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ABSTRACT

Copy number alterations (CNA) affecting small portions
of chromosomes are difficult to identify. Advances in mi-
croarray technology now allow very high resolution scans
of large cohorts of samples but at the price of severe noise
degradation. Our proposed genome alteration detection
algorithm (GADA) has been shown to be a highly accurate
and efficient approach to analyze a single array sample.
In this paper, the sparse Bayesian learning (SBL) used in
GADA is extended to find CNA on multiple samples that
share breakpoint positions but may have different magni-
tude of alteration. Our model is especially well suited to
analyze sample replicates, i.e., multiple arrays from the
same specimen. Our results show that replicates greatly
improve the accuracy and robustness in detection. In some
cases, a single replicate sample offers an accuracy equiv-
alent to a 2-fold increase in the signal to noise ratio, while
reducing by up to a 50% the detection of false CNA caused
by outliers. The computational cost of the algorithm is es-
sentially linear O(NM) in the number of the microarray
probes M and samples N . In conclusion, the multiple
sample GADA (N-GADA) presented here appears to be
a promising tool for finely locating small CNAs that are
shared across multiple samples.

1. INTRODUCTION

Copy number alterations (CNA) represent deviations from
the normal number of DNA copies generally found in the
genome of some organism (e.g., two for diploid cells).
In humans, these alterations are known to be present in
both normal and diseased cells. Examples include: chro-
mosome 21 trisomy in Down’s syndrome, amplification
of MYCN proto-oncogene in Neuroblastoma, and loss of
RB tumor repressor in Retinoblastoma. Recent advances
in the microarray technology enabling high resolution ge-
nomic scans of large cohort of individuals have revealed
presence of short CNAs that are repeated across normal
genomes (i.e., polymorphic CNAs) [1] constituting a com-
pletely new source of unstudied natural genetic variation.
Small alterations are the most difficult to detect and the
ones most likely to lead to false detections because of se-
vere noise degradation. A joint analysis of many samples
would undoubtedly increase the performance in detecting

small CNAs, but nearly all currently available algorithms
only analyze one sample at a time.

In previous work [2, 3] we developed a copy number
detection approach called GADA (genome alteration de-
tection algorithm) that achieved excellent performance in
single-sample CNA detection. Compared to other state-
of-the-art methods, using standard evaluation datasets and
benchmarks [4], GADA obtained the highest accuracy and
was at least 100 times faster. GADA is based on a com-
pact linear algebra representation of the array probe inten-
sities as a piece-wise constant (PWC) vector and makes
use of a two step detection approach. In the first step,
sparse Bayesian learning (SBL [5, 6]) identifies all poten-
tially interesting breakpoints that delimitate the CNA. The
second step uses a backward elimination (BE) procedure
to statistically rank the identified breakpoints, allowing a
flexible control of the false discovery rate (FDR).

In this paper we extend GADA to detect CNA across
multiple samples (N-GADA). The method is especially
suited to detect CNAs from sample replicates, since the
underlying breakpoint locations should be the same, but
the mean magnitude of the array probe measurements may
be different. These differences may be due to sample con-
tamination, amount of material, or other uncontrolled ef-
fects that cannot be corrected. Compared to the large num-
ber of algorithms proposed for single-sample CNA analy-
sis, there are very few approaches dealing with the multi-
ple sample problem [7, 8, 9, 10]. Two of them [7, 8] are
post-processing techniques to refine the results obtained
by a given single-sample algorithm and do not propose a
joint model. The other two approaches [9, 10] propose
models that only encourage overlap among CNAs across
samples. In contrast, our approach is unique in the sense
that it encourages recurrent breakpoint positions. More
precisely, the SBL hierarchical prior is modified to en-
courage the selection of breakpoints delimiting CNA at
similar positions across the samples under analysis. We
hypothesize that this may be a more powerful model when
there is underlying evidence that the alterations start and
end at recurrent positions, as it is the case of sample repli-
cates and possibly of CNA polymorphisms. In order to
evaluate N-GADA we used simulation and real datasets of
pairs of replicate samples with the same underlying copy
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Figure 1. Graphical representation of the observation
model (1) using a chromosome section with 2 alterations
as an example. The underlying mean hybridization inten-
sity xm is piece-wise constant (PWC) and discrete valued
depending on the number of DNA copies. The observed
hybridization intensities ym do not follow this expected
behavior due to degradation by hybridization noise ε m.

number profile. Our results show that replicates greatly
improve the accuracy and robustness of detection while
maintaining a very good computational efficiency.

The paper is structured as follows. The extended N-
GADA approach and its implementation are presented in
Section 2. Section 3 is devoted to presenting the results,
and conclusions are discussed in Section 4.

2. N-GADA FOR MULTIPLE SAMPLES

In this section we extend the GADA approach [3] so that
it can handle multiple samples. First, we review the PWC
representation for genome CNA we introduced in [2], which
is a maximally sparse representation in terms of the num-
ber of breakpoints. Second, we extend the SBL hierarchi-
cal prior to model sparse breakpoints occurring at similar
locations across multiple samples; and we briefly describe
how to efficiently fit the resulting model using the EM
algorithm [11]. Finally, we detail the new multiple sam-
ple implementation of the BE procedure to control for the
false discovery rate (FDR).

