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Introduction

Motivation

Graphs provide a flexible model to represent many datasets:

Examples in Euclidean domains

(a) (b)

1
1

.5

(c)

(a) Computer graphics2 (b) Wireless sensor networks 3 (c) image - graphs

2From [Sweldens, 1999]
3From http://www.purelink.ca
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Introduction

Motivation

Examples in non-Euclidean settings

(a)

Combined ARQ-Queue

0

1

2

3

0 1 2 3

ARQ

Q
ue

ue

(b)

(a) Social Networks 4, (b) Finite State Machines(FSM)

Graphs can capture complex relational characteristics (e.g., spatial, topological).

4Zacharay Karate Club [Zacahary, 1977]
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Introduction

Graph Signal Processing?

Assume fixed graph structure: different graph signals on a given
graph

Define linear transforms for graph signals

Use these for compression, denoising, interpolation, etc
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Introduction

What do we know about transforms for graph signals?

More than you think

H =


2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 −1 2


Interpretation

Circulant matrix – Circular convolution
Eigenvectors: DFT
High pass filter: each row adds to 0

Where is the graph?
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Introduction

What do we know about transformations on Graphs?

Alternative representation

H =


2 −1 0 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
−1 0 0 0 0 0 −1 2



H =


2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

−


0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


H = D− A

Interpretation?
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Introduction

Graphs


0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0



H is a simple polynomial of L = D− A on the cycle graph

Can we do similar things on more complex graphs?
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Introduction

Graphs


0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0



A is no longer circulant – no DFT in general, but...

Polynomials of L = D− A or A are local operators

There will be a frequency interpretation
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Introduction

What makes these “graph transforms”?

Shift invariance: same filter at every sample

Graph-based shift invariance – Operator is the same, local variations
captured by A or L.

H = L = D− A

This can be generalized:

H =
L−1∑
k=0

αkLk or H =
L−1∑
k=0

αkAk

Or alternatively, because based on Graph Fourier Transform
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Introduction

Summary

Localized linear operations on graphs using polynomials of A or L.

Frequency interpretation is possible for eigenvectors of A or L.

A great deal depends on the topology of the graph

In what follows we consider mostly undirected graphs without self
loops and use L.
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]

Other approaches are possible based on A
[Sandryhaila and Moura 2013]
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Introduction

Research Goals

Extend signal processing methods to arbitrary graphs

Downsampling, graph-frequency localization, multiresolution, wavelets,
interpolation

Outcomes

Work with massive graph-datasets: localized “frequency” analysis
Novel insights about traditional applications (image/video processing)
New applications

This talk
Graph Signal Processing

Graph Filterbank design

Applications

Edge Aware Image Filtering
Depth image coding
Wireless network optimization
Recommendation System Example
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Introduction Basic Theory

Graphs 101

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11
12

13

14

15

16

17

18

19

20

21 22 23

24 25 26

27

Graph G = (V,E ,w).

Adjacency matrix A

Degree matrix D = diag{di}
Laplacian matrix L = D− A.

Normalized Laplacian matrix
L = D−1/2LD−1/2

Graph Signal
f = {f (1), f (2), ..., f (N)}

Assumptions:

1. Undirected graphs without self loops.
2. Scalar sample values
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Introduction Basic Theory

Spectrum of Graphs

Graph Laplacian Matrix L = D− A = UΛU′

Eigen-vectors of L : U = {uk}k=1:N

Eigen-values of L : diag{Λ} = λ1 ≤ λ2 ≤ ... ≤ λN

Eigen-pair system {(λk ,uk )} provides Fourier-like interpretation
— Graph Fourier Transform (GFT)
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Introduction Basic Theory

Graph Frequencies

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 1.20 (d) λ = 1.55

(a) ω = π/4 ×0 (b) ω = π/4 ×1 (c) ω = π/4 ×4 (d) ω = π/4 ×7

Eigenvectors of an arbitrary graph

DCT basis for regular signals
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Introduction Basic Theory

Eigenvectors of graph Laplacian

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 0.20

(d) λ = 0.40 (e) λ = 1.20 (f) λ = 1.49
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Introduction Basic Theory

Graph Transforms

Input Signal Transform Output Signal 
Processing/

Analysis

Desirable properties

Invertible
Critically sampled
Orthogonal
Localized in graph (space) and graph spectrum (frequency)

