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ABSTRACT

We present a general rate-distortion based scheduling framework that can accommodate cases where multiple
encoded versions for the same video are available for transmission. Previous work on video scheduling is mostly
focused on those encoding techniques, such as layered coding, which generate only one set of dependent packets.
However, it is sometimes preferred to have a codec that produces redundant video data, where multiple different
decoding paths are possible. Examples of these scenarios are multiple description layered coding and multiple
independently encoded video streams. A new source model called Directed Acyclic HyperGraph (DAHG) is
introduced to describe the relationship between different video data units with multiple decoding paths. Based
on this model, we propose two low-complexity scheduling algorithms: the greedy algorithm and the M-T algo-
rithm. Experiments are made to compare the performance of these algorithms. It is shown that, in the case of
multiple decoding paths, the M-T algorithm outperforms the greedy algorithm by taking into account some of
the transmission possibilities available in the near future before making a decision.

Keywords: multimedia communication, rate-distortion based scheduling, multiple decoding paths, multiple
description layered coding

1. INTRODUCTION

Recent technological developments and the rapid growth of Internet and wireless networks make it feasible
and more attractive to provide network-based real-time video services. These networks are characterized by
variations in bandwidth, delay and packet loss rate, which can severely affect the reproduction quality of the
video delivered through the network. The basic goal of video scheduling is to maximize the playback quality
at the decoder, by adapting to the changing network conditions and application requirements. Previous work
on video scheduling [1–3] is mostly focused on those encoding techniques, such as layered coding, that generate
only one set of dependent packets. However, it is sometimes impractical for the encoder to adapt to the varying
channel conditions on the fly, as on short notice an encoder may have to completely switch between different
modes of operation. Thus, in our proposed framework, we assume that the codec produces redundant video
data, where multiple different decoding paths are possible. The decisions at run-time determine which of those
decoding paths will be followed and what should be transmitted. Examples of these scenarios are multiple
description layered coding [4] and multiple independently encoded video streams [5].

The scheduling problem has been studied for the case of layered coding [1–3]. Chou and Miao [1] proposed
a rate-distortion optimized framework for packet scheduling over a lossy packet network based on Lagrangian
optimization. Miao and Ortega [2, 6] simplified [1] by proposing a greedy solution that explicitly considers the
effects of data dependencies and delay constraints and combines them into a single importance metric. All
these algorithms are based on a simple source model, a Directed Acyclic Graph (DAG), that only considers one
decoding choice (i.e., a single decoding path): a packet can be decoded only when all of its dependent data units
are received and decodable. Implicitly this approach excludes the possibility of having multiple descriptions, in
which several decoding choices are possible based on which descriptions are received at the receiver. Based on a
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Figure 1. Structure of the MDLC codec.

DAG as well, Cheung and Tan introduced a more general formulation that a data unit may be decoded even when
only part of its dependent data units are available and the distortion reduction of the data unit is a function of
its available dependent data units. In this work all possibilities of decoding and delivery scenarios are considered,
which leads to substantial increases in complexity. In our approach we propose a more structured source model
that can consider multiple decoding paths and also allow in practical cases a “pruning” or “merging” of certain
decoding paths, thus enabling a reduced complexity search.

In this paper, we extend our work for multiple description layered coding (MDLC) in [4] to a more general
class of problems where multiple decoding paths exist. This includes applications where error resilience tools
are available or where multiple redundant encoded versions of the input signal can be used for transmission. We
first introduce a new Directed Acyclic HyperGraph (DAHG) to represent the data dependencies and correlation
between different video data units. The expected end-to-end distortion for a group of packets can then be
estimated based on this model. Though we can directly apply the Lagrangian optimized approach in [1] with
the expected distortion expressions we derive, it may be too complex, especially if this system needs to operate
at a resource-constrained server for multiple decoding scenarios at run-time. Following the analysis of the Taylor
expansion of the expected distortion, we propose two low-complexity scheduling techniques: the greedy algorithm
and the M-T algorithm. The proposed scheduling algorithms based on a DAHG take into account the impact of
delay constrained delivery, channel conditions, and data dependencies and correlation between data units. Here,
we use the MDLC in [4] as an example to describe our scheduling algorithms, as well as for our experiments.

This paper is organized as follows. We briefly review the MDLC codec [4] in Section 2. Section 3 describes
the DAHG source model, its associated parameters and the expected end-to-end distortion. In Section 4, we
derive Taylor expansion of the expected distortion and use this to compare the behavior of codecs with only a
single decoding path to that of allowing multiple decoding paths. This leads to our low-complexity scheduling
algorithms in Section 5. The simulation results are presented in Section 6. Finally we conclude our work in
Section 7.

