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Abstract -- This paper presents a reduced complexity deterministic annealing (DA) approach for vector 

quantizer (VQ) design by using soft information processing with simplified assignment measures.  Low 

complexity distributions are designed to mimic the Gibbs distribution, where the latter is the optimal 

distribution used in the standard DA method.  These low complexity distributions are simple enough to 

facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to 

result in near optimal performance. We have also derived the theoretical performance loss at a given 

system entropy due to using the simple soft measures instead of the optimal Gibbs measure. We use the 

derived result to obtain optimal annealing schedules for the simple soft measures that approximate the 

annealing schedule for the optimal Gibbs distribution. The proposed reduced complexity DA algorithms 

have significantly improved the quality of the final codebooks compared to the generalized Lloyd 

algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest 

neighbor (PNN) codebook initialization.  The proposed algorithms are able to evade the local minima and 

the results show that they are not sensitive to the choice of the initial codebook.  Compared to the 

standard DA approach, the reduced complexity DA algorithms can operate over 100 times faster with 

negligible performance difference.  For example, for the design of a 16-dimensional vector quantizer 

having a rate of 0.4375 bits/sample for Gaussian source the standard DA algorithm achieved 3.60 dB 

performance in 16483 CPU seconds, whereas the reduced complexity DA algorithm achieved the same 

performance in 136 CPU seconds. Other than VQ design, the DA techniques are applicable to problems 

such as classification, clustering and resource allocation. 

                                                 
1 This paper is based upon work supported by the National Science Foundation under Grant No. 9730556, by the 
Charles Lee Powell Foundation, and by Integrated Media Systems Center (a National Science Foundation 
Engineering Research Center at the University of Southern California). 
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I. Introduction 

Vector quantization is a source coding technique that approximates blocks (or vectors) of input data 

by one of a finite number of pre-stored vectors in a codebook.  The challenge is to find the set of vectors 

(or quantization levels) such that a given criterion for the total distortion between the actual source and 

the quantized source is as small as possible under a constraint on the overall rate [11].  Since distortion 

depends on the codebook design, vector quantizer design is a key optimization problem to determine the 

performance of a VQ-based system [12] – [15]. 

The traditionally used VQ design approach is the generalized Lloyd algorithm (GLA) also referred to 

as the LBG algorithm [16].  The GLA is an iterative descent algorithm, which converges to a final 

codebook relatively quickly, but such that the resulting codebook is only locally optimal.  This is because 

the algorithm gets trapped in a local minimum of the distortion (energy) surface to which the initial 

codebook is closest.  Consequently, the performance of GLA can be poor compared to that of a globally 

optimal quantizer. 

A powerful approach to reduce the sensitivity of the algorithm to the initial codebook is the 

introduction of randomness.  Several randomized optimization techniques have been investigated in the 

past.  In [17] such “random search” techniques are discussed, where the idea is to randomly perturb the 

system at each iteration and determine the resulting change in performance.  In some of its variations a 

perturbation is only accepted if the performance increases, otherwise it is rejected; and in other variations 

perturbations that decrease performance are also accepted under certain conditions.  In general, if a 

random search technique allows temporary decreases in an objective function with nonzero probability, 

then the algorithm is in the class of stochastic relaxation (SR) [3], [4], or stochastic local search 

techniques. 

An important SR technique is simulated annealing (SA) [4], where in each iteration a new codebook 

is generated in the neighborhood of the old one, and the new codebook is accepted or rejected according 

to the Metropolis algorithm [2].  If sufficient computational resources are devoted, the SA algorithm is 

guaranteed to yield globally optimal solutions [18].  A reduced complexity quantizer design based on SR 

is proposed in [4], achieving similar or slightly better results than SA in much less time under similar 

iteration schedules. Basically, the reduced complexity SR algorithm is the generalized Lloyd algorithm 

appended with a stochastic perturbation step either be on the encoder (SR-C) or the decoder (SR-D).  

Another method that uses a similar randomized search technique is suggested in [19] which has an 

average performance comparable to SR-D but has a higher complexity. In the above approaches random 

search moves were allowed on the energy surface in order to give the system the ability to avoid local 

minima.  Unlike these SR techniques, a deterministic annealing (DA) approach for optimal vector 

quantizer design puts the problem in a probabilistic framework, and deterministically optimizes the 
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probabilistic objective function in each iteration [6].  In DA there are no random moves on the energy 

(cost) surface. At high temperatures the energy surface is smoothed, so that the algorithm starts at the 

global minimum on the smoothed energy surface.  And through a careful annealing schedule it traces the 

global minimum as the energy surface assumes its non-convex “rugged” form with the decreasing 

temperature. The Gibbs distribution is used to associate sample vectors in the training set with 

codevectors since it maximizes the entropy under the constraint of a given average distortion.  Note that 

the sample vector - codevector associations are not one-to-one, but rather they are one-to-many.  In other 

words, each sample vector in the training set is assigned to all codevectors in probability: the closer a 

codevector to a sample vector, the higher its probabilistic assignment to that sample vector.  The DA 

method can construct high performance vector quantizers by avoiding local minima.  However, 

calculation of the association probabilities for each sample vector with all the codevectors in each 

iteration, coupled with the high computational cost of evaluating the Gibbs distribution, and the slowness 

of the annealing process result in a very high computational complexity that limits DA’s utility for some 

practical applications. 

Although the literature is rich in fast search vector quantization techniques, where the aim is to have 

low encoding complexity [21], [23], [25], [27] – [36], there is relatively less work toward low complexity 

VQ design techniques [4], [24], [26]. 