Local Linear Transform

Can we define Graph Wavelets?
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Wavelet Transforms on Arbitrary Graphs

Next Section

1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
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Wavelet Transforms on Arbitrary Graphs

Discrete Wavelet Transforms in 2 slides – 1

(a) 2 Channel Filterbank (b) Tree-structured Filterbank

From Vetterli and Kovacevic, Wavelets and Subband Coding, ’95
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Wavelet Transforms on Arbitrary Graphs

Discrete Wavelet Transforms in 2 slides – 2

(a) Separable Transform (b) Example Image

Note: Filters have some frequency and space localization
From Vetterli and Kovacevic, [Ding’07]
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Prior work – Spatial Graph Transforms

Designed in the vertex domain of the graph. Examples:

Graph wavelets [Crovella’03]
Approaches for WSN [Wang’06], [Wagner’05] [Shen-ICASSP08]

1-hop averaging transform

y [n] =
1

dn

N∑
m=1

A[n,m]x [m] ⇒ y = D−1Ax = Prw x

1-hop difference transform

y [n] =
1

dn

N∑
m=1

A[n,m](x [n]− x [m]) ⇒ y = Lrwx = x− Prwx
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Prior Work – Spectral Graph Transforms

Designed in the spectral domain of the graph. Examples:
Diffusion Wavelets [Coifman and Maggioni 2006]
Spectral Wavelets on Graphs [Hammond et al. 2011]

Spectral Wavelet transforms [Hammond et al. 2011]:

Design spectral kernels: h(λ) : σ(G )→ R.

Th = h(L) = Uh(Λ)Ut

where
h(Λ) = diag{h(λi )}
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Spectral Graph Transforms Cont’d

Output Coefficients:

wf = Thf =
∑

λ∈σ(G)

h(λ).f̄ (λ)uλ

Polynomial kernel approximation:

h(λ) ≈
K∑

k=0

akλ
k

Th ≈
K∑

k=0

akLk

K -hop localized: no spectral decomposition required.
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Vertex-Frequency Localization on Graphs

Wavelet Filters: provide simultaneous localization in spatial and
spectral domain:

Advantages:

Possible benefits of “localized” frequency analysis.
Fast approximate solutions to global optimization problems.
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Wavelet Transforms on Arbitrary Graphs Graph Transforms – Prior Work

Graph Filterbank Designs

Formulation of critically sampled graph filterbank design problem

Design filters using spectral techniques [Hammond et al. 2009].

Orthogonal (not compactly supported) [IEEE TSP June 2012]

Bi-Orthogonal (compactly supported) [IEEE TSP Oct 2013]

analysis side synthesis side

filter downsample upsample filter

- -
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Wavelet Transforms on Arbitrary Graphs Downsampling in Graphs

Downsampling/Upsampling in Graphs

Downsampling-upsampling operation:

Regular Signals:

fdu(n) =

{
f (n) if n = 2m
0 if n = 2m + 1

Graph signals:

fdu(n) =

{
f (n) if n ∈ S
0 if n /∈ S

for some set S.

(a) regular signal (b) regular signal after DU by 2

(c) graph signal (d) graph signal after DU by 2

For regular signals DU by 2 operation is equivalent to
Fdu(e jω) = 1/2(F (e jω) + F (e−jω)) in the DFT domain.

What is the DU by 2 for graph signals in GFT domain?
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Downsampling in Graphs

Downsampling function : define βH : V → {±1} s.t.

βH(n) =

{
1 if n ∈ H
−1 if n /∈ H

(1)

Downsample-upsample (DU) operation given βH :

fdu(n) =
1

2
[f (n) + βH(n)f (n)] (2)
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Downsampling in Graphs

Define Jβ = JβH
= diag{βH(n)}.