2. MULTIPLE DESCRIPTION LAYERED CODING

The MDLC system we proposed in [4] combines the hierarchical scalability of layered coding (LC) with the
reliability of multiple description coding (MDC). Fig. 1 shows the structure of the MDLC codec. The MDLC
coder uses an MDC encoder to generate two base layer descriptions BL1 and BL2. Then the base layer MDC
decoder in the MDLC encoder module replicates the three possible decoding scenarios at the receiver: both
descriptions received or either one received. If both descriptions are received, the base layer Ŝ is generated, and
the difference between the original video input S and Ŝ is coded with a standard encoder (e.g., MPEG-4 FGS)
into an enhancement layer stream EL0. If only one description is received, the base layer decoder generates
a low quality reproduction, Ŝ1 or Ŝ2, and feeds the differences S − Ŝi, i = 1, 2, into two enhancement layer
encoders separately to create EL1 and EL2. The decoder system is composed of two parts: base layer MDC
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Figure 2. An example DAHG of the MDLC system for a group of I-P frames.

decoder, and enhancement layer switch and decoder. The base layer MDC decoder will generate a reproduction
S̃ which is Ŝ, Ŝ1 or Ŝ2 depending on what was received. The enhancement layer switch then selects which EL
stream to decode given what base layer was received. Thus multiple decoding paths exist for the enhancement
layer, including the case that both BL1 and BL2 are received, and the two cases that either one of them is
received. Finally, the decoded base layer and enhancement layer will be combined together to generate the final
video output. Here there are combinations of transmitted data such that future transmissions may reduce the
importance value of current ones. For example, if we sent both BL1 and BL2, and then if BL1 is received, BL2

is worthless.

3. SOURCE MODEL

3.1. Directed Acyclic Hypergraph (DAHG)

Previous research [1, 2] modelled the source dependencies between a group of data units as a DAG. Though this
graph model leads to a simple and accurate representation for a LC system, it cannot represent more general cases
such as multiple descriptions in a MDC or MDLC system, where multiple different decoding paths are possible.
Here we introduce a new model called Directed Acyclic HyperGraph (DAHG) to present the relationship between
different video data units when multiple encoded versions are available for the same video. A DAHG is similar
to a normal DAG, except that each vertex is composed of a clique which contains a set of nodes and every pair of
nodes is connected by an undirected edge. A clique corresponds to a logical source coding unit that is encoded
into multiple versions. Each version is represented by a node or data unit. There are two kinds of edges in a
DAHG: directed edges indicate a dependence relation, and undirected edges indicate a redundancy relation. A
clique C is called a parent of clique C ′ if there is a directed edge pointing from C to C ′. Then C ′ is called a
child of C. C ′ can be decoded only if all of the input edges from its parents including C are activated, which
means at least one of the nodes of each of its parents must be decodable in order to decode C ′. The nodes
inside a clique have redundancy between them, and they are called siblings of each other with undirected edges
connecting them. We write i ≺ j if object i is a parent of j, i Â j if i is a child of j, and i ∼ j if i and j are
siblings.

Fig. 2 shows an example DAHG for the MDLC system we reviewed in Section 2. Each frame i contains a
base layer clique Ci1 and an enhancement layer clique Ci2. A directed edge is used to represent both the SNR
dependence between Ci1 and Ci2, and the temporal dependence between two cliques of different frames if they are
temporally dependent. Ci1 has two nodes representing the two base layer descriptions BL1 and BL2 respectively.
Similarly, there are three nodes in Ci2 corresponding to EL0, EL1 and EL2. The distortion reduction of Ci2

then depends on which subset of nodes in Ci1 are received.



3.2. Static Parameters Associated with DAHG

Each object in DAHG has several static parameters associated with it . Some of these parameters are constants
measured at the encoding stage. As in [1], each data unit l has a size rl in bytes and a time deadline tl by which
it must arrive at the receiver to be useful for decoding.

However, the distortion reduction of a data unit in the DAHG can take different values depending on the
decoding path in which it will be decoded. We first introduce the concepts of a clique state and a decoding path.
Assume that a clique contains N data units. Since each unit can be either received correctly or not received (due
to loss or because it was not transmitted in the first place), there is a total of 2N possible states for the clique. A
clique state is represented by a length-N binary string s, with each bit indicating the receiving status of a data
unit in the clique. Let bl denote the corresponding bit location of data unit l in s. Therefore, the blth bit of s is
1 (written as s[bl] = 1 in mathematics) if l arrives at the receiver on time and is 0 otherwise. A decoding path
leading to clique C is defined as a particular combination of all C’s parent clique states including both direct or
indirect parents. Strictly speaking, this definition of a decoding path does not work for those cliques that do not
have parents. Once a node in this class of cliques is received at the decoder, it can be decoded independently
regardless of the states of other cliques. Therefore, in order to use the same mathematical notation, we simply
assume there is one virtual decoding path leading to those cliques, and this path always exists. Let QC be the
set of all decoding paths leading to C. Then we can represent the distortion reduction of data unit l in the clique
by a distortion vector dl = [d(1)

l , d
(2)
l , ..., d

(q)
l , ..., d

(|Qc|)
l ], where d

(q)
l is the distortion reduction if l is decoded in

the qth decoding path, and |.| denotes the cardinality of the set.