In this paper we propose a reduced complexity deterministic annealing approach for VQ design by 

using soft information processing with simplified assignment measures.  In communications engineering 

the definition of soft information is “a reliability measure over the sample space of the investigated 

random variable.”  In other words, soft information provides a measurement of how reliable it is to 

choose each possible signal choice [7] – [9].  By analogy, in our VQ design we will call soft information, 

the relative “strength” of the association of each codevector to each sample vector.  We will refer to this 

formulation as a soft vector quantizer (SVQ) design.  The reduced complexity DA techniques are 

developed through the design of simple soft-measures that can mimic the effect of the Gibbs distribution 

used in the standard DA.  Hence, while the designed soft-measures are simple enough to facilitate fast 

computation, they also keep the performance penalty to a minimum by mimicking the Gibbs 

distribution’s functionality.  We have also derived a theoretical analysis of the performance loss when 

using a simplified measure instead of the optimal one, and further used the result to derive optimal 

annealing schedules for the proposed simple soft-measures.  In contrast to the standard DA which starts 

with essentially a single codevector and increases the size of the codebook through iterations, in SVQ the 

design starts with the required number of codevectors and optimizes their locations through iterations.  It 

is also observed, and empirically shown, that the importance of a codevector for a given sample vector (in 

terms of the amount of probability mass associated with it) decreases exponentially fast with the distance 



 4

from the sample vector, even at relatively high temperatures.  Hence, major computational gains can be 

obtained with negligible performance degradation by considering only the nearest few codevectors from 

each sample vector.  We present experimental evidence indicating that through these techniques 

significant performance gains are achieved by the SVQ algorithms over the traditionally used GLA and 

over SR-D, where the latter is widely thought to provide near-optimal performance. Compared to the 

standard DA, the results show drastic reductions in computational complexity with very small sacrifice in 

performance.  It is also shown that appending the SR technique [4] to the SVQ algorithms results in 

further improvement in performance, where the benefit of the SR technique is less when the performance 

of the SVQ approaches the optimal. 

This paper is organized as follows.  Section II briefly introduces the standard DA method for VQ 

design and points out its computational complexities.  In Section III, reduced complexity Gibbs 

distribution and low complexity soft information measures for VQ design are designed and analyzed.  

Optimal annealing schedules for the low complexity soft information measures are also derived.  Section 

IV presents experimental results comparing the performances of the proposed algorithms with that of 

GLA, SR and the standard DA on various Gauss-Markov, speech and image sources.  The effect of 

codebook initialization is also investigated.  Finally, Section V concludes the paper. 

II. Vector Quantizer Design by Deterministic Annealing 

In the deterministic annealing algorithm proposed by Rose et al. [6] the main principle is the 

application of a probabilistic hierarchical clustering process, where each sample vector in the training set 

is associated to a cluster with a certain degree of membership.  Each cluster is represented by a 

codevector.  Thus, the distortion (energy) function to be minimized is an expected distortion function, 

 { } ( ) ( ),j j
x j

E D P x R d x c= ∈∑∑ , (1) 

where ( ), jd x c  is the distortion measure incurred in representing sample vector x  by codevector jc , and 

( )jP x R∈  is the probability that x belongs to the cluster represented by jc .  The probability distribution 

used to define the associations is the Gibbs distribution, which is the distribution that maximizes the 

entropy under the constraint (1) [6]: 

 ( ) ( ) ( )
1

, ,

0

j id x c d x c
j

i

P x R e e
β β

ℜ −
− −

=

∈ = ∑ , (2) 

where ℜ  is the cardinality of the cluster set.  Notice that the distribution in (2) is a form of soft 

information.  In other words, it gives a reliability value for assigning the sample vector x  to cluster jR  

over the sample space of the cluster set.  The parameter β  is a term that is inversely proportional to the 
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temperature in the annealing process.  Hence, at infinite temperature, which corresponds to 0β = , the 

probability associations are uniform: ( ) 1 , ,jP x R x j∈ = ℜ ∀ .   This means that, each sample vector x  is 

equally assigned to all the clusters.  As β  gets large, i.e., the temperature is lowered, the probability 

assignments for a sample vector x  start to favor clusters closer to x ; the closer a cluster representative jc  

to x , the higher its probability assignment.  In the limit β → ∞ , each sample vector gets assigned exactly 

to one cluster, to the cluster whose representative codevector is closest to the sample vector.  We refer to 

this as the hard assignment, as opposed to the soft assignment where a sample vector gets assigned to 

more than one representative. 

The codevector locations are defined as the weighted average of the sample vectors, where the 

weights are the probability associations of the sample vectors to the specific codevector being considered: 

 ( ) ( )j j j
x x

c x P x R P x R= ∈ ∈∑ ∑ . (3) 

Thus, at 0β =   all cluster representatives are at the center of mass of the training set, 

 11 1
1 ,j

x x

c x x j
K

   
= = ∀      ℜ ℜ   

∑ ∑ ∑  (4) 

where K is the number of sample vectors in the training set.  Essentially, at 0β =  there is only one cluster 

(or Voronoi region), which is the whole set, and a single representative codevector at its center of mass.  

The hierarchical design algorithm in [6] starts the annealing process with the whole training set as one 

cluster at 0β = , gradually increases β , and re-optimizes by solving (3) at each β .  As β  is increased 

the probability associations start to get harder, and the system goes through a sequence of splitting of the 

clusters at phase transitions until the required number of clusters (or codevectors) are reached.  The main 

focus in [6] is the derivation of the critical values of β , denoted cβ , at which these phase transitions 

occur.  These are the optimum splitting temperatures of the clusters and the authors show that in order to 

be able to attain the global minimum, the splitting of the clusters should be at these critical moments.  

Note that β  does not control the size of the codebook; the system goes through a sequence of phase 

transitions until the required number of representatives is reached.  During the annealing process 

whenever β  reaches cβ  for an existing cluster, that cluster splits into smaller clusters.  In the limit 

β → ∞ , the associations become hard and each sample vector is associated with one representative as in 

the GLA algorithm. 

The work by Rose et al. [6] provides the theoretical framework explaining how the DA approach 

avoids local minima, and shows that through a careful annealing process it can achieve the global 

minimum.  However, for practical applications the algorithm proposed has some drawbacks: in particular, 
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the annealing of the temperature has to be very slow especially in the vicinity of cβ , and the association 

probabilities for each sample vector have to be calculated for all codevectors.  Such complexity may be 

excessive for many applications.  In the next section, we present and analyze reduced complexity 

techniques for VQ design that result in very significant computational gains with negligible performance 

degradation.  In the sequel we will refer to the method explained in this section as the standard DA. 

III. Reduced Complexity Deterministic Annealing 

A. Introduction 

In the proposed algorithms, called soft vector quantizer (SVQ) algorithms, we formulate the vector 

quantizer design problem in a probabilistic framework as in the standard DA.  However, unlike standard 

DA each training vector is allowed to be associated in probability with only a subset of the codevectors.  