In vector form:

fdu =
1

2
(f + Jβf)

=
1

2
(f + f̃)

Spectral Folding [4]: For a bipartite graph f̃ (λ) = f (2− λ).
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

DFT aliasing vs GFT aliasing

Property DU by 2 regular signal DU by 2 bipartite graph
signal

frequency ωk = 2πk
N ; uniformly spaced in

[0 2π],
eigenvalues λ of L; irregu-
larly spaced in [0 2]

Fourier ba-
sis

W k
N = exp{jωkn}; complex eigenvectors uλ of L; real

frequency
folding

Fdu(e jω) = 1/2(F (e jω) +

F (e−jω))

f̄du(λ) = 1/2(f̄ (λ)+f̄ (2−λ))
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Graph filterbanks

Filters designed in spectral domain (as [Hammond et al, 2009])

Analysis:

hi (λ) : R→ R for i = 0, 1
Hi = hi (L) = Uhi (Λ)Ut

Synthesis:

gi (λ) : R→ R
Gi = gi (L)

analysis side synthesis side

filter downsample upsample filter

- -

A. Ortega (USC) Signal Processing on Graphs Sept. 2013 33 / 81



Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Graph filterbanks

Downsampling functions βH = β and βL = −β in two channels. ⇒
nodes in H (or L) store the output of H1 (or H0) ⇒ critically
sampled output.

Equivalent transform f̂ = Teqf, s.t.,

Teq =
1

2
G1(I + Jβ)H1 +

1

2
G0(I− Jβ)H0

=
1

2
(G1H1 + G0H0)︸ ︷︷ ︸

A

+
1

2
(G1JβH1 − G0JβH0)︸ ︷︷ ︸

B

(3)

B term is due to downsampling. For perfect reconstruction A = cI
and B = 0.

Since we use spectral filtering: choosing Hi is equivalent to choosing
hi (λ)
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Wavelet filterbanks on bipartite graphs

Aliasing Cancellation ⇒ B = 0 if for all λ ∈ σ(G ):

B(λ) = g1(λ)h1(2− λ)− g0(λ)h0(2− λ) = 0

Perfect Reconstruction ⇒ A = cI if for all λ ∈ σ(G ):

A(λ) = g1(λ)h1(λ) + g0(λ)h0(λ) = c
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Graph-QMF design –1

Solution analogous to Quadrature Mirror Filters (QMF), choose:

h1(λ) = h0(2− λ)

g0(λ) = h0(λ)

g1(λ) = h1(λ)

Design h0(λ) s.t. for all λ

h2
0(λ) + h2

0(2− λ) = c

no exact polynomial solutions, good polynomial approximations
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

Graph-QMF design –2

Polynomial kernel approximation:

Approximate Meyer kernels as m degree polynomial.
trade off between accuracy and complexity .
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

GraphBior design –1

Analogous to CDF wavelet Filters [Narang and Ortega, IEEE TSP, 2013]

Choose kernels, s.t.,

h0(λ) = g1(2− λ)

g0(λ) = h1(2− λ),

for aliasing cancellation (B = 0).

The PR condition (A = 0) becomes:

h1(λ)g1(λ)︸ ︷︷ ︸
p(λ)

+ h1(2− λ)g1(2− λ)︸ ︷︷ ︸
p(2−λ)

= c

Design p(λ) as a “maximally flat” polynomial and factorize into
h1(λ), g1(λ) terms. Exact reconstruction with polynomial filter
(compact support).
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Wavelet Transforms on Arbitrary Graphs Graph Transform Designs

GraphBior design –3

Trade-off between spatial and spectral localization:

All solutions satisfy perfect reconstruction.
Spectral localization increases with longer filters.
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

Bipartite Subgraph Decomposition

But not all graphs are bipartite...

Solution: “Iteratively” decompose non-bipartite graph G into K
bipartite subgraphs:

each subgraph covers the same vertex set.
each edge in G belongs to exactly one bipartite graph.

apply wavelet filterbanks in K stages (dimensions).

in the kth stage restrict filtering downsampling operations on kth

bipartite graph.
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

Bipartite Subgraph Decomposition

Example of a 2-dimensional (K = 2) decomposition:
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Wavelet Transforms on Arbitrary Graphs Bipartite Subgraph Decomposition

“Multi-dimensional” Filterbanks on graphs

Two-dimensional two-channel filterbank on graphs:

2

2

2

2

2

2

2

2

Advantages:
Perfect reconstruction and orthogonal for any graph and any bpt
decomposition.
defined metrics to find ”good” bipartite decompositions.
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Wavelet Transforms on Arbitrary Graphs Example

Example

Minnesota traffic graph and graph signal
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Wavelet Transforms on Arbitrary Graphs Example

Example

Bipartite decomposition
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Wavelet Transforms on Arbitrary Graphs Example

Example

 

 

−2 0 2

 

 

−0.1 0 0.1

 

 