Though each of the data units in clique C can produce a certain amount of distortion reduction, the total
distortion reduction when more than one data units are received correctly is usually less than the sum of their
respective distortion reductions. We introduce the redundancy matrix IC , to represent the redundancy between
different data units inside the same clique C. IC = [I(s,q)

C ]|SC |×|QC |, where SC is the set of all clique states in C,
and I

(s,q)
C is the redundancy of C when it is in state s, and decoded in the qth decoding path. I

(s,q)
C is given by

I
(s,q)
C =

∑

l∈B
(s)
C

d
(q)
l − d

(s,q)
C (1)

Where B
(s)
C = {l|l ∈ C & s[bl] = 1} represents the set of data units in C that are received in state s, and d

(s,q)
C

is the total distortion reduction of C if it is decoded in state s and in the qth decoding path.

Fig. 3 lists the distortion vectors and redundancy matrices for an I frame of an MDLC example, whose
DAHG model is shown in Fig. 2. The base-layer clique C1 of an I-frame has no parents, and thus the distortion
vector of each base-layer node has only one element db

1 by the assumption of having one virtual decoding path.
The redundancy between BL1 and BL2 exists when both of them are received, i.e., at state sC1 =[1 1]. An
enhancement-layer clique C2 can produce distortion reduction in three different decoding paths corresponding
to sC1 =[1 0], [0 1] and [1 1], respectively. The distortion reduction of each data unit in clique C2 depends on
the decoding path. For example, EL1 can reduce the distortion by de

1 when BL1 is received, i.e. the base-layer
clique C1 is at state [1 0] or [1 1]. However, if only BL2 is received at state sC1 =[0 1], EL1 cannot be decoded
and therefore the distortion reduction of EL1 in this decoding path is 0. The redundancy matrix of clique C2

is a 4 × 3 matrix, with each component representing the redundancy of C2 at a certain state sC2 and a given
decoding path based on state sC1. The DAHG model associated with the distortion-redundancy representation
can also be applied in the general setting, such as error resilience, for which we can add a second node in each
clique with size zero but having certain distortion reduction if previous frames are received.

In a packet-switching network, all the data are packetized before transmission. A data unit can be either
put into one packet or split into several packets. When splitting happens, the distortion related parameters
(distortion vector and redundancy matrix) are assigned to each packet differently according to their coding
methods. In the case that a data unit can only be decoded when all its packets are received, for example the
base layer node, the scheduling algorithm will treat, as a whole, as if it was not split at all. On the other hand,
a data unit may be coded as an embedded stream that can be truncated into any number of bits within this
stream, to provide partial distortion reduction proportional to the number of bits decoded for this unit. The



 

 

MDLC example: A base-layer clique C1 contains data units BL1 and BL2, and an enhancement-layer 
clique C2 contains EL1, EL2, and EL0. The following assumptions are made on the coding algorithm: 

• The two descriptions are symmetric, i.e., the distortion values for (BL1, EL1) and (BL2, EL2) are 
the same. 

• The cross-description decoding of EL2 given BL1 or EL1 given BL2 is ignored since the 
information added by the cross enhancement layer is very small. 

• The total distortion reduction provided by the following three cases is the same: (1) BL1 and EL1, 
(2) BL2 and EL2, and (3) BL1, BL2 and EL0. 

Then we can assign the following parameters to each clique and data unit. 
 
(1) Base layer: Clique state 1 1 2[ , ]Cs BL BL=  

Distortion vector: 1 2 1[ ]b
BL BL d= =d d , 

Redundancy matrix: 1 1 1 0( [1 1]) [2 ]b b
C CI s d d= = − , 

Where 1
bd  is the base-layer side distortion, and 0

bd  is the base-layer center distortion when both BL1 and 

BL2 are received. 
 