These probability associations provide a reliability measure on the set of codevectors that the training 

vector can be mapped to.  The soft associations are functions of the relative distances of the codevectors 

from the training vector. The cost of the computation of the Gibbs soft assignment in (2), which involves 

exponentials, is high; if we count each of the basic operations (addition, subtraction and multiplication ) 

to take one floating point operation, flop, then an exponential computation takes 8 flops.  And since soft 

assignments for all codevectors have to be updated for all sample vectors in every iteration in the standard 

DA, this results in a system of very high computational complexity.  Recall that in (2) the term β  

determines the level of softness of the assignments, so it acts as a softness control factor (as β  increases 

assignments get harder).  In order to reduce the computational complexity of the system, we would like to 

define and use a simpler distribution, preferably one that does not involve exponential terms.  Let us 

define a general “simple” distribution as: 

 ( ) ( )
( )0

,

,
k i

i k
k j

j

x c
p c x

x c

µ

µ
=

∑
, (5) 

where ( ),k ix cµ  is a computationally easy to compute measure of the goodness of match of codevector ic  

to sample vector kx .  The denominator is the sum of the goodness of matches with respect to a subset of 

N  codevectors that are most relevant to kx  (when N = C  all of the codevectors are regarded as 

relevant).  Therefore, in (5) the softness of the assignment can be controlled by adjusting N  (as N  is 

reduced the assignment becomes hard).  Using a simple function, ( ),k ix cµ  coupled with N = C  can 

result in major computational gains at the expense of some reduction in performance. 
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For a given set of soft assignments, ( )0 , ,i kp c x i k∀ ∀ , the codevector locations can be computed as 

the weighted average of the sample vectors as in (3), 

 ( )
( ) ( )

( ) ( )
( )

( )
0 0

*
0

0 0

k k i k k i k
k k

i k k i
k k i k i k

k k

x p x p c x x p c x
c x p x c

p x p c x p c x
= = =

∑ ∑
∑ ∑ ∑

 (6) 

where sample vector probabilities are assumed to be uniform, ( ) 1
Kkp x = , and where K  is the size of the 

training set.  The general iterative framework for updating the soft assignments and codevector locations 

is shown in Figure 1.  Note that this framework is independent of the type of soft assignment used; any 

type of soft assignment measure that can give soft assignment values for the set of codevectors for a given 

sample vector can be used in this framework.  

Ideally, in any annealing algorithm the annealing temperature should start at a very high temperature 

(theoretically at infinite) and gradually cool down to zero.  However, as we have seen in the standard DA 

this results in a very slow convergence.  In the proposed algorithms (SVQ) the temperature is not infinite 

at the start; we demonstrate that starting with a low temperature and with fixed (required) number of 

codevectors, it is possible to achieve near optimal performance.  Starting with a low temperature means 

starting the algorithm with a non-convex energy surface.  We show that introduction of controlled 

randomness as in standard SR into the iterations has the potential to improve the results due to the non-

convexity of the energy surface. 

B. Reduced Complexity Gibbs Distribution for VQ Design 

We know that as a result of soft association every sample vector kx  has a certain degree of belonging 

to all of the codevectors in the codebook.  However, when we take all the soft associations into account, 

Fig. 1.  The iterative procedure showing the updating of the
soft assignments and the codevectors.
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( )( ){ }m
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( )( ){ }1m
i kp c x−

( ){ }m
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no matter how small they are, the effect of very small soft associations on (6) and on the converged 

codebook is negligible.  Therefore, for practical considerations, those that are very close to zero can be set 

to zero.  At this point, a logical approach would have been to define a threshold and set all the 

associations below this threshold to zero.  But this would only save us computational cost in (6), we 

would still need to calculate all the soft associations and compare them with the threshold.  In order to 

further reduce the cost, we decided to fix the N  nearest codevectors from a given sample vector, and 

compute the soft associations only for the closest N  codevectors and set the other N−C  associations to 

zero.  Note that we are not reducing the size of the codebook, that remains fixed. In this way, only the 

distances from a given sample vector to the codevectors need to be computed and the N  nearest 

codevectors are determined.  Note that after the first few iterations the N  nearest codevectors for training 

vectors need not be computed in every iteration, because the displacement of the codevectors from one 

iteration to the next are small compared to the effect they will have on the assignment probabilities.  On 

the other hand a periodic update prevents the compounding effect of small displacements to result in 

inaccurate assignment probabilities. Denoting ( ),kx NN  to be the nearest N  codevectors from a given 

kx , the soft information is computed by, 

 ( )
( )

( )

( )

,

,

,

e

e

k i

k j

j k

d x c

i k d x c

c x N

p c x
β

β

−

−

∈

=
∑
N

 (7) 
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Fig. 2. Probability mass contained in the nearest N codevectors from a randomly selected sample
vector, at different beta values.  Codebook size = 128, vector dimension = 16.  (2a) Zero-mean, unit
variance Gaussian source; (2b) Gauss-Markov source, correlation coefficient 0.9.
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where ( ) 2,k i k id x c x c= − .  We can assess from Figure 2 that taking all of the codevectors into 

consideration does not justify the required computational complexity.  The figure shows the total 

probability mass contained in the nearest N  codevectors from a randomly chosen sample vector for 

increasing β .  Each point on the graphs are found by summing the probability mass within the nearest 

N  codevectors from each kx , and averaging over all kx , 

 ( ) ( )
( )

1

0 ,

1

i k

K

i k
k c x N

PM N p c x
K

−

= ∈

= ∑ ∑
N

, (8) 

where K  again is the size of the training set.  We can observe from the figure that the range of β  for 

convergence is source dependent, but the important point to notice is that at low β   a considerable 

amount of the probability mass is confined within a small number of codevectors compared to the size of 

the codebook, and the point of convergence is at β ∞= . 

a. Fixed Number of Associations  

One can first consider an approach with a fixed N .  Experimentally we have found 4N =  to be a 

good trade-off value between performance and complexity.  In other words, results obtained by setting 

4N =  and with N = C  (i.e., using all the codevectors in the codebook) resulted in negligible 

performance difference, however, the computational savings are significant, especially for large 

codebooks (e.g., 128>C ).  A comparison of 4N =  and 128N = =C  using the same annealing 

schedule is given in Table I.  The loss in performance incurred by considering only the nearest 4  

codevectors for each sample vector instead of the whole codebook is only 0.003 dB, which is a negligible 

performance difference for all practical purposes.  In exchange for this negligible loss, a factor of about 

120 speed-up in running time is achieved which is a highly significant complexity reduction.   