−0.1 0 0.1

LL Channel LH Channel

HH ChannelHL Channel

Empty Channel

Output coefficients of the proposed filterbanks with parameter m = 24.
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Wavelet Transforms on Arbitrary Graphs Example

Example

 

 

−1 0 1

 

 

−0.1 0 0.1

 

 

−1 0 1

 

 

−0.05 0 0.05

LL Channel LH Channel

HL Channel HH Channel

Reconstructed graph-signals for each channel.
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Applications

Next Section

1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
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Applications Edge Aware Image Processing

Depth Image Coding [Narang, Chao and Ortega, 2013]

Block Diagram

Edge  
Detection 

Graph 
Selection 

Edge 
Encoding 

(JBIG) 

Graph-based 
Wavelet Transform  

Wavelet Coefficients  
Encoding 
(SPIHT) 

GraphBior 
Filterbanks 

Output  
Bit stream  Input Image 

Advantage:
Link-weights can be adjusted to reflect geometrical structure of the
image.
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Depth Image Coding [Narang, Chao and Ortega, 2013]

CDF	
  9/7	
   Graph	
  9/7	
  

Advantage:
Link-weights can be adjusted to reflect geometrical structure of the
image.
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Applications Edge Aware Image Processing

Depth Image Coding [Narang, Chao and Ortega, 2013]

Edge detection: Prewitt

Laplacian Normalization:
Random Walk Laplacian

Filterbanks: GraphBior 4/3 and
CDF 9/7

Unreliable Link Weight: 0.01

Transform level: 5

Encoder: SPIHT
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Applications Bilateral Filtering as a Graph Operation

Bilateral Filtering (BF) [Tomasi and Manduchi, ’98]

Weighted average of nearby similar pixels

xout [j ] =
∑

i

wij∑
i wij

xin[i ] (4)

with weights given by

wij = exp

(
−
‖pi − pj‖2

2σ2
s

)
. exp

(
−(xin[i ]− xin[j ])2

2σ2
x

)
(5)

(a) Noisy data (b) Similarity weights (c) Filtered output (From Tomasi and
Manduchi, 1998)
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Applications Bilateral Filtering as a Graph Operation

BF as a Graph Based Transform

Graph G = (V,E ) with

pixels as nodes
V = {1, 2, . . . , n}
edges E = {(i , j ,wij )}
image xin as graph signal Bilateral Filter Graph

We can write bilateral filtering in (4) as

xout = D−1Wxin (6)

A. Ortega (USC) Signal Processing on Graphs Sept. 2013 52 / 81



Applications Bilateral Filtering as a Graph Operation

Spectral Interpretation

Using the definition of graph Laplacian L = I−D−1/2WD−1/2

D1/2xout = (I−L)D1/2xin (7)

Using L = UΛUt and x̂ = D1/2x

x̂out = U(I− Λ)Ut x̂in (8)

Iterated bilateral filter

x̂out = U(I− Λ)kUt x̂in (9)
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Applications Bilateral Filtering as a Graph Operation

Spectral Response of the BF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ

h
(λ

)

 

 

BF

Iterated BF k = 2

k = 3

k = 4

Spectral responses of the BF and iterated BF. The graph is formed using the lena
image which has maximum eigenvalue equal to 1.28.
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Applications Bilateral Filtering as a Graph Operation

Flexible Spectral Design [Gadde, Narang and Ortega, 2013]

Key idea: use graph derived from bilateral filter

xout = U︸︷︷︸
Inverse
GFT

h(Λ)︸︷︷︸
Spectral
response

Utxin︸ ︷︷ ︸
GFT

= h(L)xin (10)

Design polynomial h(λ) to have local implementation.
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Applications Bilateral Filtering as a Graph Operation

Examples: Smoothing a noisy image

(a)

(d) (e) (f)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

(b)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

 

 

exact

approx.

(a) Original (d) Noisy SNR = 20 dB (b) Spectral response of the BF (c) Spectral
response obtained by the regularization (e) Output of the BF, SNR = 20.65 dB
(f) Output of h(λ) filter, SNR = 22.64 dB
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Applications Bilateral Filtering as a Graph Operation

Examples: Edge preserving coarsening

(a) (b) (c)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(d)
0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e)

 

 

exact

approx.