(2) Enhancement layer: Clique state 2 1 2 0[ , , ]Cs EL EL EL=  

Distortion vector: each column describes a different decoding path depending on the state of C1 

 sC1 = [1 0] sC1 = [0 1] sC1 = [1 1] 
dEL1 1

ed  0 0
ed  

dEL2 0 1
ed  0

ed  

dEL0 0
ed /2 0

ed /2 0
ed  

 

Redundancy matrix:  
IC2 sC1 = [1 0] sC1 = [0 1] sC1 = [1 1] 

2 [1 1 0]Cs =  0 0 0
ed  

2 [1 0 1]Cs =  
0
ed /2 0 0

ed  

2 [0 1 1]Cs =  0 0
ed /2 0

ed  

2 [1 1 1]Cs =  
0
ed /2 0

ed /2 2 0
ed  

Figure 3. The distortion related quantities assigned for the I-frame of an MDLC example, whose DAHG model is shown
in Fig. 2.

enhancement layer in the FGS coding is such an example. In this case, a node contains several packets, and each
packet can only be decoded if all its dependent packets in the node are decodable. We then assign each packet p

a distortion ratio ρp = 1
|QC |

∑
q∈QC

d(q)
p

d
(q)
l

, where d
(q)
p is the partial distortion reduction contributed by packet p in

the qth decoding path, and d
(q)
l is the total distortion reduction of data unit l. Though the actual ratio between

d
(q)
p and d

(q)
l may vary slightly with different decoding paths, we use the average ratio as an approximation for

simplicity.

3.3. Expected End-to-End Distortion

Suppose we wish to transmit a group of L packets whose time deadlines fall in a time window. The relations
between these packets are specified by a DAHG model. We now try to estimate the expected end-to-end distortion
of this group of packets (GOPkt) when given a vector of packet loss probability (PLP) providing a loss probability
for each packet in the group. Note that a packet is considered lost if it is either lost or arrives at the decoder
too late to be played. At a given transmission time, we define the “transmission state” as the PLP vector which
accounts for the transmission history of the GOPkt up to the current time under the past channel conditions. Let
εl be the PLP of packet l ∈ {1, ..., L} and let ε = [ε1, ..., εL] be the real-time transmission state. The expression
of the expected distortion in a DAHG differs from that in [1] mainly in two ways: (1) multiple decoding paths in



a DAHG vs. single decoding path in a DAG, and (2) multiple decodable clique states in a DAHG vs. 0/1 events
of the data unit (i.e., it is either decodable or not) in a DAG. The incrementally additive distortion model of the
DAG holds for cliques in the DAHG, but not for nodes any more.

To help us write an expression of the expected distortion, we first derive some related probabilities. The
probability of occurrence of clique state s is given by

p
(s)
C =

∏

l∈B
(s)
C

(1− εl)
∏

l∈B̄
(s)
C

εl (2)

where B
(s)
C = {l|l ∈ C & s[bl] = 1}, and B̄

(s)
C = {l|l ∈ C & s[bl] = 0}. Recall that a decoding path leading to

clique C is defined by a particular combination of the clique states of all its parents. Thus the probability of
occurrence of decoding path q can be written in terms of the probabilities of those clique states as

p
(q)
C =

∏

C′≺C,sC′∈q

p
(sC′ )
C =

∏

l∈A
(q)
C

(1− εl)
∏

l∈Ā
(q)
C

εl (3)

where A
(q)
C =

⋃
C′≺C,sC′∈q B

(sC′ )
C , and Ā

(q)
C =

⋃
C′≺C,sC′∈q B̄

(sC′ )
C . We now can write the expected distortion as

a function of the transmission state

D(ε) = D0 −
∑

C

∑

q∈QC

p
(q)
C (

∑

s∈SC

p
(s)
C d

(s,q)
C ) (4)

where D0 is the distortion of the GOPkt if no packets are decoded, d
(s,q)
C =

∑
l∈B

(s)
C

d
(q)
l − I

(s,q)
C directly derived

from (1), and p
(q)
C and p

(s)
C are defined in (3) and (2) respectively. Theoretically the number of decoding paths

may increase exponentially in the number of cliques preceding clique C. However, in practical pre-encoded
applications, a number of decoding paths that lead to poor quality solutions can be discarded, or subsets of
decoding paths that lead to the same reconstruction can be grouped together. This enables (4) to be tractable,
as it can be simplified according to specific coding applications.

In the previous derivation of the expected distortion, we simply assume a one-to-one mapping between data
units and packets. However, in general a data unit may be split into multiple packets as described in Section
3.2. In this scenario we express the PLP of data unit l, εl, as a function of the PLPs of its containing packets,
εp, and use it in the equations (2) - (4). For the first case, when l can be decoded only when all its packets are
received, it is straightforward to calculate εl as

εl = 1−
∏

p∈l

(1− εp). (5)

εl is somewhat more complicated to express in the second case, when l is coded in an embedded stream. We
assume that all the packets of l must be received in order for other data units, who depend on l for decoding,
to be decodable. Therefore, εl in (3) to compute p

(q)
C is calculated in the same way as (5). However, in terms of

distortion, a subset of the packets in l can still achieve partial distortion reduction. Thus εl in (2), which is used
again in (4), is given by

εl = 1−
∑

p∈l

ρp

∏

p′¹p

(1− εp′) (6)

In the ensuing discussions we simply assume one to one mapping between data units and packets unless it is
explicitly noted. Extension to the second case can be easily achieved using (6), based on the previous discussion.