The proposed algorithm is shown in Figure 3, where the iterations start with 4N = , ( )21 4 Xβ σ= , 

where 2
Xσ  is the source variance, and an initial codebook 0C .  The initial value of β , ( )21 4 Xβ σ= , is 

TABLE I: Average performance and running time comparison for N = |C| = 128 and N = 4.  
The source is uncorrelated Gaussian, the vector dimensions are 16, and soft information measure 
is reduced complexity Gibbs distribution.  The results are averages over 20 experiments (details 

on experimental set-up are in Experimental Results section). 
 

N Ave. SNR Ave. CPU Time 
4 3.595 dB 136 sec. 

128 3.598 dB 16483 sec.  
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found empirically to be a good starting value.  At each iteration, we gradually increase β ( )1.0κ > , 

update the soft information according to (7) and re-optimize the codevector locations using (6).  We can 

then apply the codevector perturbation of [4].  As β  increases the softness of the codevector associations 

decreases .  In the limit, when all the probability mass is assigned to the nearest codevector for all sample 

vectors we reach the nearest neighbor condition.  

b. Variable Number of Associations  

In the above scheme we kept N  fixed.  When we need to design quantizers for very large codebook 

sizes (e.g., =C 512, 1024, …) it is useful to use a larger N  (e.g., 10, 12, 15, …).  However, we know 

that while the thN  furthest away codevector from a given sample vector plays an important role (has large 

probability mass) in the early iterations, its importance decreases in each iteration.  As the temperature 

decreases  the probability mass is gradually transferred from the distant to the closer codevectors.  Hence, 

after a while the thN  codevector will contain negligible mass and it can be discarded without any 

significant effect on the final performance.  Thus to simplify the computation without affecting the 

performance, we can append the following simple step to the algorithm: whenever the average probability 

mass of the nearest 1N −  codevectors, ( )1PM N −  (8) exceed a certain mass π  (typically 0.99π = ), N  

is reduced by one, 1N N= − , i.e., 

 ( ) ( )
( ), 1

1
1 , 1

i k

i k
k c x N

if PM N p c x then N N
K

π
∈ −

− = > = −∑ ∑
N

. (9) 

Fig. 3.  Flowchart for the reduced complexity Gibbs soft assignment measure algorithm.
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When N  is large the cumulative effect of gradually decreasing the number of nearest neighbors to be 

taken into account results in considerable complexity reduction which was not possible in the fixed N  

scheme.  However, it is important imperative to note that in the case of small N  (e.g., 4N = ) we may 

not have any computational gain or we may even increase the computational cost by using the gradual 

reduction scheme.  This is a result of the fact that the small gain (from N  being small) obtained by 

gradually decreasing N  will be consumed by the computation of ( )1PM N − .  However, when N  is 

large enough the reduction in computational cost obtained by reducing N  surpasses the added cost of the 

computation of ( )1PM N − .  Therefore, when N  reaches a small value, e.g., 4N = , the process of 

gradual reduction of N  stops. 

C. Low Complexity Soft Information Measures for VQ Design 

As previously stated, in order to reduce further the computational complexity of the system we can 

use in (5) a less complex distribution than the optimal Gibbs distribution.  One of the simplest 

distributions that readily comes to mind is the “inverse Euclidean distance” distribution, in which, for a 

given sample vector kx , the “importance” of the codevectors decrease with increasing distance from kx .  

“Inverse Euclidean distance” in a soft information measure can be defined as, 

 ( ) 1

0

1
|

1
i

i k N

jj

d
p c x

d

−

=

=
∑

 (10) 

The distances in (10) are the Euclidean norms between kx  and the codevectors (n is the vector 

dimension), ( ) ( ) ( ) ( )2 22
,0 ,0 ,1 ,1 , 1 , 1,i k i k i k i k n i nd d x c x c x c x c− −= = − + − + + −L .  The number of codevectors to be 

taken into consideration for each kx  can be determined by a circle centered on kx  with a radius R , where 

all codevectors closer than R  to kx  constitute the N  nearest codevectors.  The radius R  decreases from 

one iteration to the next, ( ) ( )1m mR R ρ−= , where 0 1.0ρ< < . 

Another soft information measure can be defined using a triangle function centered on the considered 

sample vector, kx  as shown in Figure 4.  The function with height 1h =  and a spread xR , will contain the 

N  codevectors within an Euclidean distance xR  from kx .  Using the fuzzy systems terminology, we can 

define this triangle function as the membership function of kx  and denote it by xm .  The soft associations 

are computed by using the heights of the membership function corresponding to the Euclidean distances 

of the codevectors from kx , 
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 ( ) 1

0

| i
i k N

j
j

h
p c x

h
−

=

=

∑
. (11) 

The spread xR  decreases gradually in each iteration giving more and more importance to the nearer 

codevectors as the iterations increase.  At the limit, when only one codevector stays within the nearest 

neighbor set, i.e., 1N = , the soft information measure becomes hard and all the probability mass gets 

assigned to the nearest codevector.  Note that as the spread is decreased, for some sample vectors 1N =  

will be reached earlier than the others since the nearest codevector distance cannot be the same for each 

sample vector.  As the spread continues to decrease, at some point for some sample vectors, 

( ),x k iR d x c i< ∀ .  In these cases, the algorithm assigns all the probability mass to the nearest 

codevector.  The spread at the thm  iteration is controlled by a geometric schedule as in the Gibbs case: 

 ( ) ( )1m m
x xR R ρ−=  (12) 

where ρ  is the reduction factor, 0 1.0ρ< < .  The soft information measure in (11) can be defined in 

terms of the spread, xR  and the distances, ( ),i k id d x c=  using triangular similarities, where the height of 

the triangle is 1h = : 

 i x i
i

x x i x

h R dh
h

R R d R
−= ⇒ =

−
 (13) 

Therefore, (11) becomes, 

Fig. 4.  Triangular membership function used as a soft information measure.  Codevectors within
the spread of the function comprise the nearest  N codevectors for the considered sample vector.
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 ( ) 1

0

| x i
i k N

x j
j

R d
p c x

NR d
−

=

−=
− ∑

 (14) 

This is a better soft information measure than the inverse Euclidean distance measure in (10), because 

it can mimic the effect of the temperature reduction in the Gibbs distribution much better.  With (10) the 

only time the soft assignments will change as the radius is decreased is when a codevector is left out of 

the circle of radius R .  However, using (11) the heights get affected by the reduction in the spread xR  as 

seen in (14).  This is desired in order to approximate the effect of the temperature reduction in the Gibbs 

distribution; in other words, as the spread decreases the codevectors closer to kx  should increase their 

share of the soft assignment in conformity with their distances from kx .  Hence, the height-defined soft 

information measure (14) is a better one than the Euclidean distance-defined measure (10) in terms of 

mimicking the Gibbs soft measure. 