2.1. PWC representation

Most CNA detection algorithms model microarray mea-
surements as follows:

ym = xm + εm, (1)

where ym are the log-intensities of each probe m mea-
sured in the microarray, xm represents the copy number
effect, and εm a zero-mean hybridization noise. In Fig-
ure 1, we can observe that xm is piece-wise constant (PWC)
and discrete valued (DIS). These two characteristics are
the consequence of every piece of the genome being repre-
sented in a cell by an integer number of DNA strands (usu-
ally two copies for the human autosome). Thus, the probe
hybridization intensities ym fluctuate around a mean value
xm that depends on the underlying number of DNA copies.

Using vector notation, the model of (1) can be written
as:

y = x + ε = Fw + ε, (2)

where x has been replaced by its representation in terms
of the PWC basis, Fw, where the columns of F are nor-
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Figure 2. Step vector fi with a breakpoint between probe
i and i + 1. The step vectors have been normalized to
have unit norm,

∑M
m=1 (fi (m))2 = 1, and average zero

for i > 0,
∑M

m=1 (fi (m)) = 0.

malized step vectors f i as in Figure 2. With this repre-
sentation, any PWC vector x with K breakpoints (I =
{i1, . . . , iK}) can be compactly represented by a linear
combination of K step vectors f i plus a constant vector
f0 = 1/

√
M(1, . . . , 1). The number of copy number

changes is very small compared to the number of probes,
K << M , so we can can exploit these sparseness proper-
ties to infer the most likely copy number alterations.

2.2. Sparse Bayesian Learning for multiple samples

CNA detection can be formulated using SBL as the prob-
lem of finding the maximum a posteriori (MAP) estimate [3]:

ŵMAP = arg max
w

p (w|y) = argmax
w

p (y|w) p (w)

= arg min
w

− log p (y|w) − log p (w) (3)

where the observation model p (y|w) specifies a goodness
of fit measure and the prior distribution for the weights
p (w) specifies the sparseness constraints. Here, we ex-
tend our previously proposed model [3] to multiple sam-
ples. Assuming noise to be normal and independent across
probes m and samples n, for a given underlying CNA pro-
file for each sample, xn = Fwn, the observation model
would be:

p
(
y1, . . . , yN |w1, . . . , wN

)
=

N∏
n=1

N
(
Fwn, σ2

nI
)

(4)

and the prior distribution for the weights is specified as a
hierarchical prior:

p
(
w1, . . . , wN |α

)
=

N∏
n=1

M−1∏
m=1

N
(
wn

m|0, α−1
m

)
(5)

where α is a vector of hyperparameters that are distributed
according to a gamma distribution:

p (α) =
M−1∏
m=1

Γ (αm|a, b). (6)

Notice that here the α hyperparameters are shared across
multiple samples. This is in contrast to the application of
SBL in 1-GADA, which implies that a different set of a
hyperparameters is used for each sample. The role of the
hyperparameterαm is to control the likelihood of the pres-
ence of a breakpoint at a particular position of the genome

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 26, 2008 at 14:39 from IEEE Xplore.  Restrictions apply.



but without imposing any restriction on the actual magni-
tude of the breakpoint wn

m and its corresponding CNA.
The mathematical procedures to fit this multiple sam-

ple model and to infer the CNA breakpoints are basically
the same as in 1-GADA [3]. We also use the EM al-
gorithm, exploiting the conjugacy properties between the
gamma and normal distributions, as well as the properties
of our PWC representation (i.e., the matrix structure for
F ). The E-step is the same as before but repeated for each
of the samples; i.e., finding the posterior distribution given
the hyperparameters and the observation:

p
(
wn|yn, α, σ2

n

)
= N (wn|µn,Σn) (7)

Σn =
(
σ−2

n F tF + diag(α)
)−1

(8)

µn = σ−2
n ΣnF tyn (9)

The M-step, on the other hand, takes all the samples into
account in computing the α hyperparameters:

α̂m =
2a + N∑

n

(
Σn

mm + (µn
m)2

)
+ 2b

(10)

The EM algorithm requires very few iterations to converge
in our experiments; and all required operations in each
iteration can be performed in a linear number of steps
O (NM). This is clear for the M-step, and we already
demonstrated in [3] that the operations required to com-
pute µ (9) and the diagonal of Σ (8) is O(M) for each
sample, since we can exploit the fact that (F tF )−1 is a
tridiagonal matrix.

2.3. Backward Elimination for multiple samples

In our previous work [3] the statistical significances of
breakpoints returned by SBL were ranked by a simple
BE procedure using a standard linear regression model.
Here, this is done within the SBL algorithm but taking
into account the statistical evidence observed across mul-
tiple samples. For a single sample, both approaches are
essentially equivalent; but the new approach can exploit
better the information gathered by SBL about the multiple
samples (i.e., the α parameters). In the new procedure,
after the SBL has converged for the first time to a set of
breakpoints with high sensitivity, each breakpoint is sta-
tistically scored as

tm =

√∑
n

µn
m

2

Σn
mm

(11)

and the lowest scoring breakpoint is recursively eliminated
from the model. Each elimination is carried out by set-
ting wm = 0 and repeating the EM algorithm described
in Section 2.2. The sensitivity vs. FDR trade-off is con-
trolled by stopping the procedure when all the remaining
breakpoints have a score higher than a critical value T .