4. ANALYSIS BASED ON TAYLOR EXPANSION OF EXPECTED DISTORTION

The action of transmitting packets at each transmission time causes a state transition from one state ε1 to another
state ε2. Since the expected distortion D is a function of ε, the state transition will change D correspondingly.



The goal of the scheduling algorithm is essentially to find an optimal transmission schedule to trigger a series
of state transitions such that D at the final state is minimized given the channel conditions. Note that the
ACK/NAK feedback from the receiver will cause state transitions as well. In this section, we apply the Taylor
expansion to D in terms of ε to reveal the characteristics of state transitions for different coding scenarios. This
will be used to develop the scheduling algorithm proposed in Section 5.

A Taylor expansion of D at the current state ε̃ is given by

D(ε) =
∞∑

k=0

[ 1
k!

(∆ε · ∇ε′)kD(ε′)]
ε′=ε̃

(7)

= D(ε̃) +
∑

i

ai(εi − ε̃i) +
∑

i,j

aij(εi − ε̃i)(εj − ε̃j) + . . . (8)

where ai = ∂D
∂εi
|εi=ε̃i

is the first-order partial derivative of D with respect to εi, aij = ∂2D
∂εi∂εj

|εi=ε̃i,εj=ε̃j
is the

second-order mixed partial derivative, and so on. Note that D depends linearly on ε, and (8) only contains the
linear terms, i.e.

∂nD

∂εm1
i1

, · · · , ∂εmk
ik

= 0, if there exists a mj ≥ 2 for 1 ≤ j ≤ k.

ai indicates the importance of packet i to the overall distortion at the current transmission state, based on
the packet relationship in the group of packets (including dependency or redundancy) and the past transmission
history of all related packets. However, it does not take into account the possibility of any future transmissions
of other packets. The second or higher-order terms take effect when there are more than one packets whose
PLPs have changed since the current state. They also show that a future change of the PLP of a packet through
transmissions or receiving ACK/NAK may affect the current distortion benefit of its related packet. These effects
show different characteristics depending on whether the coding applications allow only a single decoding path or
multiple decoding paths.

4.1. Characteristics of Single Decoding Path

For coding applications with only a single decoding path, the expected end-to-end distortion can be simplified
from (4) as

D(ε) = D0 −
∑

l

dl

∏

l′¹l

(1− εl′) (9)

where
∏

l′¹l(1− εl′) is the probability that l is decodable. l′ ¹ l refers to the set of data units that must arrive
at the receiver for l to be decoded. We can then derive its partial derivatives as

∂D

∂εi
=

∑

lºi

dl

∏

l′¹l,l′ 6=i

(1− εl′) (10)

∂2D

∂εi∂εj
= −

∑

lºi,j

dl

∏

l′¹l,l′ 6=i,j

(1− εl′) (11)

· · ·

The higher-order derivatives can be derived similarly. It is easy to see that those partial derivatives lead to the
following property:

Property 4.1. ∂nD
∂εi1

,··· ,∂εin
≥ 0 if n is odd, ∂nD

∂εi1
,··· ,∂εin

≤ 0 if n is even.

To understand this property, we consider (10) and (11) more closely. The right term in (10) can be written in
two terms f1+f2, where f1 = di

∏
l′≺i(1− εl′) shows the original distortion of packet i weighted by the probability

of receiving all its parents, and f2 =
∑

lÂi dl

∏
l′¹l,l′ 6=i(1− εl′) indicates the importance of packet i to its children

packets. ∂D
∂εi

≥ 0 holds always, i.e., if packet i arrives it can only reduce the overall distortion. Similarly, the
right term in (11) can also be written in two terms −di

∏
l′≺i,l′ 6=j(1− εl′) and −∑

lÂi,lºj dl

∏
l′¹l,l′ 6=i,j(1− εl′).



These two terms together with the property ∂D
∂εi∂εj

≤ 0 show that the importance of packet i increases when the
probability of receiving its parent or children packets increases. In summary, Property 4.1 shows that, in the
case of single decoding path, the arrival of one packet at the receiver can only increase, or at least not change
the importance of the other packets.