The experimental results will also demonstrate that (14) is in fact a better measure than (10).  Note 

also that the computational cost of computing one soft assignment using (10) requires 5 4N +  flops, 

whereas using (14) it requires 7N +  flops, counting addition, subtraction and multiplication as one flop 

and division as four flops ( N  is the number of codevectors taken into computation).  Hence, for 1N ≥ : 

7 5 4N N+ < + , implying that (14) is also less costly than (10).  Recalling that an exponential 

computation is 8 times more costly than a basic operation (8 flops compared to one flop of operation time 

for a basic operation), then (7) takes ( )8 1 1 4 10 4N N+ + + = +  flops, which is much larger than 7N + .  

Therefore, the height-defined triangular soft information measure is a computationally less complex 

distribution than the Gibbs distribution. 

The algorithm for the low complexity soft information is similar to the one shown in Figure 3.In this 

case the temperature control is done by the spread of the triangle function.  The initial spread ( )0 24x XR σ=  

was empirically found to give good performance, where 2
Xσ  is the variance of the training set 

components.   

D. Optimal Temperature Schedule 

In the previous section we have proposed a low complexity soft assignment measure, namely, the 

triangular soft information measure as a simplified way of computing the soft assignments.  Although this 

measure will significantly reduce the computational cost of the soft assignments compared to the Gibbs 

soft measure, the reduction in computational cost will be at the expense of some loss in performance, 

since Gibbs is the optimal soft measure.  However, the loss in performance can be minimized if we can 

find temperature reduction schedules for the low complexity measure that can follow the Gibbs β  
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schedule such that the “distance” between the two distributions is minimized.  In other words, for a given 

codevector the difference in the probability mass assigned by the low complexity (non-optimal) measure 

and the optimal Gibbs measure is as small as possible.  By definition this is the minimization of the 1L  

distance between the two distributions [20], 

 ( ) ( ) ( ) ( )0 01G i G i
i

p c x p c x p c x p c x− = −∑ . (15) 

We would like to find the spread reduction schedule xR  for a given Gibbs β  schedule that minimizes 

(15).  But note that minimizing (15) is equivalent to minimizing the relative entropy between ( )0p c x  

and ( )Gp c x , ( ) ( )( )0 GD p c x p c x , since we know from [20] that, 

 ( ) ( )( ) ( ) ( ) 2

0 0 1

1
2ln2G GD p c x p c x p c x p c x≥ −  (16) 

with equality when 0 Gp p= .  Although it is intuitive that in order to minimize the performance difference 

between a simplified soft-measure and the optimal soft-measure the relative entropy between the two 

should be minimized, Appendix A provides a more formal justification.  The error analysis in the 

appendix shows that at a given system entropy (softness) the performance loss in terms of distortion 

between two distributions (soft-measures) is a function of the relative entropy between them, hence, 

minimizing the relative entropy minimizes the distortion penalty paid for using a simplified soft-measure. 

We can show that the relative entropy is approximately minimized when the variances of the two 

distributions, ( )0p c x  and ( )Gp c x  are equal.  The variances of ( )Gp c x  and ( )0p c x , respectively, are 

(the lower limits of the integrals start from zero because we use absolute distances between sample vector 

and each of the codevectors): 
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Equating (17) and (18), and solving for xR , we get, 
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 ( )9 2
xR

π
π β

−
=

⋅
. (19) 

Hence, using (19) we can obtain a schedule for xR  given a schedule for β .  We need to verify that the 

relationship in (19) minimizes the relative entropy.   

We have used the set up in Figure 5 to show that for a given β  for the Gibbs distribution, the spread 

xR  obtained by (19) for the triangle distribution minimizes the relative entropy.  In the figure there are a 

set of L  codevectors at increasing distances from a sample vector x .  For each β  in a set 

{ }1 2, , , mβ β βL , the soft Gibbs assignments of the codevectors are computed using the Gibbs soft 

information measure (7) with N L= .  Then, through an exhaustive search, the spread xR  that gives the 

soft assignments using (14) which minimizes the relative entropy ( ) ( )( )0 GD p c x p c x  is obtained.  The 

resulting minimum relative entropy curve is shown in Figure 6 by the solid line.  This is compared with 

the result obtained using (19) by the dashed curve.  We can see that the derived relation in (19) can 

approximate well the minimum relative entropy curve, and hence the best xR  schedule for a given β  

schedule.  The error is due to the fact that we approximate the relative entropy using the variance of the 

two functions. 

The reduced complexity Gibbs algorithm and the low complexity soft measure algorithm for the 

triangular membership function using two different spread reduction schedules are used to design 

codebooks of size 128 and 256 (for details on experiments see the Experimental Results section).  The 

results are shown in Table II.  Of the two schedules for triangular soft information measure, the first one 

is the geometric spread reduction given in (12), and the second one is obtained using (19) and the Gibbs 

schedule (referred to as Gibbs guided spread reduction in Table II).  Observe from the results in the Table 

Fig. 5.  An instance of the Gibbs function with parameter β and an instance of the triangle function
with parameter Rx is shown.  There are L codevectors at increasing distances from sample vector x.

x c
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c
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c
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II that the performance of the triangular soft information measure using the Gibbs guided spread 

reduction schedule outperformed the geometric spread reduction in same number of iterations (running 

time).  Therefore, for a given β – schedule the relation in (19) provides a better xR – schedule than the 

geometric reduction.  Note that β – schedule  is itself geometric, ( ) ( )1m mβ β κ−= ⋅ .  But since the Gibbs 

soft information measure is the optimal measure, following the β – schedule in a simple soft information 

measure that approximates the Gibbs measure, increases the simple soft information measure’s  

performance as demonstrated above.  Note also that to obtain the β – schedule the Gibbs algorithm need 

not be run, it can be obtained using ( ) ( )1m mβ β κ−= ⋅ , 1.0κ > . 

TABLE II:  Comparing the geometric and Gibbs guided spread (temperature) reduction for the 
triangular membership function for the design of 128 and 256 sized codebooks for uncorrelated 

Gaussian source with vector dimensions 16. 
 

 

Reduced Complexity Gibbs 
Soft Information Measure 

( )1.005κ = . 

Low Complexity Soft 
Information Measure – 

Triangular. 
Geometric spread reduction 

( )0.995ρ = . 