3. RESULTS

In this section we evaluate the proposed N-GADA algo-
rithm for the case where N = 2 replicates are available,

but results extend to other N. We employed the artificial
dataset conceived by Willenbrock [4], which consists of
500 samples of 20 chromosomes with 100 probes where
the underlying CNA are known and the noise is i.i.d. Gaussian.
We generated the sample replicates using the same ground
truth but with an independent new noise realization ε ∼
N (0, σ2I), with uniformly distributed noise power σ ∼
U(0.1, 0.2) and tissue mixture p ∼ U(0.3, 0.7) parame-
ters. These kind of simulations [4] may not reflect all
possible scenarios, but constitute the most widely used
method for quantitative evaluation.

These 2 × 500 samples are used to compare the per-
formance of N-GADA to two other alternatives (Figure 3).
The algorithms that combine both samples, i.e., 2-GADA
and naive averaging, greatly improve the accuracy in break-
point detection in comparison to the case in which no
replicates are available (1-GADA). Roughly, a sample repli-
cate would be equivalent to a two fold increase of the
signal to noise ratio on a single sample. The results ob-
tained by naive averaging are slightly worse than those
of the 2-GADA approach; because the former assumes
that breakpoints and segment reconstruction levels are the
same while in the latter only the breakpoints are the same.
On this simulation dataset, the reconstruction levels for
each sample in the pair change depending on the tissue
mixture parameter p.
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Figure 3. PROC operational curves for the mean sensi-
tivity vs. FDR in detecting real copy number changes at
their exact location. Black curve consist of applying 1-
GADA to each of the two samples independently. Red
curve combines the two samples by a weighted average
into a single sample which is analyzed by 1-GADA. Blue
curve is the proposed M-GADA approach. The bench-
mark metrics sensitivity and FDR are the same as origi-
nally defined in [4] in terms of CNA breakpoint detection.

In order to further assess the performance in terms of
robustness, we randomly introduced single probe outliers
(extreme values) in only one of the samples in each pair in
a simulation dataset. Ideally, we would like to avoid false
detections that are only supported by one of the samples.
The single-sample algorithm and the one based on sample
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averaging cannot distinguish these outliers and nearly all
of them will cause false detection. On the other hand, 2-
GADA reduces false detection caused by these outliers by
about 50%.

Figure 4. Visual representation of the detected CNA using
different algorithms and settings (columns) on two repli-
cates (S1 and S2) of a normal human sample (NA01416)
analyzed using Affymetrix 500K (Nsp) platform. Col-
umns are divided into three sections, each representing
a different threshold T used for CNA detection. In each
group, the first two columns correspond to the indepen-
dent analysis of S1 and S2 using 1-GADA, the third col-
umn is the result of applying 1-GADA to the S1 and S2
weighted average, and the last two columns in each group
(4th and 5th) are the outputs corresponding to S1 and S2
resulting of the 2-GADA joint analysis. For each claimed
CNA, red tones represent amplification and blue tones loss
of genetic material.

Our results on real data are also in accordance to the
findings obtained using simulation data. Figure 4 shows
a visual representation of some of the CNA detected on
3 different FDR operating points (T settings) for a pair
of replicate samples (S1, S2) analyzed with Affymetrix
500K platform. The CNA found are very short segments
because the samples are from a healthy human subject
(NA01416). We can observe the higher sensitivity of the
2-GADA approach on the deletion on q35; the CNA is
retained for a higher significance setting T = 7 while it
is removed on the single-sample approaches. This higher
sensitivity can also be achieved by the sample averaging
procedure, but this naive combination may cause more
spurious false CNA (see 3rd column, T = 4). On the

other hand, the 2-GADA approach is more robust since it
retains the information of the origin of each observation.
This can also be seen on an S2 outlier in q21.13 T = 5;
2-GADA eliminates this false alteration since it is not sup-
ported on (S1) one of the two samples, while in naive av-
eraging this outlier causes a false detection. In terms of
computational speed, the 2-GADA approach performance
is very competitive, with computational complexity linear
in the number of probes M and samples N .

4. CONCLUSION

This paper presents a novel approach N-GADA to solve
the problem of finding CNA with breakpoints at recurrent
positions across multiple samples. N-GADA extends the
single-sample algorithm GADA presented in [3] using a
Bayes hierarchical prior for the breakpoints that is shared
across all the samples. Simulation and real data results
show that the proposed approach achieves a higher accu-
racy and robustness to outliers when sample replicates are
available. The resulting approach retains a linear com-
plexity in the number of samples and probes. Thus, the
approach can be considered a promising tool to discover
small alterations that are recurrent across many samples.
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