4.2. Characteristics of Multiple Decoding Paths
For coding applications allowing multiple decoding paths, the expected end-to-end distortion is given in (4). We
start by deriving its first-order derivative

∂D

∂εi
= f1 + f2 + f3 + f4, with (12)

f1 =
∑

q∈QC

p
(q)
C [ ∑

s∈SC ,i∈B
(s)
C

d
(s,q)
C

∏

l∈B
(s)
C ,l 6=i

(1− εl)
∏

l∈B̄
(s)
C

εl] (13)

f2 = −
∑

q∈QC

p
(q)
C [ ∑

s∈SC ,i∈B̄
(s)
C

d
(s,q)
C

∏

l∈B
(s)
C

(1− εl)
∏

l∈B̄
(s)
C ,l 6=i

εl] (14)

f3 =
∑

CÂCi

∑

q∈QC ,i∈A
(q)
C

[ ∏

l∈A
(q)
C ,l 6=i

(1− εl)
∏

l∈Ā
(q)
C

εl] · [
∑

s∈SC

p
(s)
C d

(s,q)
C ] (15)

f4 = −
∑

CÂCi

∑

q∈QC ,i∈Ā
(q)
C

[ ∏

l∈A
(q)
C

(1− εl)
∏

l∈Ā
(q)
C ,l 6=i

εl] · [
∑

s∈SC

p
(s)
C d

(s,q)
C ] (16)

where Ci represents the clique that contains packet i. The above four terms have different meanings: f1 indicates
the packet importance due to its own distortion reduction; f2 shows the distortion effect of receiving i when its
sibling packets have been received; f3 shows the importance of i to its children cliques in the decoding paths
which require i to be received; and f4 presents the effect of receiving i to its children cliques in the remaining
decoding paths which do not require i to be received. The signs of these terms indicate whether it is desirable
to transmit i or not when different packets have been received at the decoder in the past. The sign of ∂D

∂εi
in this

case cannot be easily derived directly from the above equations. However, in practical applications, receiving a
packet will definitely not increase the overall distortion. If this were the case, one could choose not to decode
this packet and D would not change. Therefore, ∂D

∂εi
≥ 0 for any i.

It is more complicated to derive a general equation for the second-order mixed partial derivatives from (4).
Instead, we look at a particular MDLC example shown in Fig. 3. For simplicity, we associate each packet
BL1, BL2, EL1, EL2 and EL0 with a tag from 1 to 5 in this order. Assume the current state ε̃ = [1, · · · , 1]
corresponds to the case where no packet has been sent. Consider two example second-order derivatives at ε̃.
(1) ∂D

∂ε1∂ε2
= IC1(1, 1) > 0, since BL1 and BL2 have redundancy with each other;

(2) ∂D
∂ε1∂ε3

= −de
1 < 0, since BL2 is dependent on BL1 for decoding.

Different from that of single decoding path, ∂D
∂εi∂εj

does not have the same sign for any i and j. We can derive
the same conclusion for the higher-order derivatives, which is omitted in the paper. To summarize, we have the
following property:

Property 4.2. ∂D
∂εi
≥ 0, ∂nD

∂εi1
,··· ,∂εin

(n > 1) can be either nonnegative or nonpositive.

The property shows that, when there are multiple decoding paths, due to the redundancy between packets
which affects the high-order terms, the future transmission of packets may decrease the current importance value
of a packet that contains redundant information.

5. SCHEDULING ALGORITHMS WITH DAHG
5.1. Problem Formulation
The goal of scheduling is to minimize the playback distortion for a streaming session in a lossy packet network,
by adapting to the network conditions and application requirements. Given the distortion expressed in (4),



we could determine the optimal transmission policy using the Lagrangian optimized approach in [1]. However,
the complexity of this approach increases greatly with the number of possible decoding paths. In this paper,
we propose low-complexity scheduling techniques that are designed for cases when multiple decoding paths are
possible, and where reduced complexity is important in order to make the decision among those multiple decoding
scenarios at run-time.

Given a set of candidate packets G in the transmission time window, we define a schedule ω as the transmission
order of all these packets, which specifies whether and when to send each packet. We simply assume at each
transmission time only one packet will be sent. Clearly, the overall redundancy of the selected subset of packets
to be sent should match the channel behavior. The delivery order of packets has an important impact on the
final playback distortion, due to the delay constraint and dependencies between packets. The scheduling problem
can be stated as follows:

Formula 5.1. Given a set of packets G and a channel model (channel bandwidth, packet loss rate, RTT and
start-up delay), find the optimal schedule ω∗ ∈ Ω, such that the expected end-to-end distortion D is minimized,
where Ω is the set containing all possible schedules under the rate constraints and delay requirements.