Low Complexity Soft 
Information Measure – 

Triangular. 
Gibbs guided spread 

reduction. 

Codebook 
Size 

Ave. SNR Ave. CPU 
time 

Ave. SNR Ave. CPU 
time 

Ave. SNR Ave. CPU 
time 

128 3.595 dB 136 sec. 3.392 dB 91 sec. 3.411 dB 91 sec. 
256 5.210 dB 329 sec. 4.919 dB 232 sec. 4.952 dB 232 sec. 

 

Fig. 6.  Plot shows the minimum relative entropy between the triangular soft measure and the Gibbs 
soft measure at various spread Rx and ß pairs. The solid curve is obtained by an exhaustive search for 
Rx that gives the minimum relative entropy for a given value of ß. The dashed curve is obtained 
using the derived relationship between Rx and ß to give the minimum relative entropy. 
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IV. Experimental Results 

We now present the results obtained when our algorithms were used to design codebooks of various 

sizes and sources.  The results are compared with other algorithms of interest, namely, GLA, SR-D and 

standard DA.  Our quoted execution times (CPU times) are based on those obtained with an Intel PIII - 

550 MHz machine. 

The first set of training sources we considered were two cases of first order Gauss-Markov sources, 

one with correlation coefficient 0 0.0α =  (uncorrelated source) and the other with 0 0.9α =  (correlated 

source).  We blocked 16384 samples into 1024 16-dimensional training vectors, and designed codebooks 

of sizes 32, 64, 128 and 256 for both training sets, where the initial codebooks were obtained randomly 

from the training sets.  Since both GLA and SR-D are sensitive to the choice of the initial codebooks, in 

order to investigate the effect of initialization we have also designed codebooks of sizes 32, 64, 128 and 

256, where the pairwise nearest neighbor (PNN) algorithm [22] is used to obtain the initial codebooks.  

For this we have used the uncorrelated Gaussian source with 4096 16-dimensional training vectors.  The 

second source examined was from a segment of human speech sampled at 8 kHz and partitioned into 

2048 16-dimensional vectors, and we have designed five codebooks of sizes 16, 32, 64, 128 and 256.  The 

final source considered was obtained by extracting 8192 16-dimensional vectors (corresponding to 4 4×  

blocks) from two 512 512×  monochrome training images from the USC image database with each pixel 

amplitude quantized to 8 bits.  Four codebooks of sizes 32, 64, 128 and 256 were designed using this 

training set, and the performance of these codebooks is tested in coding the image “Lena” which was 

outside of the training set.  The effect of the PNN initialization on the speech and the image sources is 

also demonstrated. 

We designed codebooks for the following algorithms where in the plots the appended  “a” means 

without stochastic perturbation (e.g., SVQ-Ga would mean the same as SVQ-G but without perturbation): 

1. SVQ-G:  Soft vector quantizer design using the reduced complexity Gibbs distribution as the soft 

measure, and with stochastic perturbation. 

2. SVQ-E:  Soft vector quantizer design using the inverse Euclidean distance distribution as the soft 

measure, and with stochastic perturbation. 

3. SVQ-T:  Soft vector quantizer design using the height-defined distribution with triangular 

membership function as the soft measure, and with stochastic perturbation. 

4. VQ-DA:  Vector quantizer design using the standard deterministic annealing [6]. 

5. SR-D:  Vector quantizer design using the reduced complexity decoder perturbation algorithm [4]. 

6. GLA:  Vector quantizer design using the generalized Lloyd algorithm [16]. 
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In the cases where PNN initialization is not used, for each  algorithm, except VQ-DA, the average 

performances are computed for 20 different initial codebooks, where for each codebook design the same 

set of initial codebooks are used, allowing us to compare the average performances of the different 

algorithms.  Recall that, VQ-DA uses the center of mass of the training set as the initial codebook, so its 

performance with this initial condition is recorded.  In the cases where PNN initialization is used a unique 

initial codebook is obtained from the training set.  The performance measure used for the image source is 

peak signal-to-noise ratio (PSNR) and for the others is signal-to-noise ratio (SNR), defined as: 

( )1010 log 255PSNR D= ⋅  and ( )1010 log sSNR P D= ⋅ , where sP is the signal power and D  is the 

distortion per sample.  The SR-D algorithm was run for 200 iterations as given in [4], and the GLA was 

run until convergence. 

A. Gauss-Markov Sources 

The performances of the first 5algorithms (listed above, both with and without perturbation) with 

initial codebooks obtained randomly from the training set are compared with the GLA performances in 

Figures 7 and 8.  In all cases, the reduced complexity DA algorithms (SVQ) achieved significant 

improvements over the traditionally used GLA and over SR-D, which is said to give near optimal results 

[4].  From the figures we observe that, the SVQ-G algorithm (reduced complexity Gibbs distribution) 

performed better than the other SVQ algorithms; however, the performance of SVQ-T is competitive.  

Note the progression of performances of the low complexity soft information measures: the performance 

improves from the inverse Euclidean distance soft-measure (SVQ-E and SVQ-Ea) to the triangular soft 

measure (SVQ-T and SVQ-Ta). This was an expected result since the triangular soft measure  was 
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Fig. 7. Improvements over GLA for Gaussian source; vector dimension = 16 samples/vector. 
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designed to better approximate the optimal Gibbs distribution. Note also the gain achieved by the 

stochastic relaxation (SR) in the SVQ algorithms compared to non-stochastic cases.  The gain ranges from 

a high 0.2 dB for SVQ-E to a low 0.02 dB for SVQ-G algorithms.  It should be noted that the better an 

algorithm performs without the SR, the lesser the additional gain achieved by the SR in the SVQ 

algorithms.  In other words, as an algorithm comes closer to the global optimum using the principles of 

soft information processing, it requires less help from the SR to attain an improved performance.  In the 

limit, granting enough computational resources for the full power of the soft information processing to be 

utilized, the global optimum can be reached without requiring any help from SR.  But as the results 

demonstrate, for reduced complexity DA approaches, SR has a positive effect in the improvement of the 

performances with negligible computational complexity. 

