing algorithm. However, because the testing algorithm is based on the observed
output at the root node, multiple faults in the same bit positions at different nodes in the subtree
may not be discriminated because our low-in-range testing uses maximum and minimum inputs for
each node. Denote δD(η) the maximum distortion increase in the matching metric for a node η.
During the low-in-range bit test, if we detect a single fault, then the upper-bound δ̂D(η) for δD(η)
is estimated as:

δ̂D(η, p) = Ns(η) × 2p, (5)

where Ns(η) is the number of nodes in the subtree of η and p is the bit position of the fault. This
means that the effect of the single fault is weighted by the number of sub-tree inputs. Then, the
upper-bound ∆̂D of ∆D in (1) can be estimated as:

∆̂D =
∑

η∈Θf

∑
p∈Bf (η)

δ̂D(η, p), (6)

where Θf is the set of faulty nodes which are first detected through top-down testing, that is, for the
same bit fault, Θf only includes the nodes closest to the root node. Bf (η) is the set of faulty data
lines of node η. Therefore, if ∆̂D ≤ ThD, then we can guarantee that the performance degradation
is less than ThD. In Figure 4 (b), we show the flow chart of the proposed testing algorithm for the
lossy fault tolerance case. The only difference between lossless and lossy cases is the dynamic range
distortion checking routine: the test vectors used are the same.

3.3 Performance of the proposed fault tolerance scheme

In this section, we evaluate the yield-rate increase achievable with our proposed error tolerance
techniques. In our evaluation we assume uniform spatial distribution of faults, a Poisson distribution
model, and stuck-at faults and affecting only the data buses. Table 3, shows the percentage of
acceptable faults using the proposed lossless and/or lossy techniques. For the lossy scheme, we set
the threshold THD as 64 which is observed to result in less than 0.1 dB degradation as can be seen
from Table 1. Note that the proposed testing scheme accepts a significant portion of chips which
should have been discarded otherwise. Also, one can notice that the percentage of acceptance is
much higher for Type-2 & Type-3 architectures than for Type-1 architecture. This can be explained



as follows: First, due to the lack of parallelism of Type-1 architecture, there are fewer redundant
data buses, therefore, the percentage of acceptable faults is lower for Type-1 architecture. By
employing variable width data line, we can completely remove the redundant out-range data buses.
In this case lossless error tolerance cannot be achieved. Second, for lossy error tolerance, from (6),
the upper-bound of performance degradation is proportional to the number of nodes Ns(η) in the
subtree. For Type-1 architecture due to the serial connection of all nodes, Ns(η) is larger, therefore,
fewer in-range faults are accepted.

4 Conclusion

In this paper, a novel application oriented design and test scheme is proposed and applied to
the motion estimation process used in video compression. The proposed scheme, shows promising
results in terms of yield rate improvement.

References

[1] M.A. Breuer, S.K. Gupta, and T.M. Mak. Defect and error tolerance in the presence of massive numbers
of defects. IEEE Design & Test of Computers, 21:216–227, May–June 2004.

[2] Y.-H. Choi and M. Malek. A fault-tolerant FFT processor. IEEE Trans. Computers, 37(5):617–621,
May 1988.

[3] I. Chong and A. Ortega. Harware testing for error tolerance in multimedia compression based on
linear transforms. In Proc. IEEE Intl. Symp. on Defect and Fault Tolerance in VLSI Systems, DFT’05,
Monterey, CA, Oct. 2005.

[4] H. Chung. Complexity Scalable and Robust Motion Estimation for Video Compression, Doctorate
Dissertation. University of Southern California, Los Angeles, CA, 2005.

[5] H. Chung and A. Ortega. System Level Fault Tolerance for Motion Estimation : Technical Report
USC-SIPI 354. Signal and Image Processing Institute, University of Southern California, Los Angeles,
CA, 2002.

[6] B. El-Kareh, A. Ghatalia, and A. V. S. Satya. Yield management in microelectronic manufacturing.
In Proc. Electronic Components and Technology Conference, pages 21–24, May 1995.

[7] M. Gossel and E. S. Sogomonyan. New totally self-checking ripple and carry look-ahead adders. In
Proc. 3rd Int. On-line Testing Workshop, pages 36–40, 1997.

[8] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE Trans.
Computers, 33(6):518–528, Jun. 1984.

[9] J. Jain and A. Jain. Displacement measurement and its application in interframe image coding. IEEE
Trans. on Comm., 29(12):1799–1808, Dec. 1981.

[10] Z. Jiang and S. Gupta. An ATPG for threshold testing: Obtaining acceptable yield in future processes.
In International Test Conference, 2002.

[11] J. Koga, K. Iiunuma, A. Hirani, Y. Iijima, and T. Ishiguro. Motion compensated interframe coding for
video conferencing. In Proceedings of the National Telecommunications Conference, pages G5.3.1–5.3.5,
1981.

[12] M. Nicolaidis. Efficient implementations of self-checking adders and ALUs. In Proc. FTCS 23, pages
586–595, 1993.

[13] P. Pirsch, N. Demassieux, and W. Gehrke. VLSI architectures for video compression-a survey. Proc.
IEEE, 83(2):220–246, Feb. 1995.

[14] A. Roy-Chowdhury and P. Banerjee. Algorithm-based fault location and recovery for matrix compu-
tations on multiprocessor systems. IEEE Trans. Computers, 45(11):1239–1247, Nov. 1996.

[15] F.W. Shih. High performance self-checking adder for VLSI processor. In Custom Integrated Circuits
Conference, Proc. IEEE, pages 15.7/1–15.7/3, May 1991.

[16] R. Sitaraman and N. K. Jha. Optimal design of checks for error detection and location in fault-tolerant
multiprocessor systems. IEEE Trans. Computers, 42(7):780–793, Jul. 1993.