Note that G will change over time, as packets which have been transmitted or expired (beyond the packet’s
time deadline) are removed, and new packets just becoming valid for transmission or those lost packets for
retransmission are added. Therefore, ω should be re-optimized after sending each packet to take into account
the feedback information and the possible change of G since the previous transmission. That means we are only
interested in the first packet in ω at any given transmission time. This property was explored in [2, 6], and is
used as well in our proposed low-complexity scheduling algorithms.

5.2. Greedy Algorithm

Since the first packet in ω is used at any given time, instead of determining the complete transmission policy for
each packet in G over all possible transmission opportunities (e.g. as used in [1, 5]), we use a greedy approach
to select the currently most important packet from G to send. Our proposed greedy approach is based on a
prior channel model, the past transmission history of the packets and the feedback from the receiver. Previous
research work [2, 6] has proposed similar solutions for single-decoding-path codecs. Here, we derive the greedy
algorithm for multiple-decoding-path codecs directly from the Taylor expansion of the expected distortion.

Let ωi,0 be a transmission schedule such that packet i is not transmitted at the current time t̃, and let ωi,1

be the same transmission schedule as ωi,0 except that packet i will be transmitted at t̃. Sending packet i at t̃
induces a state transition from ε(ωi,0) to ε(ωi,1), and thus leads to a distortion reduction by

∆D
(t̃)
i = D(ε(ωi,0))−D(ε(ωi,1)) = ai(εi,0 − εi,1) (17)

derived from (8), where εi,0 and εi,1 are the PLP of packet i given the schedule ωi,0 or ωi,1, respectively. ∆D
(t̃)
i

indicates the importance of sending packet i at the current time t̃. Assume that a packet will be sent only if it
has not been sent or if a NAK from the receiver has arrived. If no further transmission of packet i is considered,
the right hand side of (17) becomes ai(1−ε), where ε is the current channel packet loss rate. However there could
be possible retransmissions for packet i before its time deadline ti. To take into account the effects of different
deadlines for each frame as in [2], we approximate εi,0 as εmi , where mi is the number of possible retransmissions
given by

mi = (ti − t̃)/RTT. (18)

εi,1 then becomes εmi+1. Ignoring the constant term (1− ε) and taking into account the packet size ri, we have
the metric

ci = εmi
ai

ri
(19)

for each packet and select the one with the largest ci to send. Note that ai is calculated at the current state
with the assumption that there are no future transmissions of other packets. Table 1 summarizes the algorithm.



Algorithm 1 (Greedy algorithm)

1. compute (19) for each packet i in G
2. Find the largest ci, say j (i.e. cj ≥ ci for any i 6= j)
3. send packet j

Table 1. Greedy algorithm

5.3. M-T Algorithm
The main problem for the greedy algorithm is that it does not take into account the possibility of any future
transmissions of other packets. As Property 4.2 points out that, for applications with multiple decoding paths, the
future transmission of a packet may either increase or decrease the importance value of another packet depending
on their coding relation. Thus, the further transmission probabilities of packets have increased effects, through
the high-order terms of the Taylor expansion, on the decision at the current transmission opportunity if an
optimal scheduling algorithm is used. In this section, we propose to use the M-algorithm [7] with a look-ahead
window T , which we simply called the M-T algorithm. This algorithm can be regarded as an intermediate step
between the greedy algorithm, which only considers the local time step, and the Lagrangian optimal algorithm,
which optimizes the complete transmission policy for all the future transmission opportunities. In addition to the
trade-off consideration between algorithm performance and complexity, we also avoid to make the transmission
decisions for the future time too far away, because the information used to make decisions may change along the
time (such as the group of packets G and feedback information), and therefore the decisions may change as well.

In the M-T algorithm, we first introduce a look-ahead time window T to take into account the possible future
transmissions, and implicitly account for the high-order terms in the expansion. T is usually small and that
means we only consider the effects of the possible transmissions in the near future on the current decision. When
the GOPkt is relatively large, it is intractable to perform an exhaustive search for the best schedule even over
a short time window T . Thus, we adopt the M-algorithm which is initially developed as a sub-optimal search
technique through a trellis. At each step, only M best schedules are retained as survivors and carried over to
next step. Starting from these states in the next step, we repeat the same search process and again only the
best M are retained as survivors, while the rest are eliminated. This process repeats over the time window until
time T , where we select the best one as our schedule.