The results for VQ-DA (standard DA) were obtained starting with all the sample vectors being 

equally associated with all the codevectors, which dictates an initial codebook where all the codevectors 

are at the center of mass of the training set.  The simulations were conducted with a conservative 

annealing schedule, where it took over 120000 CPU seconds (about 24 hours) for the codebook of size 

256=C  to converge.  Recall that in VQ-DA the probability associations are computed to all 

codevectors for each sample vector, thus the algorithm executes very slowly especially for large 

codebooks. The figures show that the performance of VQ-DA compared to reduced complexity DA 

algorithms is inferior in all cases.  Moreover, the SVQ algorithms run much faster than VQ-DA, requiring 

350 CPU seconds for 256=C  and 16 dimensional vectors.  While, if enough computational resources 

are allocated, VQ-DA is expected to be very close to optimal as shown in [6], the performance of the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3125 0.375 0.4375 0.5

Rate (bits/sample)

S
N

R
 im

p
ro

ve
m

en
t 

o
ve

r 
G

L
A

 (
d

B
)

SVQ-G

SVQ-Ga

SVQ-Ea

SVQ-E

SVQ-Ta

SVQ-T

SR-D

VQ-DA

 
Fig. 8. Improvements over GLA for Gauss-Markov source; vector dimension = 16 

samples/vector. 



 20

reduced complexity DA algorithms proved that for most practical applications the expected performance 

of VQ-DA does not justify its computational burden. 

Both GLA and SR-D algorithms are sensitive to the initial codebooks.  Hence, in order to investigate 

the effect of initialization on these algorithms and on our proposed algorithms we have used the PNN 

initialization for the codebooks [22].  In Figure 9 we show the performances of the 4 codebooks on 

(uncorrelated) Gaussian source as improvement over the PNN initialized GLA.  For clarity of 

presentation we have only included the SVQ-Ga performance from our proposed algorithms; the other 

SVQ algorithms behave comparatively the same with SVQ-Ga as in Figure 7.  Note from the figure that 

the PNN initialization improves the GLA and SR-D algorithms, however the SVQ-Ga algorithm is not 

affected.  This is a positive result for the SVQ algorithms for it shows that they can evade the local 

minimum dictated by the initial codebook, and hence are insensitive to the choice of the initial codebook.  

The PNN and its fast but sup-optimal version, fast-PNN require ( )3O K  and ( )logO K K  time, 

respectively, where K  is the size of the training set [22].  The results presented in Figure 9 are obtained 

using the full search PNN algorithm (with complexity ( )3O K ) in order to get the best possible results 

with the GLA and the SR-D algorithms.  The fast-PNN initialization would result in reduced 

performance; it is shown in [22] that the fast-PNN algorithm increased the coding error by 0.4 – 0.6dB for 

image sources compared to full search PNN.  The SVQ algorithms outperform both GLA and SR-D 

algorithms without the complexity of the initialization process, which gets computationally more 

impractical as the size of the training set increases. The running time for the generation of the PNN 

codebooks from a training set of 4096 16-dimensional vectors was 2374 CPU seconds, and the design of 
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Fig. 9. Showing the effect of PNN initialization as improvement over GLA.  Source is Gaussian, 

vector dimension = 16 samples/vector. 
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the size 256 codebooks for GLA, SR-D and SVQ-Ga algorithms on average were 44, 366 and 1552 CPU 

seconds on the same machine.  Therefore, with the PNN initialization the total running times for the GLA 

and the SR-D algorithms are higher than the SVQ-Ga algorithm.  And since SVQ-Ga performs the same 

with and without the initialization, then the SVQ-Ga algorithm outperforms GLA and SR-D in less 

running time. 

B. Speech Source 

The performance on the speech source using the three algorithms, GLA, SR-D and SVQ-Ga, with and 

without the codebook initialization is shown in Figures 10 and 11.  In Figure 10 the performance 

improvement over GLA and in Figure 11 improvement over PNN initialized GLA are shown.  Note that 

while the performance improvement of SVQ-Ga over GLA is large (0.95 dB at 0.5 bits/sample), 

compared with the PNN initialized GLA the improvement is rather modest.  But note again that the effect 

of the initialization is very small on the SVQ-Ga performance, whereas improvements of 0.85 dB and 0.2 

dB are obtained at 0.5 bits/sample for GLA and SR-D, respectively, after initialization.  Therefore, as in 

the Gaussian source, the SVQ-Ga renders the initialization unnecessary. 

C. Image Source 

The last source considered was the image source, where the results are shown in Figure 12 for the 

coding of the image source “Lena.”  As in the previous two source cases the SVQ-Ga performance is 

practically not sensitive to the initial codebook initialization.  And it outperformed the GLA and the SR-D 
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Fig. 10. Improvements over GLA for human speech source sampled at 8kHz; vector dimensions 

= 16 samples/vector. 
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algorithms by 0.3 – 0.4 dB and 0.2 – 0.3 dB, respectively, both being initialized with PNN.  Therefore, as 

in the Gaussian and the speech sources the SVQ-Ga outperformed the PNN+GLA and PNN+SR-D 

without the need of initialization. 
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Fig. 11. Improvements over PNN initialized GLA for human speech source sampled at 8kHz; 

vector dimensions = 16 samples/vector. 
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Fig. 12. Improvements over GLA for t he coding of image source “Lena.” Vector dimension = 16 
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V. Conclusion 

In this paper we have designed reduced/low complexity methods for deterministic annealing (DA) for 

the vector quantizer design problem, which we named as soft vector quantizer (SVQ) design algorithms.  

The proposed low complexity soft measures are used as the soft association probabilities in the 

probabilistic framework of the DA to reduce the computational cost compared to the optimal Gibbs soft 

measure used in the standard DA.  Although the simple soft measures significantly reduce the 

computational complexity of the system, this improvement comes at a price since these soft measures are 

not the optimal distributions.  Hence, we have also derived the theoretical performance loss for using a 

simplified measure instead of the optimal measure, and used the result to derive optimal annealing 

schedules for the proposed simple soft-measures.  We have demonstrated that using the derived optimal 

schedule for the low complexity soft measures increases the quality of the final codebook compared to 

using a geometric reduction schedule which is usually suggested in the annealing algorithms.  We have 

also shown that the low complexity DA methods benefit from the stochastic relaxation techniques with 

decreasing benefits as the performance approaches the optimal.   

We have demonstrated the effectiveness of our low/reduced complexity DA (SVQ) algorithms by 

designing codebooks for a variety of sources, namely Gauss-Markov, speech and image, at different rates.  

In each case, the proposed SVQ algorithms significantly improved the quality of the final codebooks 

compared to the traditionally used GLA and compared to the SR-D algorithm, where the latter is accepted 

as a benchmark reference by some researchers to be a VQ design technique that performs near-optimally.  