(a) Original image (b) 20 iterations of BF (d) Spectral response of the iterated
BF (c) output of the proposed spectral filter (e) Corresponding Spectral response
and its polynomial approximation
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Applications Graph Filtering of Cost-to-Go Functions

Graph Filtering of Cost-to-Go Functions [Levorato, Narang, Mitra,

Ortega 2012]

Markov decision process:

S = {S(0),S(1), ...} sequence
of states

S(t) ∈ S state at time t
S state space

A = {A(1),A(2), ...} sequence
of actions

A(t) ∈ AS(t) action at time t
A action space.

0,a 0,a

1,a 1,a

2,a 2,a

T,a T,a

0

0

0

0

1

1

1

1

3,a 3,a0 1

Example of a FSM with T states and 2 actions
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Applications Graph Filtering of Cost-to-Go Functions

Graph Filtering of Cost-to-Go Functions

Graph Formulation:

Nodes set : V = S ×A = {(s, a)}s∈S,a∈A.

Graph signal: expected long term discounted cost v(s, a) from state s
given action a conditioned upon the policy µ:

Vµ(s, a) = c(s, a) +
∞∑
τ=1

∑
s2∈S

∑
a2∈A

γτpτµ(s, a, s2)µ(s2, a2)c(s2, a2)

An optimal policy exists in the set of randomized policies past
independent policies µ(s, a) : S ×A → [0, 1] maps state s to the
probability that action a is selected.

Problem: Computation, compression and optimization of discounted cost
function v(s, a).
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Applications Graph Filtering of Cost-to-Go Functions

Graph Filtering of Cost-to-Go Functions

Very large state space
Wavelet based approach:

Reduce the size of the problem by downsampling and filtering.
Operate upon the smooth approximation of cost function on
downsampled graph.

Example: Expected cost for secondary transmitter observing state
(which depends on unobserved primary transmitter)

(a) (b)

(a) Example network graph with two variables (b) graph after downsampling
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Applications Graph Filtering of Cost-to-Go Functions

Graph Filtering of Cost-to-Go Functions

Results [Globecom, 2012]

15 20 25 30 35 40
0.1

0.15

0.2

0.25
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0.35

B = F

P
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e
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r
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ρ
2
 = 0.9 

ρ
2
 = 0.8

Error between policies computed on original and downsampled graph (as a
function of graph size.) ρ1 and ρ2: transmission failure probabilities.
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Applications Graph-based Prediction for Recommendation Systems

Graph based Prediction in Recommendation Systems [Gadde,

Narang, Ortega 2013]

Collaborative filtering problem: given known movie ratings for a large
set of users, identify recommendations for a specific user.

Graph representation of recommender systems:

movies (or users) as vertices and
edge-weights reflecting similarity between them.

Interpolation based methods for rating prediction:

find all movies that the specific user has rated and are neighbors in
weighted graph.
interpolate ratings of these movies to unknown movie.
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Applications Graph-based Prediction for Recommendation Systems

Graph based Prediction in Recommendation Systems

0.11789 0.75042
 

 

kNN graph

Unrated
vertex

0.14664 1.1025
 

 

graph 2

Unrated
Vertex

A typical instance of interpolation in MovieLens 100k dataset: (a) kNN method (err = 2.81 in
this example). (b) Interpolation based on local sub-graph (err = 0.78 in this case).
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Applications Graph-based Prediction for Recommendation Systems

Preliminary results [ICASSP 2013]

1−40 41−80 81−120 121−160 161−200 201−240 241−280 281−668
0

0.2

0.4
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0.8

1

1.2

1.4

Number of training samples per movie

R
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E

 

 LS projection (K=K*+10)

kNN (k=30)

PMF

Proposed method

Proposed method with bilateral weights
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Conclusions

Next Section

1 Introduction

2 Wavelet Transforms on Arbitrary Graphs

3 Applications

4 Conclusions
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Conclusions

What makes these “graph transforms”?

Graph-based shift invariance:

H =
L−1∑
k=0

αkLk or H =
L−1∑
k=0

αkAk

Graph Fourier Transform

H = h(L) = Uh(Λ)U
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Conclusions

Conclusions

Extending signal processing methods to arbitrary graphs:
Downsampling, Space-frequency, Multiresolution, Wavelets

Many open questions: very diverse types of graphs, results may apply
to special classes only

Outcomes

Work with massive graph-datasets: potential benefits of localized
“frequency” analysis
Novel insights about traditional applications (image/video processing)

To get started:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]

GlobalSIP Symposium on Graph Signal Processing
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