Now we define the cumulative metric used in the algorithm for schedule selection. Without loss of generality,
we label the current time step as time 0. Let ω = [ω0, · · · , ωT−1] be a length-T vector to represent a candidate
transmission schedule of the look-ahead window, and ωt is the index of the packet that is to be sent at time t

under the schedule ω. Let ε(t)(ω) be the transmission state at time t for a given ω, and ε
(t)
i (ω) be the PLP of

packet i at state ε(t)(ω). (17) gives the distortion reduction of sending packet i at a single time step. Then the
cumulative distortion reduction in the period of time t is given by

∆D(ω, t) =
t−1∑
τ=0

∆D(τ)
ωτ

. (20)

Similar to the metric used in the greedy algorithm, we can define the cumulative metric at time t as

cω(t) = [
t−1∑
τ=0

εmωτ a(τ)
ωτ
]/

t−1∑
τ=0

rωτ (21)

Where a
(τ)
ωτ is the first-order partial derivative of D with respect to packet ωτ at state ε(τ)(ω). Table 2 summarizes

the algorithm.

6. EXPERIMENTAL RESULTS

We evaluate the rate-distortion performance for different scheduling algorithms based on the MDLC example.
In this simulation, we first generate an i.i.d. Gaussian sequence zk with mean zero and variance one. We



Algorithm 2 (M-T algorithm)

1. Initialize: G̃ = G

2. compute (19) for each packet i in G̃
3. choose the set of packets {l1, · · · , lM} with the M largest ci

4. update Ω(0) = {ω(0)
1 , · · · , ω

(0)
M }, ω

(0)
i = [li, 0, · · · , 0]T×1

5. for t = 1 to T − 1
6. for i = 1 to M

7. update G̃ by removing packets having been expired
8. compute (21) for each packet j in G̃, where ω = [ω(t−1)

i (0, · · · , t− 1), j, 0, · · · , 0]
9. choose the M largest cω(t) as candidate schedule set Ω(t)

i

10. end
11. update Ω(t) with the M largest cω(t) from candidate schedule sets Ω(t)

1 , · · · , Ω(t)
M

12. end
13. ω∗ = argmaxω∈Ω(T−1) [cω(T − 1)]
14. send the first packet in ω∗

Table 2. M-T algorithm

split the sequence into even and odd sequences, quantize them with both fine and coarse quantizers, and then
pair finely quantized even samples and coarsely quantized odd samples, or coarsely quantized even samples and
finely quantized odd samples into two base layer descriptions, respectively. Each base layer description of a pair
[z(2k), z(2k + 1)] is put into one packet, and the two samples are considered as a single unit with the same
delivery deadline. Three enhancement layer descriptions are created as Fig. 1 with a finer quantization step. We
use the Lloyd-max algorithm to optimize the quantization parameter, and quantize the sequence. The entropy of
the quantized symbol is used to approximate the rate required to code the quantized sequence. The rate for each
BL1/BL2 is 4.9346, while the rate for EL0 is 4.6802, and EL1/EL2 6.1642. The distortion related quantities
are assigned in the same way as the example shown in Fig. 3, with the values given in table 3.

Table 3. Distortion values for Gaussian coded sequence (symbol notation shown in Fig. 3).

db
0 db

1 de
0 de

1

0.98781 0.81168 0.01215 0.18828

Fig. 4 shows the SNR of the reconstructed sequence with various channel bandwidths when different schedul-
ing algorithms are used. The Lagrangian approach [1] performs best especially in the low-rate range. The M-T
algorithm outperforms the greedy algorithm between 0.5 to 2 dB. The main problem for the Lagrangian approach
is its high computational complexity that grows exponentially in the number of transmission opportunities N .
The performance of this approach drops quickly with a smaller N . Here we show the experimental results at
N = 12, which is among the best performance we got in our implementation. The Lagrange multiplier λ is
fixed for one run of the complete sequence. The average rate increases as λ decreases. However, the number
of packets selected at each transmission opportunity may vary, resulting in a variable instant transmission rate
during the streaming. For L packets in a GOPkt, the complexity for greedy algorithm is O(L), while that of the
M-T algorithm is O(LMT ). Fig. 5 compares the performance of greedy algorithm and M-T algorithm under
various channel packet loss rates. Since the given channel bandwidth is more than enough to transmit any single
description to the decoder in an error-free channel, both algorithms achieve the highest SNR when ε = 0. As
ε increases M-T algorithm performs much better than greedy algorithm. And when the channel becomes even
worse at about 30% loss of the time, these two algorithms behave closely.
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7. CONCLUSIONS

In this paper we have extended recent work on rate-distortion based video scheduling to the general case where
multiple decoding paths are possible. We proposed a new source model called Directed Acyclic Hypergraph
(DAHG) to describe the decoding dependence and redundancy between different data units. Based on this
model, we have proposed two low-complexity scheduling algorithms, i.e., the greedy algorithm and the M-T
algorithm. The preliminary results show that the M-T algorithm outperforms the greedy algorithm by taking
into account some of the possible future transmissions.
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