We have also investigated the effect of codebook initialization on GLA, SR-D and SVQ algorithms and 

showed that, while GLA and SR-D receive major benefit from this initialization at the expense of 

increased computational complexity, the SVQ algorithms are able to attain the same performance without 

the need of initialization.  Hence, the SVQ algorithms are not sensitive to the choice of the initial 

codebook and outperform codebook initialized GLA and SR-D algorithms.  Compared to the standard 

DA, the computational complexity of the SVQ algorithms are shown to be drastically reduced.  Using the 

same annealing temperature the SVQ algorithms run by over a factor of 100 faster than the standard DA 

algorithm with negligible performance difference.  We believe that the proposed algorithms, with their 

significantly higher performance over the widely used GLA and SR-D, and with their low computational 

complexity with negligible performance difference compared to the standard DA, have proved themselves 

to be important VQ design techniques. 
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Appendix A 

We have proposed two low complexity soft assignment measures, the triangular soft information 

measure and the multi-triangular soft information measure, as simplified ways of computing the soft 

assignments for the VQ design problem using deterministic annealing.  Although these measures 

significantly reduce the computational cost of the soft assignments compared to the optimal Gibbs soft 

measure, this improvement in computational cost comes in exchange for some loss in performance since 

Gibbs is the optimal soft measure.  In this section we derive the penalty paid in distortion for using the 

simplified soft measures instead of the optimal one at a given system entropy (softness). 

For a given soft assignment measure (conditional probability), ( )p c x  we have the expected 

distortion and the average mutual information in (20) and (21), respectively. 

 ( )( ) ( ) ( ) ( ),
x c

D p c x p x p c x d x c= ∑ ∑ , (20) 

 ( ) ( ) ( ) ( )
( )

; log
x c

p c x
I X C p x p c x

p c
= ∑ ∑ . (21) 

Let IP  be the set of all I-admissible soft assignment measures, 

 ( ) ( ){ }: ;IP p c x I X C I= ≤ , (22) 

and hence, for fixed I , 

 ( )
( )

( )( )min
Ip c x P

D R D p c x
∈

= . (23) 

Now, let ( )Gp c x  and ( )0p c x  be two different soft assignment measures, and assume that ( )Gp c x  is 

the optimal I-admissible soft assignment measure for some rate I, ( )G Ip c x P∈ , and the expected 

distortion corresponding to ( )Gp c x  is ( )( )GD p c x .  Let the other soft assignment measure, ( )0p c x  to 

be defined as, 

 ( ) ( ) ( )0 ,Gp c x p c x p c x c x= + ∆ ∀ . (24) 

We require two conditions to be satisfied on (24): 

 ( ) 0
c

p c x x∆ = ∀∑ , (25) 

 ( )0 ; ( ; ) 0GI I X C I X C∆ = − = . (26) 
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The condition in (25) is required so that ( )0p c x  in (24) is a valid pmf, ( )0 1
c

p c x =∑ , and the condition 

in (26), the difference in the mutual information to be zero, is required so that ( )0 Ip c x P∈ .  We would 

like to obtain the difference in the expected distortion, ( )( ) ( )( )0 GD D p c x D p c x∆ = −  subject to the 

conditions (25) and (26).  The situation is depicted in Figure A.1, and a real simulation result is shown in 

Figure A.2.  We will start by expanding, ( )0 ; ( ; )GI I X C I X C∆ = − , 

 ( ) ( ) ( )
( )

( ) ( ) ( )
( )

0
0

0

log log G
G

x c x c G

p c x p c x
I p x p c x p x p c x

p c p c
∆ = −∑ ∑ ∑ ∑ . (27) 

Substitute ( ) ( ) ( )0Gp c x p c x p c x= − ∆  from (24) into (27): 

 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )

0
0 0

0

0 0
0 0

log log

log log log

G

x c x c G

G

x c x cG GG

p c x p c x
I p x p c x p x p c x p c x

p c p c

p c x p c x p c
p x p c x p x p c x p c x

p c p cp c x

∆ = − − ∆

 
= ∆ + − 

  

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

Simplifying the above expression, we get, 

 ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )( )0 0log G

G G
x c G

p c x
I p x p c x D p c x p c x D p c p c

p c
∆ = ∆ + −∑ ∑ . (28) 

Since ( )Gp c x  is the optimal distribution, ( ) ( ) ( )( ) ( ) ( )( ), ,e ed x c d x c
G G Gc

p c x p c p cβ β ′− −

′
′= ∑ , where 

with ( )Gp c  uniform we get the Gibbs distribution, we substitute it in the first term in (28), 
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Therefore, 
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x c G

d x c
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p c

p x p c x d x c p x p c p c x
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′

= ∆ = ∀

∆
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−
= ∆

∑ ∑

∑ ∑ ∑ ∑ ∑
1444442444443 14243

 (29) 

Substituting (29) into (28), and using the condition in (26) that 0I∆ = , we get, 
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 ( ) ( )( ) ( ) ( )( )0 0 0
ln2 G GI D D p c x p c x D p c p c

β−∆ = ∆ + − = . (30) 

Finally, the difference in the expected distortion is, 

 ( ) ( )( ) ( ) ( )( )0 0
ln2

G GD D p c x p c x D p c p c
β

 ∆ = −  . (31) 

Note that for large vector dimensions [20], ( ) ( )( ) ( ) ( )( )0 0G GD p c p c D p c p c− ≅ .   Hence, for large 

dimensions the penalty paid in terms of distortion at a given system entropy for using the non-optimal soft 

assignment measure, ( )0p c x  instead of the optimal one, ( )Gp c x , is, 

 ( ) ( )( ) ( ) ( )( )0 0
ln2

G GD D p c p c D p c x p c x
β

 ∆ = +  . (32) 

Note also that ( )Gp c  and ( )0p c  are dependent on ( )Gp c x  and ( )0p c x , respectively.  Hence, 

minimizing the conditional relative entropy, ( ) ( )( )0 GD p c x p c x  in (32) minimizes D∆ . 

 

 

Fig. A1.  Convergence of the optimal and a non-optimal soft assignment measures (distributions).
Starting with equal, uniform soft assignments, the optimal soft assignment measure achieves a lower
distortion than the non-optimal soft measure.  At a given system entropy level, I'  the difference in
distortion is shown as ∆D.  The term n is the vector dimension and |C| is the size of the codebook.
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